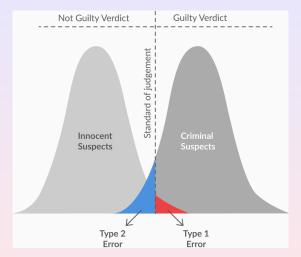
Risky Choice and Blackwell's Theorem

Lones Smith

Madison, 2025

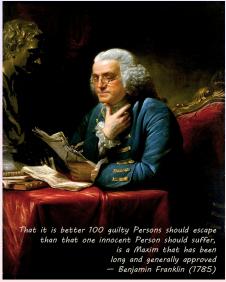
Uncertainty is Key in Guilty & Innocent Verdicts



The actual ratio of Type I to Type II errors is much smaller than one, in Western legal tradition!

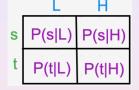
Can We Understand Blackstone's Ratio?

Blackstone: "Better that ten guilty persons escape, than that one innocent suffer."

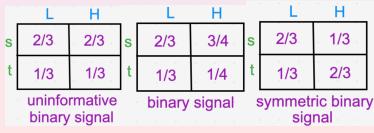


Informative Signals

- Two states of the world $\{L, H\}$, and state H has chance q
- Informative signal: a family of probability distributions on observables, one distribution for each state of the world
- Seeing σ probabilistically "signals" or indicates the state



• Here, the realized signal is $\sigma \in \{s, t\}$. Examples:



Martingale Property of Beliefs

Bayesian updated beliefs are a martingale: After seeing a signal, the expected posterior belief q₁ is the prior q₀.

$$\begin{split} \mathbb{E}[q_1|q_0] &= q_0[P(s|H)q_1(s) + P(t|H)q_1(t)] \\ &+ (1-q_0)[P(s|L)q_1(s) + P(t|L)q_1(t)] \\ &= q_1(s)[q_0P(s|H) + (1-q_0)P(s|L)] \\ &+ q_1(t)[q_0P(t|H) + (1-q_0)P(t|L)] \end{split}$$

- Here, we have summed by parts
- By Bayes rule, posterior beliefs are:

$$q_1(s \text{ or } t) = \frac{P(s \text{ or } t|H)q_0}{q_0 P(s \text{ or } t|H) + (1 - q_0)P(s \text{ or } t|L)}$$

- So $E[q_1|q_0] = q_0 P(s|H) + q_0 P(t|H) = q_0$
- This is the Law of Iterated Expectations
- Aside: This is a martingale \rightarrow

Graphical Story of Two State Risky Choice

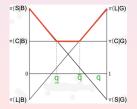
- Short an asset (S), buy it (long L), or stay in cash (C)
- State $\theta \in \{B, G\}$ fixes *payoffs* ($\theta = G$ with chance q)

 $\pi(C|G) = \pi(C|B), \quad \pi(L|G) > \pi(L|B), \quad \pi(S|G) < \pi(S|B)$

• $E(\text{payoff of } a|q) = q\pi(a|G) + (1-q)\pi(a|B)$ is linear in q

Optimal Action is
$$a^*(q) = \begin{cases} Short & \text{if } q \leq q \\ Cash & \text{if } q \leq q \leq \bar{q} \\ Long & \text{if } q \geq \bar{q} \end{cases}$$

- Fixing a^{*}(q), payoffs are linear in q expected payoffs
- Optimal payoffs are convex in q if the optimal action changes

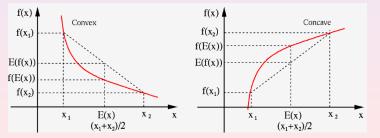


Risk Preference

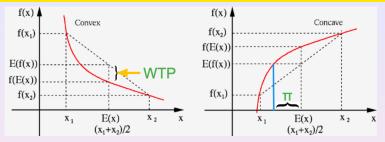
- Risk preference: like/dislike wealth gambles X?
 - ▶ risk loving if $\mathbb{E}u(X) \ge u(\mathbb{E}(X))$, sometimes strict
 - ▶ risk averse if $\mathbb{E}u(X) \le u(\mathbb{E}(X))$, sometimes strict

Jensen's Inequality (1906, Copenhagen Telephone Co!)

- ▶ *u* is convex on [a, b] iff $u(\mathbb{E}(X)) \ge \mathbb{E}u(X) \forall$ r.v. X on [a, b]
- *u* is concave on [a,b] iff $u(\mathbb{E}(X)) \leq \mathbb{E}u(X) \forall$ r.v. X on [a,b]
- *u* is linear on [a, b] iff $u(\mathbb{E}(X)) = \mathbb{E}u(X) \forall$ r,v. X on [a, b]

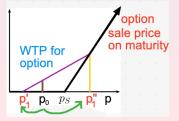


Risk Preference Review



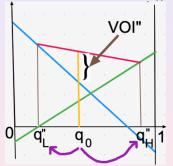
Concave utility functions: risk premium π measures how much one is WTP to eliminate risk: $u(\mathbb{E}X - \pi) = \mathbb{E}u(X)$

- Induced Convex Payoff Functions
 - E.g. Call Options Induce Risk Loving Behavior by CEOs



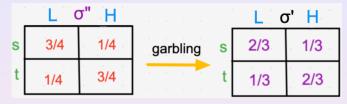
(Optionality) Value of Information

- The value of information in a signal σ is the expected optimal payoff given σ minus the prior expected payoff
- ► E.g.: a binary signal \Rightarrow posterior is $q''_H > q$ or $q''_I < q$



- Claim: The value of information is as depicted.
 - Proof (omitted) uses martingale property of beliefs.
 - So information has zero value if payoffs are locally linear
 - Info has value only if it can change your optimal action
 - It is the value of "optionality"

What is a garbled signal?



• To get σ' from σ'' by garbling:

- If signal σ" gives t, send it to s with chance 1/6
- If signal σ'' gives s, send it to t with chance 1/6
- For instance, in state H, the garbling gives t with chance

(3/4)(5/6) + (1/4)(1/6) = 16/24 = 2/3

The general definition of garbling says that there is a Markov matrix that transforms σ'' into σ'

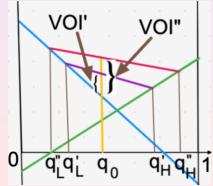
Baby Blackwell's Theorem (1951)

- Easy two state Bayesian version of Blackwell's Theorem
- Blackwell (1951):

Garbling a signal reduces the value of information (VOI). Conversely, if the VOI for signal σ'' exceeds that of σ' for all state payoffs, then σ' is a garbling of σ'' .

Blackwell's clever proof used the Minmax Theorem.

• Here's a graphical intuition for easy (\Rightarrow) proof:



States and Losses (Payoffs)

- Actual multistate version statistical Blackwell's Theorem
- $\Omega = \{\omega_1, \ldots, \omega_n\}$, states of the world
- experiment: *n* probability measures (μ_1, \ldots, μ_n) on *X*
 - Finite outcomes $X = \{x_1, ..., x_N\}$: an experiment is a Markov matrix of probabilities $P_{n \times N} \equiv [p_{ij}]$, where $\sum_{j=1}^{N} p_{ij} = 1$ and $0 \le p_{ij} =$ chance of $x_j \in X$ in state ω_i
- ► $A \subset \mathbb{R}^n$, action space (i.e., vectors of payoffs/losses)
 - a ∈ A is the *n*-vector of losses/payoffs in each state, i.e. a_i = loss in state ω_i
- $f: X \rightarrow A$, the decision function
 - ▶ $f(x_j) \in A$ is the action taken after outcome x_j
- expected loss/payoff from f in state ω_i is v_i(f)
 - $\mathbf{v}_i(f) \equiv \int_X f_i(x) d\mu_i(x) \equiv \sum_{j=1}^N p_{ij} f_i(x_j)$
 - Not Bayesian: We have no prior on Ω

▶ $B(P, A) \subset \mathbb{R}^n$, loss vector $v(f) = (v_1(f), \dots, v_n(f))$ range

Blackwell's Theorem

- ★ $P_{n \times N_1}$ is *more informative* than $Q_{n \times N_2}$ [$P \supset Q$], if
 - any payoff vector attainable with Q is attainable with P
 - ▶ $B(P, A) \supseteq B(Q, A)$ for all compact convex $A \subset \mathbb{R}^n$.
 - \Rightarrow *P* has a higher expected value than *Q* (Baby Blackwell)
- ★ Experiment *P* is *sufficient* for *Q* [written P > Q], if
 - i.e. $q_{ij} = \sum_{k=1}^{N_1} p_{ik} m_{kj}$ for all $j = 1, ..., N_2$ and i = 1, ..., n
 - So $PM = \hat{Q}$ for some Markov matrix $M \leftarrow$ "garbling"
- Proposition (Blackwell's Theorem)

P > Q iff $P \supset Q$.

- (\Rightarrow) is easy: Assume P > Q.
- P ⊃ Q if any point in B(Q, A) attainable with a decision function g is attainable under P.
- The decision function $f(x_k) = (\sum_{j=1}^{N_2} m_{kj}g(y_j))$ suffices:
- Why? The payoff under *P* in state ω_i is

$$v_i(f) = \sum_{k=1}^{N_1} p_{ik} f_i(x_k) = \sum_{k=1}^{N_1} p_{ik} \sum_{j=1}^{N_2} m_{kj} g_i(y_j) = \sum_{j=1}^{N_2} q_{ij} g_i(y_j) = v_i(g)$$

Proof of Hard (\Leftarrow) Blackwell's Theorem

- Assume $P \supset Q$.
- ► $B(P, A) \supseteq B(Q, A) \forall A \subset \mathbb{R}^n$ compact and convex
- Let A be the convex hull of rows of $N_2 \times n$ matrix D
 - i.e. the payoffs in each state after each outcome
- Pick decision function f of (Q, A) picking jth D row for x_j
 - Its expected payoff is $v_i(f) = \sum_{j=1}^{N_2} q_{ij} d_{ji} = (QD)_{ii}$.
- Since P ⊃ Q, some decision function g for (P, A) selects aⁱ ∈ A given x_i, with v_i(g) = ∑^{N₁}_{i=1} p_{ij}aⁱ_i = v_i(f)∀i
- If $a_i^j = \sum_{k=1}^{N_2} m_{jk} d_{ki}$ for a Markov matrix $M \equiv [m_{jk}]$, then *PMD* and *QD* have the same diagonal entries:

$$v_i(g) = \sum_{j=1}^{N_1} p_{ij} a_j^j = \sum_{j=1}^{N_1} \sum_{k=1}^{N_2} p_{ij} m_{jk} d_{ki} = (PMD)_{ii}$$

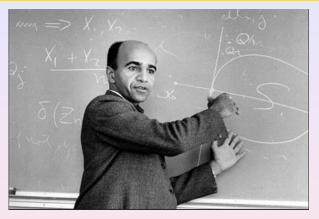
Constant-sum game of decision-maker vs nature.

- Nature chooses the payoff matrix D and the decision-maker chooses the Markov matrix M.
- Nature's payoff: $\Pi(D, M) = tr[(PM Q)D]$
- Minimax Theorem yields a saddle point (D₀, M₀) for the game for all feasible M and D:

 $\Pi(D, M_0) \leq \Pi(D_0, M_0) \leq \Pi(D_0, M)$

• He then shows that $PM_0 = Q$, and so P > Q.

David Blackwell (1919-2010)



- Bottom line: informative signals are rarely ranked one must be a garbling of the other
- Some pair of decision makers will disagree on a ranking of informative signals
- We next suggest that this conclusion is perhaps too dire