
Blackwell’s Theorem with the Original Wonderful Proof
by Lones Smith

• Ω = {ω1, . . . , ωn}, states of the world
• X = {x1, . . . , xN}, experiment/signal outcomes
• (µ1, . . . , µn), probability measures representing an experiment, represented by the Markov

matrix of probability densities Pn×N ≡ [pij], namely where
∑N

j=1 pij = 1 and 0 ≤ pij =
chance of xj in state ωi

• A ⊂ Rn, action space, assumed for simplicity to be the vector of payoffs: a ∈ A is the
n-vector of losses/payoffs in each state, i.e. ai = loss in state ωi

• f : X → A, the decision function, i.e. f(xj) ∈ A is the action taken after outcome xj

• vi(f) ≡
∫
X
fi(x)dµi(x) ≡

∑N
j=1 pijfi(xj) = expected loss/payoff from f in state ωi

• B(P,A) ⊂ Rn, the range of all loss vectors v(f) = (v1(f), . . . , vn(f))

Define

⋆ Experiment Pn×N1 is more informative than experiment Qn×N2 [written P ⊃ Q], if any
payoff vector attainable with P is also attainable with Q, i.e. B(P,A) ⊇ B(Q,A) for
all compact convex subsets A ⊂ Rn.

⋆ Experiment P is sufficient for Q [written P ≻ Q], if PM = Q for some Markov matrix
M , i.e. qij =

∑N1

k=1 pikmkj for all j = 1, . . . , N2 and i = 1, . . . , n

Proposition (Blackwell’s Theorem) P ≻ Q iff P ⊃ Q.

Proof : (⇒) Assume P ≻ Q. To show that P ⊃ Q, it suffices that any point in B(Q,A)
attainable with a decision function g is attainable under P . In fact, this is possible using
the decision function f(xk) = (

∑N2

j=1 mkjg(yj)). Why? The payoff under P in state ωi is

vi(f) =

N1∑
k=1

pikfi(xk) =

N1∑
k=1

pik

N2∑
j=1

mkjgi(yj) =

N2∑
j=1

qijgi(yj) = vi(g)

(⇐) Assume P ⊃ Q. The inclusion B(P,A) ⊇ B(Q,A) holds for any A ⊂ Rn compact and
convex, so in particular let A be the convex hull of the rows of the N2×n matrix D (i.e. the
payoffs in each state after each outcome). Hence, the decision function f in problem (Q,A)
selects the jth row of D when xj is observed has value vi(f) =

∑N2

j=1 qijdji = (QD)ii.
Since P ⊃ Q, there is a decision function g for (P,A) that selects aj ∈ A when xj

is observed, with vi(g) =
∑N1

j=1 pija
j
i = vi(f) for all i. Since aj ∈ A, there is a Markov
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matrix M̂ ≡ [m̂jk] with aji =
∑N2

k=1 m̂jkdki. For simply let m̂j be the vector of Barycentric
coordinates of aj in the polytope A. Then PM̂D and QD have the same diagonal entries:

vi(g) =

N1∑
j=1

pija
j
i =

N1∑
j=1

N2∑
k=1

pijm̂jkdki = (PM̂D)ii

Consider the game pitting the decision-maker against nature. Nature chooses the
payoff matrix D and the decision-maker chooses the Markov matrix M . The game is
constant-sum, and nature receives the payoff Π(D,M) = tr[(PM − Q)D], where tr[C]
denotes the trace of the matrix C (sum of the diagonal entries). WLOG, assume that all
entries in D lie in [0, 1], since any other matrix can be so normalized. Since the strategy
sets are compact and convex in RN2n and RN1N2 , respectively, and Π is bilinear, the
Minimax Theorem yields a saddle point (D0,M0) for the game: Π(D,M0) ≤ Π(D0,M0) ≤
Π(D0,M) for all feasible M and D. Picking M = M̂ , we have Π(D0,M0) ≤ Π(D0, M̂) = 0,
since PM̂D and QD have the same diagonal entries, and hence the same trace. Thus,
tr[(PM0 −Q)D] = Π(D,M0) ≤ 0. Since D can be chosen with arbitrary entries in [0, 1],
and since PM0 and Q are both n × N2 Markov matrices (nonnegative entries, with row
sums 1), all their entries must be identical. That is, PM0 = Q, and so P ≻ Q. QED

2


