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Outline

• Theory of value and pricing of “information”, defined as

non-sequential sample size of i.i.d. signals.

• Motivation: the emergence of markets for large numbers of

cheap units of information (Internet databases).

• Question: If two experiments are not Blackwell-comparable,

is it still true that all bayesian Decision Makers rank unan-

imously the values of their n-replicas? And the marginal

values of the n-th observation?

• Answer: Yes, and the ordering is complete, for n large

enough (n > N). The minimum N < ∞ depends on the

Decision Maker, but is always finite. Every experiment

has a unique efficiency index ruling asymptotic value and

marginal value.

• Implications: The Law of Demand holds for small prices,

demand elasticity can be computed.
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The (Standard) Model

A) The Decision Problem

• Finite actions aj, j = 1, 2..K

Finite states of Nature θi, i = 1, 2..M.

• Decision Maker DM= (~q, u): Non-degenerate prior beliefs

~q = {q1, q2, ..qM} and Payoffs u (aj, θi) .

Action a∗i is best in state i.

B) The Experiment

• Family of M probability measures E = {Pθ} on {Ω,S} .

• Before choosing aj DM draws from En, i.e. observes non-

sequentially n i.i.d. realizations Xn = {X1, X2, ..Xn} of a

random variable X on {Ω,S, Pθ} with distribution F (.|θ)

and density f (.|θ).

• De Finetti’s Theorem: exchangeability suffices to justify

the i.i.d. hypothesis
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The Value of n Observations

• Bayesian Updating:

qi (Xn) =
qiΠ

n
t=1f (Xt|θi)

ΣrqrΠn
t=1f (Xt|θr)

• Bayesian decision:

a (Xn) = arg max
aj

Σiqi (Xn)u (aj, θi)

• Value of En: VE (n)− VE (0), where:

VE (n) =

∫
Xn

Σiqiu (a (Xn) |θi) [ΣrqrΠ
n
t=1f (Xt|θr)] dXn

• Full Information Value: V ∗−V (0), where V ∗ = Σiqiu (a∗i , θi).

Independent of the experiment.

• Full Information Gap (FIG): V ∗ − VE (n) ≥ 0.
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Double Dichotomy

Two States, Two Actions

• a ∈ {A,B} and θ ∈ {L,H}. A is best in L.

• Take A iff f (Xn|L) /f (Xn|H) large enough, or:

ln
f (Xn|L)

f (Xn|H)
=

n∑
t=1

ln
f (Xt|L)

f (Xt|H)
≡ SLn > ξ (u, ~q) .

• Probabilities of error:

αn = Pr

(
SLn
n
≤ ξ

n
|L
)

and βn = Pr

(
SHn
n
≤ ξ

n
|H
)
.

Clearly ξ/n→ 0. But by SLLN for θ 6= θ̄ :

Sθn
n

a.s.→ E
[
ln f (X|θ)− ln f

(
X|θ̄

)
|θ
]
> 0.

Each error is a Large Deviation in state θ of mean log-LR

Sθn/n from SLLN limit. αn and βn vanish.

• FIG is a linear combination of Large Deviation chances with

positive coefficients:

V ∗ − V (n) = qL [u (A,L)− u (B,L)]αn + qH [u (B,H)− u (A,H)] βn

≡ yL (~q, u)αn + yH (~q, u) βn.
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Large Deviations in the SLLN

Cramér’s Theorem

• Yt i.i.d. and non-lattice, E [Y ] > 0, V [Y ] = σ2, Pr (Y < 0) >

0.

Let Sn =
∑n

t=1 Yt, M (t) = E [exp {tY }] .

• Cramér Condition: E [exp {t̄ |Y |}] <∞, ∃t̄ 6= 0.

• Theorem (Cramér 1938). For every c < E [Y ] let:

ρc = inf
t

exp {−tc}M (t) = inf
t

E [exp {t (Y − c)}]

Then:

1. ρc = M (τc) for τc < 0.

2. For a given sequence {br}:

Pr

(
Sn
n
≤ c

)
=

ρnc
σ
√

2πnτ 2
c

(
1 +

∞∑
r=1

br
nr

)
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Application to the logLR

of the Experiment

• Let Y L
t = ln f (Xt|L)− ln f (Xt|H).

Our error : Pr

(
SLn
n
≤ ξ

n
|L
)

= αn

Cramér : Pr

(
SLn
n
≤ 0|L

)
=

ρn0

σ
√

2πnτ 2
0

(
1 +

∞∑
r=1

br
nr

)

• Apply Cramér to c = 0 = lim ξ/n with τ0 and ρ0 = min

m.g.f., and then correct for ξ/n > 0.

• Lemma. Assume the logLR of the experiment is non-

lattice and satisfies Cramér’s condition. Then

Pr
(
Sθn ≤ ξ|θ

)
Pr (Sθn ≤ 0|θ)

→ exp {−τ0ξ} .

• Corollary.

αn =
ρn0

σ
√

2πnτ 2
0

(
1 +

∞∑
r=1

br
nr

)
(1 + o (1)) exp {−τ0ξ}

∝ ρn0√
n

(1 + o (1))
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The Hellinger Transform

1. Kullback-Leibler relative entropy, mean logLR

Y θ and drift of Sθn in state θ: e.g. for θ = L

λL = E
[
Y L|L

]
=

∫
X

ln
f (X|L)

f (X|H)
f (X|L) dX ≥ 0.

2. Hellinger Transform: m.g.f. of Y θ in state θ:

ML (t) = E
[

exp

{
t ln

f (X|L)

f (X|H)

}
|L
]

=

∫
X

f (X|H)−t f (X|L)1+t dX

≡ HL (t) = HH (−t− 1) = H (t)

Properties: H (−1) = H (0) = 1, H′ (−1) = −λH < 0 and

H′ (0) = λL > 0, H′′ (.) > 0.

E sufficient for F ⇒ HE (.) ≥ HF (.)

HE×F (t) = HE (t)HF (t) ; HEn (t) = [HE (t)]n

H (s) =

∫
X

f (X|H)s f (X|L)1−s dX

3. Minimum Hellinger Transform:

inf
t
H (t) = H (τ ) ≡ ρ for τ ∈ (−1, 0)

inf
t
HL (t) = inf

t
HH (−t− 1) = ρ

inf
t
HEn (t) = HEn (τ ) = [HE (τ )]n = ρn.
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Value Ordering

• We have obtained, for ρ the index of the dichotomy:

V ∗ − V (n) ∝ ρn√
n

(1 + o (1))

• Theorem. For all DM (~q, u), δ ∈ (0, ρ)

V ∗ − V (n)

(ρ− δ)n
→∞;

V ∗ − V (n)

(ρ + δ)n
→ 0.

• Corollary. Given two experiments E1, E2 with indices

ρ1 < ρ2, for every DM (~q, u) there exists N (~q, u) < ∞
such that DM prefers n observations of E1 over n of E2

for all n > N (~q, u). Extends Chernoff theorem to general

decision rules.

• Remark. If E1 is sufficient for E2 then N (·, ·) ≡ 0. Else,

N (~q, u) finite but NOT uniformly bounded. But for any

finite set of DMs a unique cutoff N suffices for unanimous

ordering.
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Marginal Value Ordering

• Lemma. For all DM and n > N (~q, u) the marginal value

is strictly decreasing:

V (n + 1)− V (n) > V (n + 2)− V (n + 1) .

• Theorem. For all DM (~q, u), δ ∈ (0, ρ)

V (n + 1)− V (n)

(ρ− δ)n
→∞;

V (n + 1)− V (n)

(ρ + δ)n
→ 0.

• Corollary. Given two experiments E1, E2 with indices

ρ1 < ρ2, for every DM (~q, u) there exists N (~q, u) < ∞
such that the marginal value of the n − th observation is

larger in experiment 2 for all n > N (~q, u).
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Example: Bernoulli

• Two experiments, no garbling:

ψr 1− ψr
1− φr φr

=
2
3

1
3

1
4

3
4

and
3
5

2
5

1
5

4
5

• Hellinger transform for experiment r = 1, 2:

Hr (t) = ψtr (1− φr)1−t + (1− ψr)t φ1−t
r

• Hellinger indices: ρ2 = 0.912 > 0.908 = ρ1. Experiment 1

is superior, because the extra spread is larger:

2

3
− 3

5
=

1

15
>

1

4
− 1

5
=

1

20
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Example: Gaussian

• Gaussian. X ∼ N
(
µθ, σ

2
θ

)
. After rescaling observations,

X ∼ N
(
0, σ2

L

)
and X ∼ N

(
1, σ2

H

)
.

Hr (t) =

∫ +∞

−∞
[fN (X|L)]t [fN (X|H)]1−t dX

∝ exp

{
−t (1− t)

2 (tσ2
H + (1− t)σ2

L)

}
σ1−t
L σtH√

tσ2
H + (1− t)σ2

L

• If σL = σH = σr for both experiments r = 1, 2 and only

the means differ across states, ρ = exp
{
−1/8σ2

}
/
√

2π

and Blackwell ordering applies.

• If E1 = {σL1, σH1} = {1, 3} and E2 = {2, 1} then no gar-

bling. But ρ1 = 0.73 < ρ2 = 0.84, so the first experiment

with larger variances eventually dominates.

• The distance between variances is larger, state detection is

easier.
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The Law of Large Demand

for Information

• Fix a DM (u, ~q) and an experiment E . Let DM purchase

samples at unit price p. Obtain a demand curve n (p) from:

max
n=0,1,2..

V (n)− np.

• Proposition. There exists p̄ > 0 such that:

1. the unique maximizer n (p) is weakly decreasing in p ∈
(0, p̄), and n (0) =∞.

2. For any given p ∈ (0, p̄) the demand curve rises in ρE .

Worse information is demanded in larger amounts.

• Proposition. The limit semielasticity of demand.

There exists a smooth function z (p) such that supp∈(0,p̄) |n (p)− z (p)| <
1 and

lim
p↓0

[
−dz (p)

dp
p

]
= − 1

ln ρE
.

• Hence for small prices.

n (p) ' ln p

ln ρE
.
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B) Monopolist, Nonlinear Pricing

• Entry Fee Resolves Both Inefficiencies.

• Firm solves:

max
p,F

F + x (p) (p− c)

s.t. F + x (p) p ≤ V (x (p))− V (0)

• Solution: pNL = c and

F = V (x (c))− V (0)− x (c) c = πNL.

• Envelope:
dπNL

dρ
=
∂V (x (c))

∂ρ
< 0.

No incentive to reduce the quality of information. The firm

prices and produces efficiently, maximizes consumer surplus

and extracts it with access fee F .
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