Insights on Monotone Methods in Economics You Must Know

Lones Smith

Madison, 2025

イロト 不得 トイヨト イヨト 二日

1/41

Join, Meet, Lattice

- A **poset** is a set X and a partial order \succeq
- The join $x \lor x'$ is the supremum of x, x'
- The **meet** $x \wedge x'$ the infimum of x and $x' \underset{\text{Min}(M_1,M_2)}{\text{Min}(M_1,M_2)}$
- A lattice is a poset that contains all meets and joins
- We restrict to Euclidean lattices $X \subset \mathbb{R}^n$, where

$$\mathbf{x} \lor \mathbf{x}' = (\max\{x_1, x'_1\}, ..., \max\{x_N, x'_N\}) \\ \mathbf{x} \land \mathbf{x}' = (\min\{x_1, x'_1\}, ..., \min\{x_N, x'_N\})$$

- Strong Set Order (SSO), denoted ⊒
- $X \sqsupseteq X'$ if for all $x \in X, x' \in X'$, $x \lor x' \in X \& x \land x' \in X'$.

- $F: X \to \mathbb{R}$ is supermodular (SPM) if for all $x, x' \in X$ $F(x \land x') + F(x \lor x') \ge F(x) + F(x')$
- Fact: A function on a totally ordered set (chain) is SPM
- If $F(x, \theta)$ is SPM, then F has increasing differences (ID) in (x, θ) if $F(x_2, \theta) F(x_1, \theta)$ increases in θ , for all $x_2 > x_1$
- If $F : \mathbb{R}^n \to \mathbb{R}$ is C^2 , then F is SPM iff $\frac{\partial^2 F}{\partial x_i \partial x_i} \ge 0$ for all x
- Addition: If $F, G: X \to \mathbb{R}$ are SPM, then F + G is SPM

Lemma (Maximization Preserves SPM)

F SPM on the lattice $X \times Y \Rightarrow G(x) = \sup_{y} F(x, y)$ SPM on X.

• *Proof:* Let $y, y' \in Y$ and $x, x' \in X$. Since F is SPM:

$$\begin{aligned} F(x',y') + F(x,y) &\leq F(x \lor x',y' \lor y) + F(x \land x',y' \land y) \\ &\leq G(x' \lor x) + G(x' \land x) \end{aligned}$$

• So $G(x' \lor x) + G(x' \land x)$ is an upper bound for the LHS.

• Maximizing the left side over all y, y', we get:

$$G(x') + G(x) \leq G(x' \lor x) + G(x' \land x) = 3$$

Comparative Statics

• Let $\mathbf{X}^*(\theta)$ be the set of solutions to the problem

 $\max_{\mathbf{x}\in X} F(\mathbf{x},\theta)$

- Topkis Theorem (1978): Let X be a lattice, and Θ a poset. If
 F: X × Θ → ℝ has ID in (x, θ) and is SPM in x, then X*(θ) is
 monotone in the SSO.
- Proof: Let $\theta' \succ \theta''$ and $x' \in X^*(\theta')$ and $x'' \in X^*(\theta'')$.

$$\begin{array}{ll} 0 \geq F(x' \lor x'', \theta') - F(x', \theta') & \text{by } x' \in X^*(\theta') \\ \geq F(x' \lor x'', \theta'') - F(x', \theta'') & \text{by ID in } (x, \theta) \\ \geq F(x'', \theta'') - F(x' \land x'', \theta'') & \text{by SPM in } x \\ \geq 0 & \text{by } x'' \in X^*(\theta'') \end{array}$$

4 / 41

- All inequalities are therefore equalities
- Then $x' \lor x'' \in X^*(\theta')$ and $x' \land x'' \in X^*(\theta')$
- So $X^*(\theta)$ is increasing in the SSO.

Quasi-supermodularity

• $F: X \to \mathbb{R}$ is quasi-supermodular (QSPM) if $\forall x, x' \in X$:

$$\begin{array}{lll} F(x) \geq F(x \wedge x') & \Rightarrow & F(x \vee x') \geq F(x') \\ F(x) > F(x \wedge x') & \Rightarrow & F(x \vee x') > F(x') \end{array}$$

• The contrapositive of each yields the equivalent:

$$\begin{array}{lcl} F(x) < F(x \wedge x') & \Leftarrow & F(x \vee x') < F(x') \\ F(x) \le F(x \wedge x') & \Leftarrow & F(x \vee x') \le F(x') \end{array}$$

If F(x, θ) is QSPM, then F obeys the single crossing property in (x, θ) if for all x₂ ≻ x₁ and θ₂ ≻ θ₁

$$\begin{array}{lll} F(x_2,\theta_1) \geq F(x_1,\theta_1) & \Rightarrow & F(x_2,\theta_2) \geq F(x_1,\theta_2) \\ F(x_2,\theta_1) > F(x_1,\theta_1) & \Rightarrow & F(x_2,\theta_2) > F(x_1,\theta_2) \end{array}$$

Ordinal Comparative Statics

- Milgrom-Shannon Theorem (1994): Let X be a lattice, and Θ a poset. If F: X × Θ → ℝ obeys the SCP in (x, θ) and is QSPM in x, then X*(θ) is monotone in the SSO.
- Proof: Let $\theta' \succeq \theta$ with $x \in X^*(\theta)$ and $x' \in X^*(\theta')$.
- $x \lor x' \in X^*(\theta')$ since

$$\begin{array}{rcl} F(x,\theta) &\geq & F(x \wedge x',\theta) & \text{by } x \in X^*(\theta) \\ \Rightarrow & F(x \lor x',\theta) &\geq & F(x',\theta) & \text{by } \text{QSPM} \\ \Rightarrow & F(x \lor x',\theta') &\geq & F(x',\theta') & \text{by } \text{SCP} \end{array}$$

• Next, $x \wedge x' \in X^*(\theta)$ since:

$$\begin{array}{rcl} F(x',\theta') &\geq & F(x \lor x',\theta') & \text{by } x' \in X^*(\theta') \\ \Rightarrow & F(x \land x',\theta') &\geq & F(x',\theta') & \text{by QSPM} \\ \Rightarrow & F(x \land x',\theta) &\geq & F(x',\theta) & \text{by SCP} \end{array}$$

We applied the contrapositive forms of QSPM and SCP

Graphical Intuition for the Single Crossing Property

• Since the reals are a totally ordered set, any function on the reals is automatically SPM.

Comparative Statics

Ordinal Comparative Statics without a Lattice

- Let X and Θ be posets.
- The correspondence $\mathcal{X} : \Theta \to X$ is nowhere decreasing if $x_2 \in \mathcal{X}(\theta_1)$ and $x_1 \in \mathcal{X}(\theta_2)$ with $x_2 \succeq x_1$ and $\theta_2 \succeq \theta_1$ imply $x_1 \in \mathcal{X}(\theta_1)$ and $x_2 \in \mathcal{X}(\theta_2)$.
- So the correspondence does not fall anywhere
- Nowhere Decreasing Optimizers (2018): Let X and Θ be posets. If F: X × Θ → ℝ obeys the single crossing property, then X^{*}(θ) ≡ arg max_{x∈X} F(x, θ) is nowhere decreasing in θ.
- If θ₂ ≥ θ₁, x₂ ∈ X(θ₁), x₁ ∈ X(θ₂), and x₂ ≥ x₁, optimality and the single crossing property give x₂ ∈ X(θ₂), since:

$$F(x_2, \theta_1) \ge F(x_1, \theta_1) \quad \Rightarrow \quad F(x_2, \theta_2) \ge F(x_1, \theta_2)$$

• Exercise: Prove that $x_1 \in \mathcal{X}(\theta_1)$

Upcrossing Functions

- Let Θ be a poset. Then $\Upsilon : \Theta \to \mathbb{R}$ is *upcrossing* if
 - $\Upsilon(\theta) \ge 0 \Rightarrow \Upsilon(\theta') \ge 0$ for all $\theta' > \theta$
 - $\Upsilon(\theta) > 0 \Rightarrow \Upsilon(\theta') > 0$ for all $\theta' > \theta$
- Υ is *downcrossing* if $-\Upsilon$ is upcrossing
- Υ is *one-crossing* if it is upcrossing or downcrossing.

Upcrossing Preservation

Upcrossing Preservation

• Karlin and Rubin (1956): If Υ is upcrossing, and $\lambda > 0$ is nondecreasing, and μ is a measure, then

$$\int_{-\infty}^{\infty} \Upsilon(s) d\mu(s) \geq (>) 0 \Rightarrow \int_{-\infty}^{\infty} \Upsilon(s) \lambda(s) d\mu(s) \geq (>) 0$$

• Proof: Let Υ first upcross at t_0 . The right side equals

$$egin{aligned} &\int_{-\infty}^{t_0} \Upsilon(s)\lambda(s)d\mu(s)+\int_{t_0}^{\infty}\Upsilon(s)\lambda(s)d\mu(s)\ &\geq (>) \quad \lambda(t_0)\int_{-\infty}^{t_0}\Upsilon(s)d\mu(s)+\lambda(t_0)\int_{t_0}^{\infty}\Upsilon(s)d\mu(s)\ &=\quad \lambda(t_0)\int_{-\infty}^{\infty}\Upsilon(s)d\mu(s)\geq 0 \end{aligned}$$

Weakening the assumptions on ↑ has led to key papers

Monotone Stochastic Dominance

- Let X have cdf F and Y have cdf G.
- First Order Stochastic Dominance: F ≿_{FOD} G if F(x) ≤ G(x) ∀x, iff survivors obey F(x) ≥ G(x) ∀x
- Monotone Ranking Theorem. If F ≿_{FOD} G, then any mean of a monotone function is higher for X than Y.
- Proof: Intuitively, every increasing function can be thought as the limit of the sum of step functions I{x ≥ a}.
- Partition the domain [0, 1] with $0 = a_0 < \cdots < a_N = 1$.
- Pick $0 < w_0 < w_2 < \cdots < w_N$.
- Define the weighted sum of step functions:

$$u_N(x) = \sum_{k=0}^N w_k \mathbb{I}\{x \ge a_k\}$$

• The mean of $u(\cdot)$ is higher under F than G:

$$\mathbb{E}u_N(X) = \sum_{k=0}^N w_k [1 - F(a_k)] \ge \sum_{k=0}^N w_k [1 - G(a_k)] = \mathbb{E}u_N(Y)$$

- Take the limit as the mesh vanishes $\Rightarrow Eu(X) \ge Eu(Y)$.
- Which utility function makes the ranking theorem diff?

Monotone Concave Stochastic Dominance

• Second Order Stochastic Dominance: $F \succeq_{SOSD} G$ if

$$\int_0^x F(t)dt \le \int_0^x G(t)dt \quad \forall x$$

- Monotone Concave Stochastic Order. If F ≿_{SOSD} G, then any mean of a monotone concave utility function is higher for F than G.
- Proof: We prove this for "ramp" functions $u_a = \min\{a, x\}$.
- Suppose that $0 \le X, Y \le M$. Then:

$$\mathbb{E}_F u_a(X) = \int_0^a x dF(x) + \int_a^M a dF(x)$$

= $xF(x)\Big|_0^a - \int_0^a F(x) dx + a(1 - F(a))$
= $a - \int_0^a F(x) dx$

- So $\mathbb{E}_F u_a(X) \ge \mathbb{E}_G u_a(Y)$ iff $-\int_0^a F(x) dx \ge -\int_0^a G(x) dx$
- Intuitively, concave functions through the origin can be approximated as the limit of weighted sums of ramps

12 / 41

• So
$$\mathbb{E}_{F}u(\cdot) \geq \mathbb{E}_{G}u(\cdot)$$
.

- Stochastic Dominance on Closed Cones
- A convex cone is a vector space subset closed under positive linear combinations with positive coefficients.
- If the mean of F exceeds G on a set of functions V, then this holds on the convex cone U = cc(V ∪ {±1}).
- Example: If $U = \{ \text{ concave functions} \}$ and $V = \{ \min \langle 0, x a \rangle \} \cup \{ \pi(x) = -x \}$ then $U = cc(V \cup \pm 1)$

 $\mathbb{E}_{\textit{F}}(\min\langle 0, X-a) \geq \mathbb{E}_{\textit{F}}(\min\langle 0, X-a) \ \forall a \ \text{ and } \ \mathbb{E}_{\textit{F}}(-X) \geq \mathbb{E}_{\textit{G}}(-X)$

- $\Rightarrow F, G \text{ have same mean} \Rightarrow \int_0^1 [1 F(t)] dt = \int_0^1 [1 G(t)] dt$
- *Mean Preserving Spread: G* is a MPS of *F* on [0,1] if

 $\int_0^x F(t) dt \le \int_0^x G(t) dt \quad \forall x, \text{ with equality at } x = 1$

Concave Stochastic Order. If F ≿_{MPS} G, then any mean of a concave utility function is higher for G than F. EXAMPLE. If F is a MPS of G, then σ_F² ≥ σ_{G²}², (G) + (≥) +

PQD: Increased Sorting in Pairwise Matches

- Positive quadrant dependence (PQD) partially orders bivariate probability distributions M ∈ M(G, H)
- Sorting increases in the PQD order if the mass in every northeast and southwest quadrant increases.
- So $M_2 \succeq_{PQD} M_1$ iff $M_2(x, y) \ge M_1(x, y)$ for all x, y
- We call M₂ more sorted than M₁

・ロット (雪) (キョット・ヨット

PQD Order with Three Types

NAM \leq_{PQD} [PAM2, PAM4] \leq_{PQD} [NAM1, NAM3] \leq_{PQD} PAM

• Check that this is not a lattice!

- For PAM2 or PAM4, each of NAM1, NAM3, and PAM are upper bounds, but there is no least upper bound
- For NAM1 or NAM3, each of PAM2. PAM4, and NAM are lower bounds, but there is no greatest upper bound
- Hence, PQD partial order is not a lattice on three types
- Maybe we are missing mixed matchings that restore the lattice property. There is not.

PQD - SPM Stochastic Dominance Theorem

• This is missing from first year micro PhD curriculum:

Lemma (PQD Stochastic Dominance Theorem)

The PQD and SPM orders coincide on R^2 , i.e. increases in the PQD order raise (lower) the total output for any SPM (SBM) function f, and conversely:

 $M_2 \succeq_{PQD} M_1 \Leftrightarrow \int \phi(x, y) M_2(dx, dy) \ge \int \phi(x, y) M_1(dx, dy)$

- Hence, PQD is called the supermodular order
- Method of cones intuition: a SPM function is in the cone of indicator functions [x,∞) × [y,∞) ∪ (-∞, x] × (-∞, y]

Moshe Shaked J. George Shanthikumar

Stochastic Orders

16/41

Economics of the PQD Order

Lemma (PQD is Economically Relevant)

If sorting increases in the PQD order,

- (a) the average distance between matched types falls;
- (b) the covariance / correlation of matched pairs rises, and

(c) the coefficient in a linear regression of men's type on matched women's type increases.

- PROOF OF (a)
 - Claim: $\phi(x, y)$ is SBM for all $\gamma \ge 1$.
 - $E[\phi(X, Y)] = |X Y|^{\gamma}$ over matched X, Y falls if $\gamma \ge 1$
- Proof of (b)
 - xy SPM \Rightarrow covariance $E_M[XY] E[X]E[Y]$ increases
 - Marginal distributions on X and Y are invariant to M.
 - $E[X^2]$ and $E[Y^2]$ fixed in match measure M

 \Rightarrow correlation coefficient increases too

• PROOF OF (c): You try it! It's not hard!

イロン 不得 とうほう イロン 二日

Beyond the SCP: Interval Dominance Order

- At this point, detour to Quah's Interval Dominance Order slides
- We apply cone logic to relax Milgrom and Shannon's SCP premise

Theorem

The maximizer set $\arg \max_{x} V(x, t)$ increases in t provided:

 $\exists \alpha > 0$ nondecreasing: $V_x(x|t_2) \ge \alpha(x)V_x(x|t_1) \ \forall t_2 > t_1 \quad (\bigstar)$

- Let $t_2 > t_1$ and $x_i \in \arg \max_x V(x|t_i)$ for i = 1, 2
- Claim 1: $\max(x_1, x_2) \in \arg \max_x V(x|t_2)$
- True if $x_2 \ge x_1$. Assume $x_1 > x_2$.

$$V(x_1|t_2) - V(x_2|t_2) = \int_{x_2}^{x_1} V_x(x|t_2) dx \ge \int_{x_2}^{x_1} \alpha(x) V_x(x|t_1) dx$$
 (1)

•
$$x_1 \in \arg \max_x V(x, t_1) \Rightarrow \int_y^{x_1} V_x(x|t_1) dx \ge 0 \quad \forall y \in [x_2, x_1].$$

- $\Rightarrow \int_{x_2}^{x_1} \alpha(x) V_x(x|t_1) dx \ge 0$ by integral SCP
 - By (‡), $V(x_1|t_2) \ge V(x_2|t_2)$
 - Altogether, $\max(x_1, x_2) \in \arg \max V(x, t_2)$

Topkis without the Single Crossing Property

- Claim 2: $\min(x_1, x_2) \in \arg \max V(x|t_1)$.
- True if $x_1 \leq x_2$. Assume $x_1 > x_2$.
- For a contradiction, assume that $V(x_1|t_1) > V(x_2|t_1)$.

• Then
$$\int_{x_2}^{x_1} V_x(x|t_1) dx > 0.$$

- $x_1 \in \arg \max V(x, t_1) \Rightarrow \int_y^{x_1} V_x(x|t_1) dx \ge 0 \ \forall y \in [x_2, x_1].$
- $\Rightarrow \int_{x_2}^{x_1} \alpha(x) V_x(x|t_1) dx > 0$ by strict integral SCP

• By (‡),
$$V(x_1|t_2) - V(x_2|t_2) > 0$$

- This contradicts $x_2 \in \arg \max V(x|t_2)$.
- $\Rightarrow V(x_1|t_1) = V(x_2|t_1)$
- $\Rightarrow \min(x_1, x_2) \in \arg \max V(x|t_1).$
 - PS: This proof is far more general than in Quah and Strulovici, since it uses the method of cones

Beyond Karlin and Rubin: Integral Single Crossing Property

Corollary (Integral Single Crossing Property)

If $\alpha(x) \ge 0$ is nondecreasing, then (if all integrals are finite)

$$\int_{[y,\infty)\cap X} f(x) dx \ge 0 \quad \text{for all } y \qquad \Rightarrow \qquad \int_X f(x) \alpha(x) dx \ge 0$$

Inequality is strict if $\int_X f(x) dx > 0$ and $\exists m > 0$ s.t. $\alpha(x) \ge m$

- Instead of f upcrossing, we assume $\int f$ upcrossing
- Idea: $\alpha \ge 0 \text{ non} \downarrow \Rightarrow \int_X f(x) \alpha(x) dx$ lies in cone of $(\int_{[y,\infty)\cap X} f(x) dx) \forall y$
- This is clear for α a step function, or a sum of step functions, etc.
- Formal Proof (read on your own):
 - Since α is monotone, its upper sets are $U = [y, \infty)$
 - Fix M > 0 very big
 - Let $\alpha_M = M$ for $x \in U(M)$ and $\alpha_M(x) = \alpha(x)$ otherwise
 - Banks Lemma (m > 0 on next slide) $\Rightarrow \int_X f(x) \alpha_M(x) dx \ge 0$
 - If $M \uparrow \infty$, get $\int_X f(x) \alpha(x) dx \ge 0$ by monotone convergence theorem

Offline: Dallas Banks Integral Inequality

- Beesack (1957), "A note on an integral inequality"
- upper set $U(y) = \{x \in X \subset \mathbb{R}, \alpha(x) \ge y\}$ of function α

Lemma (Banks Lemma, 1963)

If $m \leq \alpha(x) \leq M < \infty \,\, \forall x \in X$ then

$$\int_X f(x)\alpha(x)dx = m \int_X f(x)dx + \int_m^M \left(\int_{U(y)} f(x)dx\right)dy \quad (\dagger)$$

- See "layer cake" integral notion in wikipedia, but swap $\alpha(x)$ and f(x)
- Proof: Define $F(y) = \int_{U(y)} f(x) dx$ for $y \in [m, M)$, and F(M) = 0
- Layer Cake Claim: $\int_X f(x)\alpha(x)dx = -\int_m ydF(y)$
 - Proof: Take a partition $m = y_0 < y_1 < \cdots < y_n = M$
 - $\int_{m} y dF(y) \sim \sum_{k=1}^{n} y_i [F(y_{k-1}) F(y_k)] \sim \sum_{k=1}^{n} \alpha(x_k) f(x_k) \Delta x_k \text{ since } y_k \leq \alpha(x) \leq y_{k+1} \text{ on } U(y_{k-1}) \setminus U(y_k)$

• Integrate Layer Cake Claim by parts to get (†)

$$\int_X f(x)\alpha(x)dx = -yF(y)|_m^M + \int_{\widehat{m}^+}^M F(y)dy = 0 \quad \text{if } y = 0$$

Bayes Rule

- Imagine we are trying to learning about the state of the world θ ∈ Θ with a prior density g(θ) and cdf, if θ ∈ ℝ
- Typical case: $\Theta = \{L, H\}$.
- A signal is r.v. X whose density $f(x|\theta)$ depends on θ
- A *signal* is a family of r.v.s $\{f(x|\theta), \theta \in \Theta\}$, for every state
- Standard abuse of terminology: the "signal realization" x is often called the "signal"
- By Bayes rule, upon seeing x, the posterior density is

$$g(\theta|x) = \frac{pdf(\theta \text{ and } x)}{pdf(x)} = \frac{g(\theta)f(x|\theta)}{\int_{-\infty}^{\infty} f(x|s)g(s)} \propto g(\theta)f(x|\theta)$$

Odds Formulation of Bayes' Rule

- To eliminate the messy denominator, we often use odds
- Posterior odds = (prior odds) × (likelihood ratio)

$$\frac{g(\theta_2|x)}{g(\theta_1|x)} = \frac{g(\theta_2)f(x|\theta_2)}{g(\theta_1)f(x|\theta_1)}$$

- Example: A test to detect AIDS, whose prevalence is $\frac{1}{1000}$, has a false positive rate of 5%.
- Given a + result, what is the chance one is infected?
- Roughly: Posterior odds against infection are

$$\frac{999}{1} \times \frac{1}{19} \approx 1000/20 = 50$$

• One is infected with chance 2%

イロト 不得 トイヨト イヨト 二日

More Favorable Signals

- Recall first order stochastic dominance (FOSD): $G^2 \succ_{FSD} G^1$ if $G^2(s) \le G^1(s)$ for all s
- We will prove this later with fancy method of cones.
- First Ranking Theorem: $G^2 \succeq_{FOSD} G^1$ iff $E_{G^2}\psi(X) \ge E_{G^1}\psi(X)$ for all nondecreasing functions ψ
- Signal realization x is more favorable than y if $G(\cdot|x) \succeq_{FSD} G(\cdot|y)$ for all nondegenerate priors G
- Idea: you to think θ is bigger after seeing x vs. y
- If g is discrete, with $g(\theta_1) = g(\theta_2) = \frac{1}{2}$, then x is more favorable than y only if

$$heta_2 > heta_1 \Leftrightarrow rac{f(x| heta_2)}{f(x| heta_1)} > rac{f(y| heta_2)}{f(y| heta_1)}$$

• Soon: This is iff for any prior on state spaces $\Theta \subset \mathbb{R}$

Monotone Likelihood Ratio Property (MLRP)

- Signal $\{f(x|\theta)\}$ obeys the MLRP iff x is more favorable than any y < x
- $f(x,\theta)$ is affiliated if $f(x_1|\theta_1)f(x_2|\theta_2) \ge f(x_1|\theta_2)f(x_2|\theta_1)$
- Classic Signal Families with MLRP
 - exponential: $f(x|\theta) = (1/\theta)e^{-x/\theta}$, $x \ge 0$
 - **2** skewed uniform: $f(x|\theta) = nx^{n-1}/\theta^n$, $0 \le x \le \theta$
 - **3** binomial: $f(x|\theta) = {n \choose x} \theta^x (1-\theta)^{n-x}$, x = 0, 1, ..., n
- Signal outcomes x and y are *equivalent* if $f(x|\theta_2)f(y|\theta_1) = f(x|\theta_1)f(y|\theta_2) \forall \theta_1, \theta_2.$
- Signal outcome x is *neutral news* if f(x|θ₁) = f(x|θ₂) ∀θ₁, θ₂
 ⇒ G ≡ G(·|x)
- Signal outcome x is good news if it is more favorable than neutral news, i.e. iff f(x|θ) is increasing in θ (bad news it if is less favorable).

Good News and Bad News

- Most signal distributions have no neutral news signal outcomes
- To see why neutral news is rare, consider this example: $\theta \sim U(0,1)$, and $f(x|\theta) = 2(\theta x + (1 \theta)(1 x))$.
- So $f(\frac{1}{2}|\theta) = 2(\frac{1}{2}\theta + \frac{1}{2}(1-\theta)) = 1$ for all states θ

< ロ > < 同 > < 回 > < 回 >

MLRP: What is a Good Signal? (Milgrom, 1981)

- **Theorem**: x is more favorable than y iff $\forall \theta_2 > \theta_1$, $f(x|\theta_1)f(y|\theta_2) \ge f(x|\theta_1)f(y|\theta_2)$.
- Proof: Assume positive signal densities at x > y.
- Be careful about dummy variables of integration!
- Inequality: $f(x|s)/f(x|\theta) \ge f(y|s)/f(y|\theta)$, if $\theta < \theta_2 < s$

$$\begin{aligned} \frac{G(\theta_2|x)}{1-G(\theta_2|x)} &= \frac{\int_{-\infty}^{\theta_2} f(x|s) dG(s)}{\int_{\theta_2}^{\infty} f(x|s) dG(s)} \\ &= \int_{-\infty}^{\theta_2} \frac{1}{\int_{\theta_2}^{\infty} [f(x|s)/f(x|\theta)] dG(s)} dG(\theta) \\ &\leq \int_{-\infty}^{\theta_2} \frac{1}{\int_{\theta_2}^{\infty} f(y|s)/f(y|\theta) dG(s)} dG(\theta) \\ &= \frac{G(\theta_2|y)}{1-G(\theta_2|y)} \end{aligned}$$

Application: Contract Theory to Moral Hazard

- Principal-Agent Problem (Holmstrom, 1979)
- Agent expends effort θ , influencing stochastic profit π
- Profit π has density $f(\pi|\theta)$ given effort θ
- Agent's payoff to wealth w is $U(w) \theta$, where U' > 0 > U''
- Principal has utility $V(\cdot)$, where $V' > 0 \ge V''$
- Principal and Agent are weakly/strictly risk-averse
- Optimal sharing rule: Principal gives the agent a profit share $s(\pi)$, where $\frac{V(\pi-s(\pi))}{U'(s(\pi))} = b + c \frac{f_{\theta}(\pi|\theta)}{f(\pi|\theta)}$ (c > 0)
 - I won't prove this, but it solves the principal's optimization subject to agent obeying his IC constraints
- Proof that sharing rule rises when $f(\pi|\theta)$ has the MLRP:

$$\frac{f(\pi|\theta_2)}{f(\pi|\theta_1)} = \exp\left\{\int_{\theta_1}^{\theta_2} \frac{\partial}{\partial\theta} [\log f(\pi|\theta)] d\theta\right\} = \exp\left\{\int_{\theta_1}^{\theta_2} \frac{f_{\theta}(\pi|\theta)}{f(\pi|\theta)} d\theta\right\}$$

• Intuition: Profits are a good signal of effort, so that $1 \ge s'(\pi) > 0$, if $\frac{f_{\theta}(\pi|\theta)}{f(\pi|\theta)}$ increases in π (the MLRP)

Logsupermodularity (LSPM)

• If f > 0, then f logsupermodular iff log f supermodular

 $f(x_1| heta_1)f(x_2| heta_2) \geq f(x_1| heta_2)f(x_2| heta_1) \quad \Leftrightarrow$

 $\log f(x_1|\theta_1) + \log f(x_2|\theta_2) \geq \log f(x_1|\theta_2) + \log f(x_2|\theta_1)$

- Auction theorists call f affiliated iff f is logsupermodular
- Logsupermodularity on a lattice is defined without logs:

 $f(x)f(y) \leq f(x \lor y)f(x \land y)$

- Multiplication preserves LSPM: $f, g \text{ LSPM} \Rightarrow fg \text{ LSPM}$
- Addition need not preserve LSPM!
- An indicator function: f(x, y) = 1 if $x \ge y$ and 0 if x < y

• Prove that indicator functions are LSPM .

イロト 不得 トイヨト イヨト 二日

Signaling is Transitive

- Say X is signals Y if f(x|y) is LSPM
- If X is signals Y (unobserved) and Y signals Z, does X signal Z?

Theorem

If f(x, y) and g(x, z) are LSPM, then so is $h(x, z) \equiv \int f(x, y)g(y, z)d\mu(y)$, for any positive measure μ .

- LSPM is preserved under partial integration
- Is this surprise? For addition does not preserve LSPM
- Milgrom and Weber (1982), "A Theory of Auctions and Competitive Bidding" (2020 Nobel Prize) repeatedly uses this property

Logsupermodularity, & the Preservation Lemma

• Ahlswede and Daykin (1979) proved the next result.

• Karlin and Rinott (1980) wonderfully proved it

Lemma (Preservation) Let $f_1, f_2, f_3, f_4 \ge 0$ on \mathbb{R}^n . Then

$$\begin{array}{l} \hline PREMISE & f_1(s)f_2(s') \leq f_3(s \lor s')f_4(s \land s') \quad \forall s, s' \in \mathbb{R}^n \\ & \Longrightarrow \\ \int f_1(s)d\mu(s) \int f_2(s)d\mu(s) \leq \int f_3(s)d\mu(s) \int f_4(s)d\mu(s) \end{array}$$
(1)

Preservation Lemma Proof (Easy Part)

- Use induction on the dimensionality of \mathbb{R}^{n} !
- We prove n = 1 case. The **PREMISE** with s' = s gives:

$$f_1(s)f_2(s) \le f_3(s)f_4(s)$$
 (2)

- Since $\int f_i(s) ds \int f_j(s) ds = \int \int f_i(x) f_j(y) dx dy$, we need $\iint_{x < y} [f_1(x) f_2(y) + f_1(y) f_2(x)] dx dy \le \iint_{x < y} [f_3(x) f_4(y) + f_3(y) f_4(x)] dx dy$
- $a = f_1(x)f_2(y), b = f_1(y)f_2(x), c = f_3(x)f_4(y), d = f_3(y)f_4(x)$
- It suffices to show that $a + b \le c + d$.
- Claim 1: $d \ge a, b$.
 - Proof: $d = f_3(y)f_4(x) = f_3(x \lor y)f_4(x \land y)$ since x < y
 - **PREMISE**: $d \ge a$ by s=x, s'=y & $d \ge b$ by s=y, s'=x.
- Claim 2: $ab \leq cd$.

• Proof: multiply (2) at
$$s = x$$
 and $s = y$

$$\Rightarrow (c+d) - (a+b) = \left[(d-a)(d-b) + (cd-ab) \right] / d \ge 0$$

32/41

Partial Integration preserves LSPM

Theorem

g(y,s) LSPM $\Rightarrow \int g(y,s)d\mu(s)$ LSPM in y

Proof:

- $f_1(s) = g(y, s), f_2(s) = g(y', s), f_3(s) = g(y \lor y', s), f_4(s) = g(y \land y', s).$
- Since g is LSPM, $f_1(s)f_2(s') \leq f_3(s \lor s')f_4(s \land s')$
- By the Preservation Lemma,

$$\int f_1(s)d\mu(s)\int f_2(s)d\mu(s)\leq \int f_3(s)d\mu(s)\int f_4(s)d\mu(s)$$

• Unwrapping this, we get the desired inequality: $\int g(y,s)d\mu(s)\int g(y',s)d\mu(s) \leq \int g(y \lor y',s)d\mu(s)\int g(y \land y',s)d\mu(s)$

Measure Inherits LSPM from Density

•
$$A \lor B \equiv \cup \{a \lor b, a \in A, b \in B\}$$

- $A \land B \equiv \cup \{a \land b, a \in A, b \in B\}$
- Probability measure generated by f is $P(A) = \int_A f(s) ds$
- *P* is LSPM if $P(A \lor B)P(A \land B) \ge P(A)P(B)$
- **Theorem**: If f is LSPM, then so is $P(A) = \int_A f(s) ds$
- Proof: Let $f_1 = \mathbb{I}_A(x)$, $f_2 = \mathbb{I}_B(y)$, $f_3 = \mathbb{I}_{A \lor B}$, $f_4 = \mathbb{I}_{A \land B}$.
- Condition (1) holds, since

$$\mathbb{I}_A = 1, \mathbb{I}_B = 1 \Rightarrow \mathbb{I}_{A \lor B} = 1$$
 and $\mathbb{I}_{A \land B} = 1$

- But $\mathbb{I}_A(x) = 1 \Leftrightarrow x \in A$, and $\mathbb{I}_B(y) = 1 \Leftrightarrow y \in B$.
- But $x \in A$ and $y \in B \Rightarrow x \lor y \in A \lor B$, and $x \land y \in A \land B$.
- Set $f_1^* = f_1 f$, $f_2^* = f_2 f$, $f_3^* = f_3 f$, $f_4^* = f_4$.
- These obey the premise too! So

$$P(A) = \int_{A} f_{1}^{*} \& P(B) = \int_{B} f_{2}^{*} \& P(A \lor B) = \int_{A \lor B} f_{3}^{*} \& P(A \land B) = \int_{A \land B} f_{4}^{*}$$

Logconcavity and LSPM

- f > 0 is log concave when $f((1 \lambda)x + \lambda y) \ge f(x)^{1-\lambda}f(y)^{\lambda}$
- When f > 0 is C^2 on \mathbb{R} when log f is concave, i.e.

$$(\log f)'' \leq 0 \Leftrightarrow (f'/f)' \leq 0 \Leftrightarrow ff'' \leq (f')^2$$

Lemma (Logconcavity and LSPM) If f > 0 is log concave then u(x, y) = f(y - x) is LSPM.

• Proof:
$$u_x = -f'(y-x), u_{xy} = -f''(y-x), u_y = f'(y-x).$$

 $u \text{ LSPM } \Leftrightarrow uu_{xy} \ge u_x u_y \Leftrightarrow -ff'' \ge -(f')^2 \Leftrightarrow f \text{ logconcave}$

Logconcavity

Logconcavity and Prekopa's Theorem (1973)

Theorem (Prekopa)

Let $H(x, y) : \mathbb{R}^{m+n} \to \mathbb{R}$ be log-concave: $H\left((1-\lambda)(x_1, y_1) + \lambda(x_2, y_2)\right) \ge H(x_1, y_1)^{1-\lambda} H(x_2, y_2)^{\lambda}$ for $x_1, x_2 \in \mathbb{R}^m$ and $y_1, y_2 \in \mathbb{R}^n$ and $0 < \lambda < 1$. Then its marginal $M(y) = \int_{\mathbb{R}^m} H(x, y) \, dx$ is log-concave.

- Convolution Corollary: If f, g are logconcave on \mathbb{R} then $h(x) \equiv \int_{-\infty}^{\infty} g(x-y)f(y)dy$ is logconcave.
- Also, the cdf or survivor of a log-concave density is log-concave because the step function is log-concave: $g(x) = \begin{cases} 1 & \text{if } x \le y \\ 0 & \text{if } x > y \end{cases}$

1 Normal density:
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-(x-\mu)^2/2\sigma^2}$$
 on \mathbb{R}

- **2** Gamma density: $f(x) = \frac{\lambda' x'^{-1}}{\Gamma(r)} e^{-\lambda x}$ is logconcave on \mathbb{R}_+ iff $r \ge 1$
- Seta density: $f(x) \propto x^{a-1}(1-x)^{b-1}$ is logconcave on [0,1] if $a, b \ge 1$, as with the uniform density

Logconcavity and Truncated Means

- Heckman and Honore (1990), Proposition 1
- Let \underline{f}_0 be a density, and $\underline{f}_{k+1}(z) \equiv \int_{-\infty}^z \underline{f}_k(x) dx$
- Left mean: $\underline{m}(z) = E[X|X \le z] = \int_{-\infty}^{z} xf_0(x)dx/\underline{f_1}(z)$
- **Proposition.** $\underline{m}'(z) \leq 1$ iff $\underline{f_2}$ is log-concave.

TI

Proof:
$$\underline{m}'(z) = \frac{\underline{f_1}(z)zf_0(z) - \underline{f_1}'(z)\int_{-\infty}^z xf_0(x)dx}{(\underline{f_1}(z))^2}$$

$$= \frac{\left(\int_{-\infty}^z f_0(x)dx\right)zf_0(z) - f_0(z)\int_{-\infty}^z xf_0(x)dx}{(\underline{f_1}(z))^2}$$

$$= f_0(z)\int_{-\infty}^z (z-x)f_0(x)dx/(\underline{f_1}(z))^2$$

$$\equiv \underline{f_2}''(z)\underline{f_2}(z)/(\underline{f_2}'(z))^2$$
his is ≤ 1 iff $\underline{f_2}''(z)\underline{f_2}(z) \leq (\underline{f_2}(z))^2$, i.e. $\underline{f_2}$ is log-concave

37 / 41

Logconcavity and Truncated Expectations

- Logconcavity is often met and precludes jumps in expectations
- Left variance $\underline{V}(z) = Var(X|X \le z) \Rightarrow \underline{V}(z) \le 1 \,\,\forall z \,\, \text{iff} \,\, \underline{f}_3 \,\, \text{log-concave}$
- Right mean $\overline{m}(z) = \mathbb{E}[X|X \ge z] \Rightarrow \overline{m}'(z) \le 1 \ \forall z \text{ iff } \overline{f}_2 \text{ log-concave.}$
- Right variance $\overline{V}(z) = Var(X|X \le z) \Rightarrow \overline{V}'(z) \le 1 \ \forall z \ \text{iff} \ \overline{f}_3 \ \text{log-concave}$
- HW: Prove these results from Prekopa's Theorem, using the fact that a suitable indicator function \mathbb{I}_B on a suitable set *B* is logconcave.

Total Positivity (Karlin, 1968)

• $u: A \times B \to \mathbb{R}$ is totally positive of order k (TP_k, and STP_k if strict) if $\forall m = 1, \dots, k$ and $x_1 < \dots < x_m$ in $A \subseteq \mathbb{R}$ and $y_1 < \dots < y_m$ in $B \subseteq \mathbb{R}$ (\Leftarrow scalar variables only!)

$$\det \begin{bmatrix} u(x_1, y_1) & \cdots & u(x_1, y_m) \\ \vdots & & \vdots \\ u(x_m, y_1) & \cdots & u(x_m, y_m) \end{bmatrix} \ge 0$$

• TP_1 means nonnegative, and TP_2 is LSPM on \mathbb{R}^2

• Easily,
$$TP_k \Rightarrow TP_{k'} \ \forall k' \leq k$$
.

- u(x, y) is TP (or totally positive) if it is $TP_k \forall k < \infty$.
- Lemma: If v, $w \ge 0$ on A and B, and u(x, y) is TP_k , then v(x)w(y)u(x,y) is TP_k on $A \times B$.
- Lemma: If v and w are comonotone, and f is TP_k on $A \times B$, then u(v(x), w(y)) is TP_k on $A \times B$. **1** $u(x, y) = e^{xy}$ is $STP \Rightarrow e^{-(x-y)^2} = e^{-x^2}e^{-y^2}e^{2xy}$ is STP2 $u(x, y) = \frac{1}{x+y}$ is STP ▲ロト ▲団ト ▲ヨト ▲ヨト ニヨー わえぐ (u(x, y) = C(x, y) is TP

39/41

Variation Diminishing Property (VDP)

• TP preserves monotonicity and convexity.

Theorem (Monotonicity Preservation)

Let $\int f(x, y)d\mu(y) = 1 \ \forall x$. If f is TP_2 and w(y) is monotonic, then $u(x) = \int f(x, y)w(y)d\mu(y)$ is co-monotonic with w.

- Applications: When f(x, y) is a probability density over random outcomes y given x
- Proof: w monotonic $\Leftrightarrow w(y) \alpha$ is upcrossing $\forall \alpha \in \mathbb{R}$
- Since $\int f(x,y)d\mu(y) = 1$, for any $\alpha \in \mathbb{R}$,

$$u(x) - \alpha = \int f(x, y)(w(y) - \alpha)d\mu(y)$$

• If $w(y) - \alpha$ changes sign - to +, then so does $u(x) - \alpha$ by Karlin and Rubin (1956) Upcrossing Preservation, since f(x, y) is LSPM.

Variation Diminishing Property (VDP)

- Let S(f) be the supremum number of sign changes in $f(t_2) f(t_1), \ldots, f(t_k) f(t_{k-1})$ across all sets $t_1 < \cdots < t_k$.
- For a function w(y), define $u(x) \equiv \int f(x, y)w(y)d\mu(y)$.

Theorem (Variation Diminishing Property, Karlin (1968))

Let f(x, y) be TP_k . If $S(w) \le k - 1$, then $S(u) \le S(w)$, and u and w have the same arrangement of signs (left to right) in the domain.

- Proof: Obvious for k = 1; proven already for k = 2.
- For k > 2, Karlin's proof is a mess. Andrea Wilson's Induction Proof:
 - Induction step: if ∑_y f(x, y)w(y) is n-crossing, initially + to -, and f is TP-(n+1), then w(y) is n-crossing with an initial downcrossing on some Y' ⊂ Y.
 - Let $x_1 < \cdots < x_{n+1}$ and $\alpha_1, \ldots, \alpha_n$ with $(-1)^{j+1}\alpha_j > 0$ with

$$\sum_{i=1}^{n} f(x_j, y_i) w(y_i) = \alpha_j \quad \text{for} \quad j = 1, 2, \dots, n+1$$

• She uses Cramer's rule: The TP Determinants are key and the set of the set