Supermodular and Submodular Games

Lones Smith

Spring, 2025

Games with Strategic Complements and Substitutes

- Games with continuous actions can possibly be very complex
- There are two genres of well-behaved such games:
- 1. Supermodular Games \iff Strategic Complements
 - Higher actions by others encourage higher best replies
- 2. Submodular Games \iff Strategic Substitutes
 - Higher actions by others encourage lower best replies

Diamond Coconut Model (1982)

- People only eat coconuts, picked from palm trees at a cost.
- One cannot eat a coconut one has picked, but must trade it
- Climbing a coconut tree is worth more with more searchers
- We Have Multiple Equilibria?

Diamond Coconut Model

- Agents i = 1, 2, ..., I exert effort e_i looking for trade partners
- The chance of finding a partner is $e_i \sum_{j \neq i} e_j$
- The effort cost c(e) and marginal cost c(e) are increasing
- Thus, the payoff is $u_i(e_i, e_{-i}) = e_i \sum_{j \neq i} e_j c(e_i)$
- positive spillovers: one's welfare rises in others' actions
- ⇒ Multiple Equilibria are Payoff-Ranked

Diamond Coconut Model with Two Players

The Amplification Effect of Supermodular Games

Assume two players, and quadratic marginal costs $c'(e) = e^2$

• Payoff
$$u_i(e_1, e_2) = \theta e_1 e_2 - c(e_i)$$

- \Rightarrow i's FOC: $\theta e_j = c'(e_i) = e_i^2$, and so $BR_i(e_j) = \sqrt{\theta e_j}$
- Imagine a parametric shift from θ' to $\theta'' > \theta'$
- Amplification Effect: equilibrium shift > private shift

6/15

Tarski Fixed Point Theorem

Theorem (Tarski Fixed Point Theorem, 1955)

Let (X, \succeq) be a complete lattice, and $f: X \to X$ a monotone function (i.e. order-preserving w.r.t. to \succeq). Then f has a fixed point f(x) = x, and the set of fixed points is itself a sublattice of X.

- The proof in wikipedia is quite good!
- Notably, the function need not be continuous: it can jump
- Tarski proved this not just for Euclidean domains, but for partially ordered functions on lattices.

Supermodular Games

A supermodular game whose payoffs $u_i(s_i, s_{-i})$ have ID $\forall i$

Theorem (Maximum and Minimum Equilibrium)

Consider a supermodular game with continuous payoff functions $u_i(s)$ on a compact domain $\forall i$. Then there exists a maximum and minimum equilibrium.

Proof Step 1: By Topkis, the best response map BR_i(s_{-i}) = arg max u_i(s_i, s_{-i}) is nonempty, and has monotone max and min elements BR_i(s_{-i}) and BR_i(s_{-i})

▶ Proof Step 2: Apply Tarski Fixed Point Theorem to
$$f(s) = (\overline{BR}_1(s_{-1}), \dots, \overline{BR}_l(s_{-l}))$$
 and $g(s) = (\underline{BR}_1(s_{-1}), \dots, \underline{BR}_l(s_{-l}))$.

Supermodular Games and Diamond's Coconut Equilibria

- Corollary (Iterated Elimination of Dominate Strategies)
- In the above supermodular game:
 - Pure strategy equilibria exist
 - The max and min equilibria are also max and min strategies surviving iterated elimination of dominated strategies.
 - A game with a unique Nash equilibrium is dominance solvable.
 - Proof Intuition:

Differentiated-Good Bertrand Price Competition (1883)

• Given prices $p = (p_1, \ldots, p_l)$ of firms $i = 1, 2, \ldots, l$, demand is

$$D_i(p_i, p_{-i}) = a_i - b_i p_i + \sum_{j \neq i} d_{ij} p_j$$

where $a_i, b_i, d_{ij} \ge 0$, profits are $\pi_i(p) = (p_i - c_i)D_i(p_i, p_{-i})$

- This is supermodular, because $\frac{\partial^2 \pi_i(p)}{\partial p_i \partial p_i} \ge 0$
- ► The supermodular games existence proof works with discontinuous demand, as with pure Bertrand pricing D_i(p_i, p_{-i}) = [a₁ - b₁p₁]I_{p_i<min(p_i|j≠i)}
- \Rightarrow This was used to prove existence of equilibria in auctions.

Cournot Quantity Competition (1838)

- Demand function $P(q) = A q_1 q_2$ of quantities $q = (q_1, q_2)$
- Cost functions $C_1(q_1)$ and $C_2(q_2)$
- ⇒ Submodular game given profits $u_i(q_1, q_2) = q_i P(q) C_i(q_i)$, namely,

$$\frac{\partial^2 u_i}{\partial q_1 \partial q_2} = -1 < 0$$

- But it is supermodular if Firm 2's strategy is $s_2 = -q_2$
- $\Rightarrow\,$ Cournot Oligopoly cannot be rendered a supermodular game by this sign swap trick
- \Rightarrow Cournot Duopoly survives iterated dominance

Cournot Duopoly and Iterated Dominance

Submodular Games

- $f(x, \theta)$ has decreasing differences if $f(x, -\theta)$ has ID
- A submodular game, or game of strategic substitutes is one whose payoffs u_i(s_i, s_{−i}) have decreasing differences ∀i
- Examples of submodular games have a win-lose flavor:
 - Sharing a pie
 - Cournot quantity competition shares demand
 - Bargaining over a pie (example to come)
 - Displacing effort in group projects or preventing accidents:
 - Vigilance in avoiding contagious diseases
 - Vigilance in auto accident prevention
- Supermodular games involve win-win games (coordination, cooperation, matching), or lose-lose games (competition)
 - win-win
 - Trust games, eg. financial (2008 Financial Crisis, corruption)
 - Price competition in Bertrand competition
 - Iose-Iose
 - Effort in classes with belled grades
 - ► Vigilance effort in avoiding counterfeit money

Submodular Games and the Attenuation Effect

- Attenuation Effect: The Equilibrium effect of a parameter change is less than the private effect
- a "shock absorber"

The Attenuation Effect in Cournot Duopoly

- Demand function $P(q) = A q_1 q_2$ and marginal cost c > 0
- The FOC is $A 2q_i q_j c = 0$
- What happens if demand rises: $\Delta A > 0$
- \Rightarrow Private Effect: $q_2 = (A c q_1^*)/2 \Rightarrow \Delta q_2 = \frac{1}{2}\Delta A$

 $\Rightarrow \text{ Equilibrium effect: } q^* = (A - c)/3 \Rightarrow \Delta q^* = \frac{1}{3}\Delta A$

