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Monotone Comparative Statics: Basics Review Lattices and Supermodularity

Join, Meet, Lattice
A poset is a set X and a partial order ⪰
The join x ∨ x′ is the supremum of x, x′

The meet x ∧ x′ the infimum of x and x′
A lattice is a poset that contains all meets and joins
We restrict to Euclidean lattices X ⊂ Rn, where

x ∨ x′ = (max{x1, x′1}, ...,max{xN, x′N})
x ∧ x′ = (min{x1, x′1}, ...,min{xN, x′N})

Strong Set Order (SSO), denoted ⊒
X ⊒ X′ if for all x ∈ X, x′ ∈ X′, x ∨ x′ ∈ X & x ∧ x′ ∈ X′.

Prove X′ ⊒ X fails here:
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Monotone Comparative Statics: Basics Review Lattices and Supermodularity

F : X → R is supermodular (SPM) if for all x, x′ ∈ X
F(x ∧ x′) + F(x ∨ x′) ≥ F(x) + F(x′)

Fact: A function on a totally ordered set (chain) is SPM
If F(x, θ) is SPM, then F has increasing differences (ID) in (x, θ) if
F(x2, θ)− F(x1, θ) increases in θ, for all x2 > x1
If F : Rn → R is C2, then F is SPM iff ∂2F

∂xi∂xj
≥ 0 for all x

Addition: If F,G : X → R are SPM, then F + G is SPM
Lemma (Maximization Preserves SPM)
F SPM on the lattice X×Y ⇒ G(x)=supy F(x, y) SPM on X.

Proof: Let y, y′ ∈ Y and x, x′ ∈ X. Since F is SPM:
F(x′, y′) + F(x, y) ≤ F(x ∨ x′, y′ ∨ y) + F(x ∧ x′, y′ ∧ y)

≤ G(x′ ∨ x) + G(x′ ∧ x)
So G(x′ ∨ x) + G(x′ ∧ x) is an upper bound for the LHS.
Maximizing the left side over all y, y′, we get:

G(x′) + G(x) ≤ G(x′ ∨ x) + G(x′ ∧ x) □
3 / 41



Monotone Comparative Statics: Basics Review Comparative Statics

Comparative Statics
Let X∗(θ) be the set of solutions to the problem

max
x∈X

F(x, θ)

Topkis Theorem (1978): Let X be a lattice, and Θ a poset. If
F : X ×Θ → R has ID in (x, θ) and is SPM in x, then X∗(θ) is
monotone in the SSO.
Proof: Let θ′ ≻ θ′′ and x′ ∈ X∗(θ′) and x′′ ∈ X∗(θ′′).

0 ≥ F(x′ ∨ x′′, θ′)− F(x′, θ′) by x′ ∈ X∗(θ′)

≥ F(x′ ∨ x′′, θ′′)− F(x′, θ′′) by ID in (x, θ)
≥ F(x′′, θ′′)− F(x′ ∧ x′′, θ′′) by SPM in x
≥ 0 by x′′ ∈ X∗(θ′′)

All inequalities are therefore equalities
Then x′ ∨ x′′ ∈ X∗(θ′) and x′ ∧ x′′ ∈ X∗(θ′)

So X∗(θ) is increasing in the SSO. □
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Monotone Comparative Statics: Basics Review Comparative Statics

Quasi-supermodularity
F :X → R is quasi-supermodular (QSPM) if ∀x, x′∈X:

F(x) ≥ F(x ∧ x′) ⇒ F(x ∨ x′) ≥ F(x′)
F(x) > F(x ∧ x′) ⇒ F(x ∨ x′) > F(x′)

The contrapositive of each yields the equivalent:
F(x) < F(x ∧ x′) ⇐ F(x ∨ x′) < F(x′)
F(x) ≤ F(x ∧ x′) ⇐ F(x ∨ x′) ≤ F(x′)

If F(x, θ) is QSPM, then F obeys the single crossing property in
(x, θ) if for all x2 ≻ x1 and θ2 ≻ θ1

F(x2, θ1) ≥ F(x1, θ1) ⇒ F(x2, θ2) ≥ F(x1, θ2)
F(x2, θ1) > F(x1, θ1) ⇒ F(x2, θ2) > F(x1, θ2)
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Monotone Comparative Statics: Basics Review Comparative Statics

Ordinal Comparative Statics
Milgrom-Shannon Theorem (1994): Let X be a lattice, and Θ a
poset. If F :X ×Θ → R obeys the SCP in (x, θ) and is QSPM in x,
then X∗(θ) is monotone in the SSO.
Proof: Let θ′ ⪰ θ with x ∈ X∗(θ) and x′ ∈ X∗(θ′).
x ∨ x′ ∈ X∗(θ′) since

F(x, θ) ≥ F(x ∧ x′, θ) by x ∈ X∗(θ)
⇒ F(x ∨ x′, θ) ≥ F(x′, θ) by QSPM
⇒ F(x ∨ x′, θ′) ≥ F(x′, θ′) by SCP

Next, x ∧ x′ ∈ X∗(θ) since:

F(x′, θ′) ≥ F(x ∨ x′, θ′) by x′ ∈ X∗(θ′)
⇒ F(x ∧ x′, θ′) ≥ F(x′, θ′) by QSPM
⇒ F(x ∧ x′, θ) ≥ F(x′, θ) by SCP

We applied the contrapositive forms of QSPM and SCP
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Monotone Comparative Statics: Basics Review Comparative Statics

Graphical Intuition for the Single Crossing Property

Since the reals are a totally ordered set, any function on the reals is
automatically SPM.
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Monotone Comparative Statics: Basics Review Comparative Statics

Ordinal Comparative Statics without a Lattice

Let X and Θ be posets.
The correspondence X : Θ → X is nowhere decreasing if
x2 ∈ X (θ1) and x1 ∈ X (θ2) with x2 ⪰ x1 and θ2 ⪰ θ1 imply
x1 ∈ X (θ1) and x2 ∈ X (θ2).
So the correspondence does not fall anywhere
Nowhere Decreasing Optimizers (2018):
Let X and Θ be posets. If F :X ×Θ → R obeys the single crossing
property, then X∗(θ) ≡ argmaxx∈X F(x, θ) is nowhere decreasing in θ.
If θ2 ⪰ θ1, x2∈X (θ1), x1∈X (θ2), and x2 ⪰ x1, optimality and the
single crossing property give x2 ∈ X (θ2), since:

F(x2, θ1) ≥ F(x1, θ1) ⇒ F(x2, θ2) ≥ F(x1, θ2)

Exercise: Prove that x1 ∈ X (θ1)
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Monotone Comparative Statics Under Uncertainty Upcrossing Preservation

Upcrossing Functions
Let Θ be a poset. Then Υ : Θ → R is upcrossing if

Υ(θ) ≥ 0 ⇒ Υ(θ′) ≥ 0 for all θ′ > θ
Υ(θ) > 0 ⇒ Υ(θ′) > 0 for all θ′ > θ

Υ is downcrossing if −Υ is upcrossing
Υ is one-crossing if it is upcrossing or downcrossing.
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Monotone Comparative Statics Under Uncertainty Upcrossing Preservation

Upcrossing Preservation

Karlin and Rubin (1956): If Υ is upcrossing, and λ > 0 is
nondecreasing, and µ is a measure, then∫ ∞

−∞
Υ(s)dµ(s) ≥ (>)0 ⇒

∫ ∞

−∞
Υ(s)λ(s)dµ(s) ≥ (>)0

Proof: Let Υ first upcross at t0. The right side equals∫ t0
−∞Υ(s)λ(s)dµ(s) +

∫∞
t0

Υ(s)λ(s)dµ(s)
≥ (>) λ(t0)

∫ t0
−∞Υ(s)dµ(s) + λ(t0)

∫∞
t0

Υ(s)dµ(s)
= λ(t0)

∫∞
−∞Υ(s)dµ(s) ≥ 0

Weakening the assumptions on Υ has led to key papers
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Monotone Comparative Statics Under Uncertainty Stochastic Dominance

Monotone Stochastic Dominance
Let X have cdf F and Y have cdf G.
First Order Stochastic Dominance: F ≿FOD G if F(x) ≤ G(x) ∀x, iff
survivors obey F̄(x) ≥ Ḡ(x) ∀x
Monotone Ranking Theorem. If F ≿FOD G, then any mean of a
monotone function is higher for X than Y.
Proof: Intuitively, every increasing function can be thought as the
limit of the sum of step functions I{x ≥ a}.
Partition the domain [0, 1] with 0 = a0 < · · · < aN = 1.
Pick 0 < w0 < w2 < · · · < wN.
Define the weighted sum of step functions:

uN(x) =
∑N

k=0 wkI{x ≥ ak}
The mean of u(·) is higher under F than G:

EuN(X) =
∑N

k=0 wk[1 − F(ak)] ≥
∑N

k=0 wk[1 − G(ak)] = EuN(Y)
Take the limit as the mesh vanishes ⇒ Eu(X) ≥ Eu(Y).
Which utility function makes the ranking theorem iff?
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Monotone Comparative Statics Under Uncertainty Stochastic Dominance

Monotone Concave Stochastic Dominance
Second Order Stochastic Dominance: F ≿SOSD G if∫ x

0 F(t)dt ≤
∫ x

0 G(t)dt ∀x

Monotone Concave Stochastic Order. If F ≿SOSD G, then any
mean of a monotone concave utility function is higher for F than G.
Proof: We prove this for “ramp” functions ua = min{a, x}.
Suppose that 0 ≤ X,Y ≤ M. Then:

EFua(X) =
∫ a

0 xdF(x) +
∫ M

a adF(x)
= xF(x)

∣∣a
0 −

∫ a
0 F(x)dx + a(1 − F(a))

= a −
∫ a

0 F(x)dx

So EFua(X) ≥ EGua(Y) iff −
∫ a

0 F(x)dx ≥ −
∫ a

0 G(x)dx
Intuitively, concave functions through the origin can be approximated
as the limit of weighted sums of ramps
So EFu(·) ≥ EGu(·). □
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Monotone Comparative Statics Under Uncertainty Stochastic Dominance

Stochastic Dominance on Closed Cones
A convex cone is a vector space subset closed under positive linear
combinations with positive coefficients.
If the mean of F exceeds G on a set of functions V, then this holds on
the convex cone U = cc(V ∪ {±1}).
Example: If U = { concave functions} and
V = {min ⟨0, x − a⟩} ∪ {π(x) = −x} then U = cc(V ∪ ±1)

EF(min⟨0,X − a) ≥ EF(min⟨0,X − a) ∀a and EF(−X) ≥ EG(−X)
⇒ F,G have same mean ⇒

∫ 1
0 [1 − F(t)]dt =

∫ 1
0 [1 − G(t)]dt

Mean Preserving Spread: G is a MPS of F on [0, 1] if∫ x
0 F(t)dt ≤

∫ x
0 G(t)dt ∀x, with equality at x = 1

Concave Stochastic Order. If F ≿MPS G, then any mean of a
concave utility function is higher for G than F.
Example. If F is a MPS of G, then σ2

F ≥ σ2
G.
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Monotone Comparative Statics Under Uncertainty Stochastic Dominance

PQD: Increased Sorting in Pairwise Matches

Positive quadrant dependence (PQD) partially orders bivariate
probability distributions M ∈ M(G,H)

Sorting increases in the PQD order if the mass in every northeast and
southwest quadrant increases.
So M2 ⪰PQD M1 iff M2(x, y) ≥ M1(x, y) for all x, y
We call M2 more sorted than M1
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Monotone Comparative Statics Under Uncertainty Stochastic Dominance

PQD Order with Three Types

Check that this is not a lattice!
For PAM2 or PAM4, each of NAM1, NAM3, and PAM are upper
bounds, but there is no least upper bound
For NAM1 or NAM3, each of PAM2. PAM4, and NAM are lower
bounds, but there is no greatest upper bound
Hence, PQD partial order is not a lattice on three types
Maybe we are missing mixed matchings that restore the lattice
property. There is not.
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Monotone Comparative Statics Under Uncertainty Stochastic Dominance

PQD - SPM Stochastic Dominance Theorem
This is missing from first year micro PhD curriculum:

Lemma (PQD Stochastic Dominance Theorem)
The PQD and SPM orders coincide on R2, i.e. increases in the PQD order
raise (lower) the total output for any SPM (SBM) function f, and
conversely:

M2 ⪰PQD M1 ⇔
∫
ϕ(x, y)M2(dx, dy)≥

∫
ϕ(x, y)M1(dx, dy)

Hence, PQD is called the supermodular order
Method of cones intuition: a SPM function is in the cone of indicator
functions [x,∞)× [y,∞) ∪ (−∞, x]× (−∞, y]
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Monotone Comparative Statics Under Uncertainty Stochastic Dominance

Economics of the PQD Order

Lemma (PQD is Economically Relevant)
If sorting increases in the PQD order,
(a) the average distance between matched types falls;
(b) the covariance / correlation of matched pairs rises, and
(c) the coefficient in a linear regression of men’s type on matched
women’s type increases.

Proof of (a)
Claim: ϕ(x, y) is SBM for all γ ≥ 1.
E[ϕ(X,Y)] = |X − Y|γ over matched X,Y falls if γ ≥ 1

Proof of (b)
xy SPM ⇒ covariance EM[XY]− E[X]E[Y] increases
Marginal distributions on X and Y are invariant to M.
E[X2] and E[Y2] fixed in match measure M
⇒ correlation coefficient increases too

Proof of (c): You try it! It’s not hard!
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Monotone Comparative Statics Under Uncertainty Interval Dominance Order

Beyond the SCP: Interval Dominance Order
At this point, detour to Quah’s Interval Dominance Order slides
We apply cone logic to relax Milgrom and Shannon’s SCP premise

Theorem
The maximizer set argmaxx V(x, t) increases in t provided:

∃α>0 nondecreasing: Vx(x|t2) ≥ α(x)Vx(x|t1) ∀t2 > t1 (⋆)

Let t2 > t1 and xi ∈ argmaxx V(x|ti) for i = 1, 2
Claim 1: max(x1, x2) ∈ argmaxx V(x|t2)
True if x2 ≥ x1. Assume x1 > x2.

V(x1|t2)− V(x2|t2) =

∫ x1

x2

Vx(x|t2)dx ≥
∫ x1

x2

α(x)Vx(x|t1)dx (‡)

x1 ∈ argmaxx V(x, t1) ⇒
∫ x1

y Vx(x|t1)dx ≥ 0 ∀y ∈ [x2, x1].
⇒

∫ x1
x2
α(x)Vx(x|t1)dx ≥ 0 by integral SCP

By (‡), V(x1|t2) ≥ V(x2|t2)
Altogether, max(x1, x2) ∈ argmaxV(x, t2) 18 / 41



Monotone Comparative Statics Under Uncertainty Interval Dominance Order

Topkis without the Single Crossing Property

Claim 2: min(x1, x2) ∈ argmaxV(x|t1).
True if x1 ≤ x2. Assume x1 > x2.
For a contradiction, assume that V(x1|t1) > V(x2|t1).
Then

∫ x1
x2

Vx(x|t1)dx > 0.
x1 ∈ argmaxV(x, t1) ⇒

∫ x1
y Vx(x|t1)dx ≥ 0 ∀y ∈ [x2, x1].

⇒
∫ x1

x2
α(x)Vx(x|t1)dx > 0 by strict integral SCP

By (‡), V(x1|t2)− V(x2|t2) > 0
This contradicts x2 ∈ argmaxV(x|t2).

⇒ V(x1|t1) = V(x2|t1)

⇒ min(x1, x2) ∈ argmaxV(x|t1).
PS: This proof is far more general than in Quah and Strulovici, since
it uses the method of cones
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Monotone Comparative Statics Under Uncertainty Interval Dominance Order

Beyond Karlin and Rubin: Integral Single Crossing Property
Corollary (Integral Single Crossing Property)
If α(x) ≥ 0 is nondecreasing, then (if all integrals are finite)∫

[y,∞)∩X
f(x)dx ≥ 0 for all y ⇒

∫
X

f(x)α(x)dx ≥ 0

Inequality is strict if
∫

X f(x)dx > 0 and ∃m > 0 s.t. α(x) ≥ m

Instead of f upcrossing, we assume
∫

f upcrossing
Idea: α ≥ 0 non↓ ⇒

∫
X f(x)α(x)dx lies in cone of (

∫
[y,∞)∩X f(x)dx) ∀y

This is clear for α a step function, or a sum of step functions, etc.
Formal Proof (read on your own):

Since α is monotone, its upper sets are U = [y,∞)
Fix M > 0 very big
Let αM = M for x ∈ U(M) and αM(x) = α(x) otherwise
Banks Lemma (m>0 on next slide)⇒

∫
Xf(x)αM(x)dx≥0

If M ↑ ∞, get
∫

X f(x)α(x)dx ≥ 0 by monotone convergence theorem
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Monotone Comparative Statics Under Uncertainty Interval Dominance Order

Offline: Dallas Banks Integral Inequality
Beesack (1957), “A note on an integral inequality”
upper set U(y) = {x ∈ X ⊂ R, α(x) ≥ y} of function α

Lemma (Banks Lemma, 1963)

If m ≤ α(x) ≤ M <∞ ∀x ∈ X then∫
X f(x)α(x)dx = m

∫
X f(x)dx +

∫ M
m

(∫
U(y) f(x)dx

)
dy (†)

See “layer cake” integral notion in wikipedia, but swap α(x) and f(x)
Proof: Define F(y)=

∫
U(y) f(x)dx for y ∈ [m,M), and F(M) = 0

Layer Cake Claim:
∫

X f(x)α(x)dx = −
∫

m ydF(y)
Proof: Take a partition m = y0 < y1 < · · · < yn = M∫
m ydF(y)∼

∑n
k=1 yi[F(yk−1)− F(yk)]∼

∑n
k=1α(xk)f(xk)∆xk since

yk ≤ α(x) ≤ yk+1 on U(yk−1) \ U(yk)

Integrate Layer Cake Claim by parts to get (†)∫
X f(x)α(x)dx = −yF(y)|Mm +

∫ M
m F(y)dy
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Monotone Comparative Statics Under Uncertainty Information

Bayes Rule

Imagine we are trying to learning about the state of the world θ ∈ Θ
with a prior density g(θ) and cdf, if θ ∈ R
Typical case: Θ = {L,H}.
A signal is r.v. X whose density f(x|θ) depends on θ
A signal is a family of r.v.s {f(x|θ), θ ∈ Θ}, for every state
Standard abuse of terminology: the “signal realization” x is often
called the “signal”
By Bayes rule, upon seeing x, the posterior density is

g(θ|x) = pdf(θ and x)
pdf(x) =

g(θ)f(x|θ)∫∞
−∞ f(x|s)g(s) ∝ g(θ)f(x|θ)
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Monotone Comparative Statics Under Uncertainty Information

Odds Formulation of Bayes’ Rule

To eliminate the messy denominator, we often use odds
Posterior odds = (prior odds) × (likelihood ratio)

g(θ2|x)
g(θ1|x)

=
g(θ2)f(x|θ2)

g(θ1)f(x|θ1)

Example: A test to detect AIDS, whose prevalence is 1
1000 , has a false

positive rate of 5%.
Given a + result, what is the chance one is infected?
Roughly: Posterior odds against infection are

999
1 × 1

19 ≈ 1000/20 = 50

One is infected with chance 2%
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Monotone Comparative Statics Under Uncertainty Information

More Favorable Signals

Recall first order stochastic dominance (FOSD): G2 ≻FSD G1 if
G2(s) ≤ G1(s) for all s
We will prove this later with fancy method of cones.
First Ranking Theorem: G2 ⪰FOSD G1 iff EG2ψ(X) ≥ EG1ψ(X) for
all nondecreasing functions ψ
Signal realization x is more favorable than y if G(·|x) ⪰FSD G(·|y) for
all nondegenerate priors G
Idea: you to think θ is bigger after seeing x vs. y
If g is discrete, with g(θ1) = g(θ2) =

1
2 , then x is more favorable than

y only if
θ2 > θ1 ⇔ f(x|θ2)

f(x|θ1)
>

f(y|θ2)

f(y|θ1)

Soon: This is iff for any prior on state spaces Θ ⊂ R
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Monotone Comparative Statics Under Uncertainty Monotone Likelihood Ratio Property

Monotone Likelihood Ratio Property (MLRP)

Signal {f(x|θ)} obeys the MLRP iff x is more favorable than any y < x
f(x, θ) is affiliated if f(x1|θ1)f(x2|θ2) ≥ f(x1|θ2)f(x2|θ1)

Classic Signal Families with MLRP
1 exponential: f(x|θ) = (1/θ)e−x/θ, x ≥ 0
2 skewed uniform: f(x|θ) = nxn−1/θn, 0 ≤ x ≤ θ
3 binomial: f(x|θ) =

(n
x
)
θx(1 − θ)n−x, x = 0, 1, ..., n

Signal outcomes x and y are equivalent if
f(x|θ2)f(y|θ1) = f(x|θ1)f(y|θ2) ∀θ1, θ2.
Signal outcome x is neutral news if f(x|θ1)= f(x|θ2) ∀θ1, θ2
⇒ G ≡G(·|x)
Signal outcome x is good news if it is more favorable than neutral
news, i.e. iff f(x|θ) is increasing in θ (bad news it if is less favorable).
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Monotone Comparative Statics Under Uncertainty Monotone Likelihood Ratio Property

Good News and Bad News

Most signal distributions have no neutral news signal outcomes
To see why neutral news is rare, consider this example: θ ∼ U(0, 1),
and f(x|θ) = 2(θx + (1 − θ)(1 − x)).
So f(1

2 |θ) = 2(1
2θ +

1
2(1 − θ)) = 1 for all states θ
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Monotone Comparative Statics Under Uncertainty Monotone Likelihood Ratio Property

MLRP: What is a Good Signal? (Milgrom, 1981)
Theorem: x is more favorable than y iff ∀θ2 > θ1,
f(x|θ1)f(y|θ2) ≥ f(x|θ1)f(y|θ2).
Proof: Assume positive signal densities at x > y.
Be careful about dummy variables of integration!
Inequality: f(x|s)/f(x|θ) ≥ f(y|s)/f(y|θ), if θ < θ2 < s

G(θ2|x)
1 − G(θ2|x)

=

∫ θ2
−∞ f(x|s)dG(s)∫∞
θ2

f(x|s)dG(s)

=

∫ θ2

−∞

1∫∞
θ2

[f(x|s)/f(x|θ)]dG(s)dG(θ)

≤
∫ θ2

−∞

1∫∞
θ2

f(y|s)/f(y|θ)dG(s)dG(θ)

=
G(θ2|y)

1 − G(θ2|y)
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Monotone Comparative Statics Under Uncertainty Monotone Likelihood Ratio Property

Application: Contract Theory to Moral Hazard
Principal-Agent Problem (Holmstrom, 1979)
Agent expends effort θ, influencing stochastic profit π
Profit π has density f(π|θ) given effort θ
Agent’s payoff to wealth w is U(w)−θ, where U′>0>U′′

Principal has utility V(·), where V′ > 0 ≥ V′′

Principal and Agent are weakly/strictly risk-averse
Optimal sharing rule: Principal gives the agent a profit share s(π),
where V′(π−s(π))

U′(s(π)) = b + c fθ(π|θ)
f(π|θ) (c > 0)

I won’t prove this, but it solves the principal’s optimization subject to
agent obeying his IC constraints

Proof that sharing rule rises when f(π|θ) has the MLRP:
f(π|θ2)

f(π|θ1)
=exp

{∫ θ2

θ1

∂
∂θ [log f(π|θ)]dθ

}
=exp

{∫ θ2

θ1

fθ(π|θ)
f(π|θ) dθ

}
Intuition: Profits are a good signal of effort, so that 1 ≥ s′(π) > 0, if
fθ(π|θ)
f(π|θ) increases in π (the MLRP)
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Monotone Comparative Statics Under Uncertainty Logsupermodularity

Logsupermodularity (LSPM)

If f > 0, then f logsupermodular iff log f supermodular

f(x1|θ1)f(x2|θ2) ≥ f(x1|θ2)f(x2|θ1) ⇔

log f(x1|θ1) + log f(x2|θ2) ≥ log f(x1|θ2) + log f(x2|θ1)

Auction theorists call f affiliated iff f is logsupermodular
Logsupermodularity on a lattice is defined without logs:

f(x)f(y) ≤ f(x ∨ y)f(x ∧ y)

Multiplication preserves LSPM: f, g LSPM ⇒ fg LSPM
Addition need not preserve LSPM!
An indicator function: f(x, y) = 1 if x ≥ y and 0 if x < y
Prove that indicator functions are LSPM .
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Monotone Comparative Statics Under Uncertainty Logsupermodularity

Signaling is Transitive

Say X is signals Y if f(x|y) is LSPM
If X is signals Y (unobserved) and Y signals Z, does X signal Z?

Theorem
If f(x, y) and g(x, z) are LSPM, then so is h(x, z) ≡

∫
f(x, y)g(y, z)dµ(y),

for any positive measure µ.

LSPM is preserved under partial integration
Is this surprise? For addition does not preserve LSPM
Milgrom and Weber (1982), “A Theory of Auctions and Competitive
Bidding” (2020 Nobel Prize) repeatedly uses this property
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Monotone Comparative Statics Under Uncertainty Logsupermodularity

Logsupermodularity, & the Preservation Lemma

Ahlswede and Daykin (1979) proved the next result.
Karlin and Rinott (1980) wonderfully proved it

Lemma (Preservation)
Let f1, f2, f3, f4 ≥ 0 on Rn. Then

PREMISE f1(s)f2(s′) ≤ f3(s ∨ s′)f4(s ∧ s′) ∀s, s′ ∈ Rn

=⇒∫
f1(s)dµ(s)

∫
f2(s)dµ(s) ≤

∫
f3(s)dµ(s)

∫
f4(s)dµ(s) (1)
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Preservation Lemma Proof (Easy Part)
Use induction on the dimensionality of Rn!
We prove n = 1 case. The PREMISE with s′ = s gives:

f1(s)f2(s) ≤ f3(s)f4(s) (2)
Since

∫
fi(s)ds

∫
fj(s)ds =

∫ ∫
fi(x)fj(y)dxdy, we need∫∫

x<y

[f1(x)f2(y) + f1(y)f2(x)] dxdy ≤
∫∫
x<y

[f3(x)f4(y) + f3(y)f4(x)] dxdy

a= f1(x)f2(y), b= f1(y)f2(x), c= f3(x)f4(y), d= f3(y)f4(x)
It suffices to show that a + b ≤ c + d.
Claim 1: d ≥ a, b.

Proof: d = f3(y)f4(x) = f3(x ∨ y)f4(x ∧ y) since x < y
PREMISE: d ≥ a by s=x, s′=y & d≥b by s=y, s′=x.

Claim 2: ab ≤ cd.
Proof: multiply (2) at s = x and s = y
⇒ (c + d)− (a + b) = [(d − a)(d − b) + (cd − ab)] /d ≥ 0
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Partial Integration preserves LSPM

Theorem
g(y, s) LSPM ⇒

∫
g(y, s)dµ(s) LSPM in y

Proof:
f1(s)=g(y, s), f2(s)=g(y′, s), f3(s)=g(y ∨ y′, s), f4(s)=g(y ∧ y′, s).
Since g is LSPM, f1(s)f2(s′) ≤ f3(s ∨ s′)f4(s ∧ s′)
By the Preservation Lemma,∫

f1(s)dµ(s)
∫

f2(s)dµ(s) ≤
∫

f3(s)dµ(s)
∫

f4(s)dµ(s)

Unwrapping this, we get the desired inequality:∫
g(y, s)dµ(s)

∫
g(y′, s)dµ(s)≤

∫
g(y ∨ y′, s)dµ(s)

∫
g(y ∧ y′, s)dµ(s)

33 / 41



Monotone Comparative Statics Under Uncertainty Logsupermodularity

Measure Inherits LSPM from Density
A ∨ B ≡ ∪{a ∨ b, a ∈ A, b ∈ B}
A ∧ B ≡ ∪{a ∧ b, a ∈ A, b ∈ B}
Probability measure generated by f is P(A) =

∫
A f(s)ds

P is LSPM if P(A ∨ B)P(A ∧ B) ≥ P(A)P(B)
Theorem: If f is LSPM, then so is P(A) =

∫
A f(s)ds

Proof: Let f1 = IA(x), f2 = IB(y), f3 = IA∨B, f4 = IA∧B.
Condition (1) holds, since

IA = 1, IB = 1 ⇒ IA∨B = 1 and IA∧B = 1

But IA(x) = 1 ⇔ x ∈ A, and IB(y) = 1 ⇔ y ∈ B.
But x ∈ A and y ∈ B ⇒ x ∨ y ∈ A ∨ B, and x ∧ y ∈ A ∧ B.
Set f∗1 = f1f, f∗2 = f2f, f∗3 = f3f, f∗4 = f4.
These obey the premise too! So

P(A)=
∫

A f∗1 & P(B)=
∫

B f∗2 & P(A ∨ B)=
∫

A∨B f∗3 & P(A ∧ B)=
∫

A∧B f∗4
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Logconcavity and LSPM

f > 0 is log concave when f((1 − λ)x + λy) ≥ f(x)1−λf(y)λ

When f > 0 is C2 on R when log f is concave, i.e.

(log f)′′ ≤ 0 ⇔
(
f′/f

)′ ≤ 0 ⇔ ff′′ ≤ (f′)2

Lemma (Logconcavity and LSPM)
If f > 0 is log concave then u(x, y) = f(y − x) is LSPM.

Proof: ux = −f′(y − x), uxy = −f′′(y − x), uy = f′(y − x).

u LSPM ⇔ uuxy ≥ uxuy ⇔ −ff′′ ≥ −(f′)2 ⇔ f logconcave
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Logconcavity and Prekopa’s Theorem (1973)
Theorem (Prekopa)
Let H(x, y) : Rm+n→R be log-concave:

for x1, x2 ∈ Rm and y1, y2 ∈ Rn and 0 < λ < 1.

Then its marginal is log-concave.

Convolution Corollary: If f, g are logconcave on R then
h(x) ≡

∫∞
−∞ g(x − y)f(y)dy is logconcave.

Also, the cdf or survivor of a log-concave density is log-concave
because the step function is log-concave: g(x) =

{
1 if x ≤ y
0 if x > y

1 Normal density: f(x) = 1√
2πσ e−(x−µ)2/2σ2 on R

2 Gamma density: f(x) = λrxr−1

Γ(r) e−λx is logconcave on R+ iff r ≥ 1
3 Beta density: f(x) ∝ xa−1(1 − x)b−1 is logconcave on [0, 1] if a, b ≥ 1,

as with the uniform density
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Logconcavity and Truncated Means
Heckman and Honore (1990), Proposition 1
Let f0 be a density, and fk+1(z) ≡

∫ z
−∞ fk(x)dx

Left mean: m(z) = E[X|X ≤ z] =
∫ z
−∞ xf0(x)dx/f1(z)

Proposition. m′(z) ≤ 1 iff f2 is log-concave.

Proof: m′(z) =
f1(z)zf0(z)− f1′(z)

∫ z
−∞ xf0(x)dx(

f1(z)
)2

=

(∫ z
−∞ f0(x)dx

)
zf0(z)− f0(z)

∫ z
−∞ xf0(x)dx(

f1(z)
)2

= f0(z)
∫ z

−∞
(z − x)f0(x)dx

/ (
f1(z)

)2

≡ f2′′(z)f2(z)
/ (

f2′(z)
)2

This is ≤ 1 iff f2′′(z)f2(z) ≤
(
f2(z)

)2, i.e. f2 is log-concave
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Logconcavity and Truncated Expectations

Logconcavity is often met and precludes jumps in expectations
Left variance V(z) = Var(X|X ≤ z) ⇒ V′(z) ≤ 1 ∀z iff f3 log-concave
Right mean m(z) = E[X|X ≥ z] ⇒ m′(z) ≤ 1 ∀z iff f2 log-concave.
Right variance V(z) = Var(X|X ≤ z) ⇒ V′

(z) ≤ 1 ∀z iff f3 log-concave
HW: Prove these results from Prekopa’s Theorem, using the fact that
a suitable indicator function IB on a suitable set B is logconcave.
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Total Positivity (Karlin, 1968)
u : A × B → R is totally positive of order k (TPk, and STPk if strict)
if ∀m = 1, . . . , k and x1 < · · · < xm in A ⊆ R and y1 < · · · < ym in
B ⊆ R (⇐= scalar variables only!)

det

 u(x1, y1) · · · u(x1, ym)
... ...

u(xm, y1) · · · u(xm, ym)

 ≥ 0

TP1 means nonnegative, and TP2 is LSPM on R2

Easily, TPk ⇒ TPk′ ∀k′ ≤ k.
u(x, y) is TP (or totally positive) if it is TPk ∀k <∞.
Lemma: If v,w ≥ 0 on A and B, and u(x, y) is TPk, then
v(x)w(y)u(x, y) is TPk on A × B.
Lemma: If v and w are comonotone, and f is TPk on A × B, then
u(v(x),w(y)) is TPk on A × B.

1 u(x, y) = exy is STP ⇒ e−(x−y)2
= e−x2e−y2e2xy is STP

2 u(x, y) = 1
x+y is STP

3 u(x, y) = C(x, y) is TP 39 / 41
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Variation Diminishing Property (VDP)

TP preserves monotonicity and convexity.

Theorem (Monotonicity Preservation)
Let

∫
f(x, y)dµ(y) = 1 ∀x. If f is TP2 and w(y) is monotonic, then

u(x) =
∫

f(x, y)w(y)dµ(y) is co-monotonic with w.

Applications: When f(x, y) is a probability density over random
outcomes y given x
Proof: w monotonic ⇔ w(y)− α is upcrossing ∀α ∈ R
Since

∫
f(x, y)dµ(y) = 1, for any α ∈ R,

u(x)− α =

∫
f(x, y)(w(y)− α)dµ(y)

If w(y)− α changes sign − to +, then so does u(x)− α by Karlin and
Rubin (1956) Upcrossing Preservation, since f(x, y) is LSPM. □
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Variation Diminishing Property (VDP)
Let S(f) be the supremum number of sign changes in
f(t2)− f(t1), . . . , f(tk)− f(tk−1) across all sets t1 < · · · < tk.
For a function w(y), define u(x) ≡

∫
f(x, y)w(y)dµ(y).

Theorem (Variation Diminishing Property, Karlin (1968))
Let f(x, y) be TPk. If S(w) ≤ k − 1, then S(u) ≤ S(w), and u and w have
the same arrangement of signs (left to right) in the domain.

Proof: Obvious for k = 1; proven already for k = 2.
For k > 2, Karlin’s proof is a mess. Andrea Wilson’s Induction Proof:

Induction step: if
∑

y f(x, y)w(y) is n-crossing, initially + to −, and f is
TP-(n + 1), then w(y) is n-crossing with an initial downcrossing on
some Y′ ⊂ Y.
Let x1 < · · · < xn+1 and α1, . . . , αn with (−1)j+1αj > 0 with

n∑
i=1

f(xj, yi)w(yi) = αj for j = 1, 2, . . . , n + 1

She uses Cramer’s rule: The TP Determinants are key
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