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Informational Inertia
▶ Standard statistical learning is markovian: the order you see

signals is irrelevent. If you helicopter drop into the model, you
can proceed just learning the current beliefs

▶ Social learning is highly path dependent: the action order
matters

▶ Posterior monotonicity (PM) asserts:

prior belief rises → Joe’s posterior belief rises, for a given action by Ike.

▶ Posterior monotonicity can fail: actions ⇒ endogenous signals

▶ This is true for statistical learning
▶ At higher prior beliefs, Ike takes any action for less favorable

private signals ⇒ his action less strongly endorses high state.
▶ For some signal distributions, this swamps the direct effect of a

higher prior public belief.
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Informational Inertia
▶ States θ = L,H with private belief p with cdfs FH(p),FL(p)
▶ Signal log-likelihood ratio λ = log(dFH/dFL) has cdf

GH(λ),GL(λ) in state θ = L,H.
▶ This is an equivalent formulation of a signal
▶ No Introspection Principle:

dGH/dGL = eλ.

▶ Assume three actions: sell, hold, and buy.
▶ Ike’s actions are optimal for posterior log likelihood ratios

λ0 + log[p/(1 − p)] in (−∞, λ), (λ, λ̄), and (λ̄,∞)

▶ If Ike (with prior λ0) buys, then Joe’s posterior is

λ0 +

∫∞
λ̄−λ0

dGH(λ)∫∞
λ̄−λ0

dGL(λ)
= λ0 +

∫∞
λ̄−λ0

eλdGL(λ)∫∞
λ̄−λ0

dGL(λ)

▶ ∃ PM if −ℓ+ log
(∫∞

ℓ eλdF∫∞
ℓ dF

)
is (strictly) decreasing in ℓ
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Private Signals and Private Beliefs
▶ Two equilikely states θ = L,H
▶ Signal Quality Model: Consider two possible statistically

true statements “with chance q, the state is high/low”, where
the signal quality q is distributed over (0, 1) with density γ.
▶ σ = σH or σL, where P(σ = σH|H) = q = 1 − P(σ = σH|L).
▶ If told the state is high, posterior is q/[q + (1 − q)] = q
▶ If told the state is low, posterior is 1 − q
▶ Ignore atoms (for simplicity). The density of private beliefs p is

▶ fH(p) = p[γ(p) + γ(1 − p)] in state H
▶ fL(p) = (1 − p)[γ(p) + γ(1 − p)] in state L

▶ Lemma: Under the signal quality structure, private belief
distributions are FH(p) ≡ 1 − FL(1 − p) for all p ∈ (0, 1).

▶ The density of signals for H at p must equal the density for L
at strength p for L, and so 1 − p for H

▶ qn is the private belief of individual n
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Random Sampling
▶ Two actions a and b (eg. ‘decline’ or ‘invest’)
▶ Payoffs uH(a) = uL(a) = 0, uH(b) = 2u, uL(b) = −2
▶ Unlike herding literature, entire ordered history is not observed

▶ Everyone observes a random unordered sample s ∈ S of
previous action observations

▶ Sample size may be random, and sampling weights may also
vary over time (uniform, or sample recent past more often)

▶ Aggregates model: observe whole unordered history
▶ Sampling is recursive if individual n + 1 samples n with

weight πn, and otherwise individuals (1, . . . , n − 1) as before
▶ Stationary recursive sampling is geometric weighting: n

samples individual ν with relative weight ρn−ν , where ρ > 0.
▶ ρ → 0: only the immediate predecessor is sampled
▶ ρ < 1: distant past is discounted.
▶ ρ = 1: proportional sampling
▶ ρ > 1: recent past is undersampled.
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Social Beliefs

▶ Every n = 1, 2, . . . forms a social belief qn that θ = H
▶ Bayes’ rule ⇒ posterior belief rn = pnqn

pnqn+(1−pn)(1−qn)▶ n chooses action b
▶ iff rnu ≥ (1 − rn)
▶ iff pn ≥ (1 − qn)/[uqn + (1 − qn)]

▶ How does stochastic process of social beliefs ⟨qn⟩ behave?
▶ Is learning complete in the long run? adequate?
▶ If not, are there herds? ‘proportionate herds’? cycles?
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Learning

▶ Individual n samples individual m with probability τ(n,m)

▶ Then
∑n−1

m=0 τ(n,m) = 1 for each n.
▶ The sampling process does not over-sample the past if for all

m ∈ N and ε > 0, there exists M ≥ m such that τ(n,m) < ε
and τ(n, 0) < ε for all n ≥ M.

▶ By independence of sample sizes, a recursive sampling process
(πn) does not over-sample the past if Π∞

n=2(1 − πn) = 0.
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No More Overturning

▶ How you arrive at a history is no longer known, but matters
▶ Consider beliefs after two opposing choices

▶ We have merged together two information sets with wildly
different public beliefs, to create one unified social belief
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Two Reasons for Social Learning to Fail

(a) If Σ doesn’t over-sample the past and private beliefs are
unbounded, then learning is complete.

(b) Learning is incomplete and payoffs are bounded away from the
maximum if Σ over-samples the past.

(c) Learning is incomplete and payoffs are bounded away from the
maximum for bounded private beliefs and non-empty samples.
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Random Sampling

▶ Not everyone correctly herd with uniform random sampling.
▶ With unbounded private beliefs, an infinite subsequence of

individuals chooses a contrary action.
▶ Borel Cantelli Lemma: If

∑∞
n=1 P(En) < ∞ for events {En},

then the chance that infinitely many events {En} occur is 0.
▶ Proof: P(∪∞

n=N(En)) ≤
∑∞

n=N P(En) → 0
▶ Early individuals have a positive chance of doing anything.
▶ With random sampling of ≥ 1 predecessors, everyone is a.s.

sampled by infinitely many successors,
▶ Since history become arbitrarily informative, anyone sampling

such an individual will eventually choose to follow them
▶ So, even though the share of individuals taking the right

action tends to one, an infinite subsequence takes a
suboptimal action with positive probability.
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Probabilistic Evolution of Aggregate Observation Model

▶ Upward transitions are INVEST, and downward ones are NOT
▶ Tip of arrows are probabilities πH

n (k) (public belief in state L)
▶ Private belief thresholds p̄n(k) in the boxes at arrow roots.
▶ Transition probabilities in states H, L above/below arrows
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Are Beliefs a Martingale? (Work with Mingxin Xie)

▶ After INVEST, the social belief in state L is p̄1(1) = 1/4.
▶ The expected continuation E[p̄2 | see an investor] is lower:

Pr(2 invests|1 invests) p̄2(2) + Pr(2 declines|1 invests) p̄2(1)

=

{
[1−p̄1(1)][1−FH(p̄1(1))] + p̄1(1)[1−FL(p̄1(1))]

}
p̄2(2)

+

{
[1−p̄1(1)]FH(p̄1(1)) + p̄1(1)FL(p̄1(1))

}
p̄2(1)

= 3
4(15/16)+ 1

4(9/16)}(1/6)+ 3
4(1/16)+ 1

4(7/16)}(1/2)
= 84/384
< 1/4

12 / 12


