General Social Learning Insights

Lones Smith

April 2, 2025

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Informational Inertia

- Standard statistical learning is markovian: the order you see signals is irrelevent. If you helicopter drop into the model, you can proceed just learning the current beliefs
- Social learning is highly path dependent: the action order matters
- Posterior monotonicity (PM) asserts:

prior belief rises \rightarrow Joe's posterior belief rises, for a given action by Ike.

- ▶ Posterior monotonicity can fail: actions ⇒ endogenous signals
 - This is true for statistical learning
 - At higher prior beliefs, Ike takes any action for less favorable private signals ⇒ his action less strongly endorses high state.
 - For some signal distributions, this swamps the direct effect of a higher prior public belief.

Informational Inertia

- States $\theta = L, H$ with private belief p with cdfs $F_H(p), F_L(p)$
- Signal log-likelihood ratio λ = log(dF_H/dF_L) has cdf G_H(λ), G_L(λ) in state θ = L, H.
- This is an equivalent formulation of a signal
- No Introspection Principle:

$$dG_H/dG_L = e^{\lambda}.$$

- Assume three actions: sell, hold, and buy.
- Ike's actions are optimal for *posterior log likelihood ratios* λ₀ + log[p/(1 − p)] in (−∞, <u>λ</u>), (<u>λ</u>, <u>λ</u>), and (<u>λ</u>,∞)
- If Ike (with prior λ_0) buys, then Joe's posterior is

$$\lambda_{0} + \frac{\int_{\overline{\lambda}-\lambda_{0}}^{\infty} dG_{H}(\lambda)}{\int_{\overline{\lambda}-\lambda_{0}}^{\infty} dG_{L}(\lambda)} = \lambda_{0} + \frac{\int_{\overline{\lambda}-\lambda_{0}}^{\infty} e^{\lambda} dG_{L}(\lambda)}{\int_{\overline{\lambda}-\lambda_{0}}^{\infty} dG_{L}(\lambda)}$$

► ∃ PM if $-\ell + \log\left(\frac{\int_{\ell}^{\infty} e^{\lambda} dF}{\int_{\ell}^{\infty} dF}\right)$ is (strictly) decreasing in ℓ

Private Signals and Private Beliefs

• Two equilikely states $\theta = L, H$

Signal Quality Model: Consider two possible statistically true statements "with chance q, the state is high/low", where the signal quality q is distributed over (0, 1) with density γ.

• $\sigma = \sigma_H$ or σ_L , where $P(\sigma = \sigma_H | H) = q = 1 - P(\sigma = \sigma_H | L)$.

- If told the state is high, posterior is q/[q + (1 q)] = q
- ► If told the state is low, posterior is 1 − q
- Ignore atoms (for simplicity). The density of private beliefs p is

►
$$f^{\mathcal{H}}(p) = p[\gamma(p) + \gamma(1-p)]$$
 in state H
► $f^{\mathcal{H}}(p) = (1-p)[\gamma(p) + \gamma(1-p)]$ in state L

- Lemma: Under the signal quality structure, private belief distributions are F^H(p) ≡ 1 − F^L(1 − p) for all p ∈ (0, 1).
- The density of signals for H at p must equal the density for L at strength p for L, and so 1 p for H
- q_n is the private belief of individual n

Random Sampling

- Two actions a and b (eg. 'decline' or 'invest')
- ▶ Payoffs $u^{H}(a) = u^{L}(a) = 0$, $u^{H}(b) = 2u$, $u^{L}(b) = -2$
- Unlike herding literature, entire ordered history is not observed
 - ► Everyone observes a random unordered sample s ∈ S of previous action observations
 - Sample size may be random, and sampling weights may also vary over time (uniform, or sample recent past more often)
 - Aggregates model: observe whole unordered history
- Sampling is recursive if individual n + 1 samples n with weight π_n, and otherwise individuals (1,..., n − 1) as before
 - Stationary recursive sampling is geometric weighting: n samples individual ν with relative weight ρ^{n-ν}, where ρ > 0.
 - $\rho \rightarrow 0$: only the immediate predecessor is sampled
 - $\rho < 1$: distant past is discounted.
 - ρ = 1: proportional sampling
 - $\rho > 1$: recent past is undersampled.

Social Beliefs

Every n = 1, 2, ... forms a social belief q_n that θ = H
Bayes' rule ⇒ posterior belief r_n = p_{nqn}/p<sub>nqn+(1-p_n)(1-q_n)
n chooses action b
iff r_nu ≥ (1 - r_n)
iff p_n ≥ (1 - q_n)/[uq_n + (1 - q_n)]
How does stochastic process of social beliefs ⟨q_n⟩ behave?
</sub>

Is learning complete in the long run? adequate?

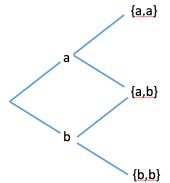
If not, are there herds? 'proportionate herds'? cycles?

Learning

- lindividual *n* samples individual *m* with probability $\tau(n, m)$
- Then $\sum_{m=0}^{n-1} \tau(n,m) = 1$ for each *n*.
- The sampling process *does not over-sample the past* if for all *m* ∈ N and ε > 0, there exists *M* ≥ *m* such that τ(*n*, *m*) < ε and τ(*n*, 0) < ε for all *n* ≥ *M*.
- ▶ By independence of sample sizes, a recursive sampling process (π_n) does not over-sample the past if $\prod_{n=2}^{\infty} (1 \pi_n) = 0$.

No More Overturning

- How you arrive at a history is no longer known, but matters
- Consider beliefs after two opposing choices



We have merged together two information sets with wildly different public beliefs, to create one unified social belief

Two Reasons for Social Learning to Fail

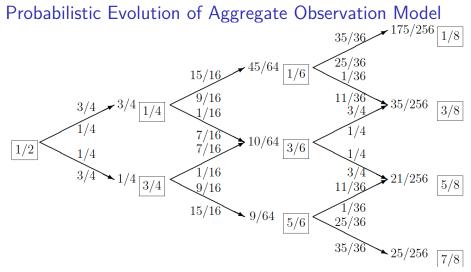
- (a) If Σ doesn't over-sample the past and private beliefs are unbounded, then learning is complete.
- (b) Learning is incomplete and payoffs are bounded away from the maximum if Σ over-samples the past.
- (c) Learning is incomplete and payoffs are bounded away from the maximum for bounded private beliefs and non-empty samples.

Random Sampling

- Not everyone correctly herd with uniform random sampling.
- With unbounded private beliefs, an infinite subsequence of individuals chooses a contrary action.
- Borel Cantelli Lemma: If ∑_{n=1}[∞] P(E_n) < ∞ for events {E_n}, then the chance that infinitely many events {E_n} occur is 0.
 Proof: P(⊥∞ (E)) < ∑[∞] P(E) > 0

• Proof: $P(\bigcup_{n=N}^{\infty}(E_n)) \leq \sum_{n=N}^{\infty} P(E_n) \to 0$

- Early individuals have a positive chance of doing anything.
- ▶ With random sampling of ≥ 1 predecessors, everyone is a.s. sampled by infinitely many successors,
- Since history become arbitrarily informative, anyone sampling such an individual will eventually choose to follow them
- So, even though the share of individuals taking the right action tends to one, an infinite subsequence takes a suboptimal action with positive probability.



- Upward transitions are INVEST, and downward ones are NOT
- ► Tip of arrows are probabilities $\pi_n^H(k)$ (public belief in state L)
- Private belief thresholds $\bar{p}_n(k)$ in the boxes at arrow roots.
- Transition probabilities in states H, L above/below arrows

Are Beliefs a Martingale? (Work with Mingxin Xie)

- After INVEST, the social belief in state L is $\bar{p}_1(1) = 1/4$.
- ▶ The expected continuation $E[\bar{p}_2 | \text{see an investor}]$ is lower:

$$\begin{aligned} & \mathsf{Pr}(2 \; \mathsf{invests}|1 \; \mathsf{invests}) \, \bar{p}_2(2) + \mathsf{Pr}(2 \; \mathsf{declines}|1 \; \mathsf{invests}) \, \bar{p}_2(1) \\ &= \left\{ [1 - \bar{p}_1(1)] [1 - F^{\mathcal{H}}(\bar{p}_1(1))] + \bar{p}_1(1) [1 - F^{\mathcal{L}}(\bar{p}_1(1))] \right\} \bar{p}_2(2) \\ &+ \left\{ [1 - \bar{p}_1(1)] F^{\mathcal{H}}(\bar{p}_1(1)) + \bar{p}_1(1) F^{\mathcal{L}}(\bar{p}_1(1)) \right\} \bar{p}_2(1) \\ &= \frac{3}{4} (15/16) + \frac{1}{4} (9/16) \} (1/6) + \frac{3}{4} (1/16) + \frac{1}{4} (7/16) \} (1/2) \\ &= 84/384 \\ &< 1/4 \end{aligned}$$