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Preamble

The Matching Paradigm as Metaphor Economic Interaction

Simple model: Only the extensive margin (in or out) matters.

Pairwise matching models with transferable utility capture in a simple
story the economic structures of many settings:

assigning tasks to individuals
buyers and sellers trading
partnerships, and maybe marriages
firms hiring workers

metaphor: two sides of the market are “men” and “women”
We wish to understand: Who trades with whom? Who pairs with
whom? Who marries whom? Who works with whom?
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Matching Without Transfers Girl-Guy Band Contest

Matching without Transfers: The Girl-Guy Band Contest

Contest of Beyonce, Taylor Swift, and Lady Gaga to sing a duet with
concert with Billy Joel, Bruno Mars, and Jay-Z

We first only specify ordinal preferences

Men commonly rank: Beyonce > Taylor Swift > Lady Gaga

Women commonly rank: Billy Joel > Bruno Mars > Jay-Z
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Matching Without Transfers Girl-Guy Band Contest

Stable Predictions for Pairwise Matchings

Matchings must survive new double coincidence of wants
An assignment is unstable if there are men, say Alan and Bob,
respectively matched to women Alice and Bea, such that Bob prefers
Alice to Bea and Alice prefers Bob to Alan
Say that the matching of Bob and Alice blocks the matching.
A matching is stable if it is not unstable, i.e. ̸ ∃ blocking pair.
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Matching Without Transfers Gale and Shapley’s Theorem

Deferred Acceptance Algorithm (DAA)

Men have preferences over all women and not matching, and women
have preferences over all men and not matching

1 All men start unengaged and women start with no suitors.
2 Each unengaged man proposes to his most-preferred woman (if any)

among those he has not yet proposed to, if better than staying single.
3 Each woman gets engaged to the most preferred among all her

suitors, including any prior engagements, if she prefers matching with
him to remaining single.

4 Rinse and repeat until no more proposals are possible. Engagements
become matches.
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Matching Without Transfers Gale and Shapley’s Theorem

Proposition (Gale & Shapley, American Math Monthly, 1962)

(a) Then the DAA stops in finite time.
(b) Given an equal number of men and women, if matching with someone
beats remaining single, then everybody matches.
(c) The DAA matching is stable, i.e. a stable matching exists.
(d) Given strict preferences, the DAA yields a unique matching.
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Matching Without Transfers Gale and Shapley’s Theorem

Proof of Gale-Shapley Th’m: WHY does DAA ⇒ Stability?

At each iteration, one man proposes to some new woman

Let Alice and Bob be married, but not to each other.

Claim: After the DAA, Alice and Bob cannot prefer each other to
their match partners.

If Bob prefers Alice to his match partner, then he must have proposed
to Alice before his match partner.
If Alice accepted, yet ends up not married to him, then she must have
dumped him for someone she prefers
⇒ Alice doesn’t prefer Bob to her current partner.
If Alice rejected Bob’s proposal, then she was already engaged to
someone she prefers to Bob. □

The contradiction proves the theorem!

The paper’s theorem includes many-to-one school matching

Gale-Shapley (1962) was the 2nd market design paper — after
Vickrey (1961), introducing second price auctions
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Matching Without Transfers Gale and Shapley’s Theorem

Gale-Shapley Theorem

The band matching example was trivial: When n men and n women
had the same preference ranking, it ends in n rounds.

Theorem (Gale and Shapley, Itoga (1978))

With n men and n women, the DAA ends in at most n2 − 2n + 2 steps

Lemma: In the DAA, one man (say Joey) gets his worst woman and
n − 1 men end up with their second worst.

So there are n proposals in round 1.
We then proceed with one proposal per round:
n − 1 more rounds for Joey’s courtship (Lemma)
plus n − 2 rounds each more for the other n − 1 men
for a total of 1 + (n − 1) + (n − 1)(n − 2) = n2 − 2n + 2 rounds.

Exercise: Illustrate this for the cases n = 2 and n = 3.
Proof is in Itoga (1978), on canvas
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Matching Without Transfers Gale and Shapley’s Theorem

Al Roth found that the DAA was used to match interns to hospitals.

This was a major reason for:

Sad Note: David Gale died in 2008.
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Matching Without Transfers Stable Matchings

Thinker: The Stable Roommates (i.e. Unisex) Problem

These are the ranks of each person over partners
Show there is no stable allocation. Proof on wikipedia.
Hint: If a stable allocation exists, someone rooms with Dee.
Crucially, the DAA does not apply to the unisex model!
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Matching Without Transfers Stable Matchings

Gale and Shapley’s Ranking of Stable Matchings

Assume matching by women x and men y (from XX and XY)

The set of stable matchings is nonempty.

x is a valid partner of y if they pair in some stable matching.

Male optimal: each man pairs with best valid partner.
Male pessimal: each man pairs with worst valid partner.
Similarly define woman-optimal and woman-pessimal.

Proposition (Male Optimality of DAA)

The DAA finds a male-optimal / female-pessimal stable matching.

As in Rubinstein’s bargaining model, there is a proposer advantage.
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Matching Without Transfers Stable Matchings

Off Line: Tricky Proof that DAA is Male Optimal

Proof by contradiction: If the DAA matching S is not male optimal,
then a valid partner rejects some man, since men propose in order

(⋆) Let m and w be the first such rejection in S

This happens because woman w chose some man m′ ≻w m
(m,w) paired in a stable matching S ′, since (m,w) is valid
In stable matching S ′, let man m′ pair with woman w ′, say

Note: m′ was not rejected by a valid woman in S before (⋆)
If w ′ ≻m′ w then m′ offers to w ′ first, and must have been rejected if
he was available to w , negating “1st” proviso in (⋆)

⇒ w ≻m′ w ′

⇒ m′ and w form a blocking pair in S ′
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Matching Without Transfers Stable Matchings

Off Line: Tricky Proof that DAA is Female Pessimal

The proof is by contradiction

Let m and w pair in the DAA matching S , and assume (for a
contradiction) that m is not the worst valid partner for w

⇒ ∃ a stable matching S ′′ with w paired to m′′, and m ≻w m′′

In matching S ′′, let man m pair with woman w ′′, say

w ≻m w ′′ by male-optimality

⇒ m and w form a blocking pair in S ′′
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Matching Without Transfers Stable Matchings

3 Stable Matchings, but DAA Logic Can Only Get Two

x1 x2 x3
y1 5,5 6,2 2,6

y2 2,6 5,5 6,2

y3 6,2 2,6 5,5

The default DAA yields the male-optimal and female pessimal
matching, where men earn 6 and women 2.

In the DAA’, women do the proposing, rather than men.

⇒ By the above reasoning, DAA’ yields the female-optimal and male
pessimal matching, where women earn 6 and men 2.

A third stable matching yields payoffs of 5 for everyone.
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Matching Without Transfers Stable Matchings

Unique Stable Outcomes

DAA’: women do the proposing, rather than men.

Corollary (Uniqueness)

DAA and DAA’ yield the same matching if and only if there is a unique
stable matching.

Since DAA and DAA’ yield a stable matching, if the stable matching
is unique, DAA and DAA’ land at same matching

If DAA and DAA’ land at the same matching, then it is both optimal
and pessimal for men, and so is unique. □
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Matching Without Transfers Stable Matchings

Proposition (Roth, 1982)

DAA is incentive compatible for men, and DAA’ for women.

Proof is omitted, since it is game theory.

But women might gain by misreporting their types in DAA.
OFFLINE Example:

Man A prefers X to Y to Z, and Man B prefers X to Z to Y

Man C prefers Y to X to Z

Woman X prefers C to A to B, and Woman Y prefers A to C.

DAA: Men A & B propose to #1 woman X, and Man C to Y

X retains A, and B proposes to Z next. Proposals end.

In the end, X is matched to A
Machiavellian Deviation by X:

X sneakily accepts B’s proposal.
Then A proposes to Y.
Y leaves C for A.
Then C proposes to X
X ends up matched to top choice C
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Transfers A Matching Bribery Scheme

Cardinal Preferences

Start with nontransferable payoffs (all in millions of dollars).

This might be an organizational rule, eg. NCAA rules used to forbid
payoffs to athletes.

Lady Gaga Taylor Swift Beyonce

Billy Joel 6,21 12,12 18,3
Bruno Mars 4,14 8,8 12,2

Jay-Z 2,7 4,4 6,1

Men commonly rank: Beyonce > Taylor Swift > Lady Gaga

Women commonly rank: Billy Joel > Bruno Mars > Jay-Z

DAA ends in three periods!
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Transfers A Matching Bribery Scheme

Matching with Transfers

Assume cardinal payoffs (or cardinal utility) is money.
Every man and woman cares only about total money
This is a special case of quasilinear utility, or utility
U(a, z) = u(a) + z , where a is a real action and z is money
Quasi-linear utility precludes income effects on the action
All fields assume quasilinear utility as a default
Jevons (1875): Money solves the “double coincidence of wants”
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Transfers A Matching Bribery Scheme

Transfers and Bribery

Lady Gaga’s Corrupt Thought:

Gaga schemes to match up with Billy Joel. To do this, she

bribes Billy more than his loss of 18− 6 = 12 to accept her,
pays Beyonce more than her loss of 3− 1 = 2, and
collects from Jay-Z less than his gain 6− 2 = 4 from match with Billy

These bribes on net cost as much as 12 + 2− 4 = 10. But Lady Gaga
gains 21− 7 = 14 by matching with Billy Joel.

We start with this matching

Lady Gaga Taylor Swift Beyonce

Billy Joel 6,21 12,12 18,3
Bruno Mars 4,14 8,8 12,2

Jay-Z 2,7 4,4 6,1
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Transfers and Bribery

Lady Gaga’s Corrupt Thought:

Gaga schemes to match up with Billy Joel. To do this, she

bribes Billy more than his loss of 18− 6 = 12 to accept her,
pays Beyonce more than her loss of 3− 1 = 2, and
collects from Jay-Z less than his gain 6− 2 = 4 from match with Billy

These bribes on net cost as much as 12 + 2− 4 = 10. But Lady Gaga
gains 21− 7 = 14 by matching with Billy Joel.

We end with this matching

Lady Gaga Taylor Swift Beyonce

Billy Joel 6,21 12,12 18,3

Bruno Mars 4,14 8,8 12,2

Jay-Z 2,7 4,4 6,1
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Transfers A Matching Bribery Scheme

Making Matching Immune to Bribery

The bribery scheme’s profitability only depends on total match payoffs

Lady Gaga Taylor Swift Beyonce

Jay-Z 6 + 21 = 27 12 + 12 = 24 18 + 3 = 21

Bruno Mars 4 + 14 = 18 8+8=16 12 + 2 = 14

Billy Joel 2 + 7 = 9 4 + 4 = 8 6 + 1 = 7
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Transfers A Matching Bribery Scheme

Making Matching Immune to Bribery

The bribery scheme’s profitability only depends on total match payoffs

Now, the cardinal strength of each party’s preference matters.

Lady Gaga Taylor Swift Beyonce

Billy Joel 27 24 21

Bruno Mars 18 16 14

Jay-Z 9 8 7

21 / 82



Transfers A Matching Bribery Scheme

Making Matching Immune to Bribery

A matching is immune to bribes if there is no set of matched
individuals for whom a profitable re-matching exists.

An efficient matching maximizes the sum of payoffs.

My Theorem An efficient matching is immune to bribes.

Proof: If some bribery scheme is profitable, then rematching those
people raises total match output.

Lady Gaga Taylor Swift Beyonce

Billy Joel 27 24 21

Bruno Mars 18 16 14

Jay-Z 9 8 7

The sum of payoffs is now 27 + 16 + 7 = 50 > 46 = 9 + 16 + 21
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Efficient Matchings Transportation Problem as a Combinatorial Optimization

Efficient Matching

Matching Sudoku: Efficiently match n men to n women.

= Place exactly one dot in every row and column

Obviously, an efficient matching exists. But what is it?

Problem: There are n! = 1× 2× · · · × n possible allocations.

E.g. there are 10158 pairings of 100 men and 100 women.
The number of electrons in the universe is estimated at 1080.
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Efficient Matchings Transportation Problem as a Combinatorial Optimization

Historical Background: “Transportation Problem” (1781)
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Efficient Matchings Transportation Problem as a Combinatorial Optimization

1781 — Transportation Problem: How Best to Move Dirt

Transportation problem: a classic resource allocation problem

The cost c(x , y) of moving dirt from a cut (déblais) x to to a fill
(remblais) y depends on the distance, roads, etc.

Assign unit dirt piles xi ∈{x1, ..., xn} to holes yj ∈{y1, ..., yn} to
minimize the sum of transportation costs c(xi , yj)?

What is the cheapest way to transport all dirt from each déblais to
some remblais, while omitting no déblais and overfilling no remblais?

As formulated, this is an impossible combinatorics exercise.
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Efficient Matchings Transportation Problem as a Combinatorial Optimization

1781 — The Transportation Problem

Start with an n × n matrix of costs [c(xi , yj)]
E.g: It costs 7 to move the dirt in déblais n − 1 to remblais 2
Solve the minimization

∑n
i=1 c(xi , yi ’s partner)

Maximizing payoffs is the same as minimizing negative payoffs

The problem is doomed with combinatorial math methods.
⇒ Lesson: Need to reformulate the story to make it solvable!
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Efficient Matchings The Transportation Problem as a Convex Optimization

1957: Transportation Problem as the Assignment Problem

160 years passes and linear programming is invented in WWII, by
many in USA (e.g. Dantzig) and Kantorovich in Russia
The TU matching story is so great (i.e. general) it also captures the
assignment model (& other economic models!)

Give polyhedron intuition why some vertex is optimal 26 / 82



Efficient Matchings The Transportation Problem as a Convex Optimization
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Efficient Matchings The Transportation Problem as a Convex Optimization

Koopman’s Idea: Convexify the Feasible Matchings Space

Choices or Actions

Finitely many women x and men y (from XX and XY)

m(x , y) = 1 if x is matched to man y , and m(x , y) = 0 if not.
So a woman x remains single if m(x , y) = 0 for all y ∈ Y .

Matching Space M = [m(x , y)] are all feasible matchings

M is symmetric: m(x , y) = m(y , x) for all x , y
M is convex provided:

A fraction m(x , y) ≥ 0 of woman x matches with man y
Or, with a continuum mass of men and women of finitely many types
{xi , yj}, a mass m(x , y) of types x and y match.

M is bounded (no overmatching any man or woman)

Finite world: for every x , m(x , y) = 1 for at most one y , and for every
y , m(x , y) = 1 for at most one x .
Convex world:

∑
y m(x0, y),

∑
x m(x , y0)≤1 ∀x0, y0
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Efficient Matchings The Transportation Problem as a Convex Optimization

Socially Efficient Matching with Transferable Utility

h(x , y) = match payoff of man x and woman y

Normalize unmatched payoff to zero: h(x ,∅) = h(∅, y) = 0

A (socially) efficient matching [m∗(x , y)] maximizes the sum of all
match outputs

∑
x

∑
y m(x , y)h(x , y) over m ∈ M

Proposition (Existence)

An efficient matching m ∈ M exists.

Proof: By Weierstrass Theorem, the maximum of a continuous
function (the sum) on a compact set exists

Compactness is trivial with finitely many types.

With a type continuum, we need weak-* topology. (hard)
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Efficient Matchings The Transportation Problem as a Convex Optimization

Rear View Mirror on Last Class

I. Ordinal preferences in a matching model of ‘men’ & ‘women’
DAA leads to stable matching (no blocking pairs)

Men are willing to report preferences to a DAA machine.
Women can sometimes game these algorithms

With more than one stable matching, we claimed (no proof):
Men all agree ranking stable matchings. So do women.
DAA gives the male optimal and female pessimal matching

II. We shifted to cardinal preferences with monetary transfers.
Our stable allocation might be destabilized by bribes.
Efficient allocation (max match payoff sum) cannot be bribed.
Transportation Problem: impossibly hard as combinatorics but
solvable with convexity and linear programming (in progress) 30 / 82



Efficient Matchings The Transportation Problem as a Convex Optimization

Decentralizing the Matching Market with Middlemen

Payoffs: We derive wages v(x) & w(y) of women x & men y
Middlemen compete in wages, earning profits for (x , y) match:

h(x , y)− v(x)− w(y)

Free exit of middlemen ⇒ profits ≥ 0 for all actual matches

v(x) + w(y) ≤ h(x , y) if m(x , y) > 0

I.e. No one is forced to stay in a market (obvious IR constraint)

Free entry of middlemen ⇒ profits ≤ 0 for all matches

v(x) + w(y) ≥ h(x , y) for any (x , y)

i.e. No profitable opportunity goes unexploited!
Without free entry, middleman market is not competitive

A competitive equilibrium (m,w , v) satisfies feasibility and:

⇒ v(x) + w(y)

{
≥ h(x , y) for all women and men x , y

= h(x , y) if x , y are matched. (⋆⋆)
⇒ Unmatched x or y earn zero wage: v(x) = 0 or w(y) = 0 (⋆)

This is intuitive now. We will prove it soon. 31 / 82



Efficient Matchings The Transportation Problem as a Convex Optimization

Coordinated Middlemen?

Lady Gaga arranged the bribes, but anyone could have!
Middlemen — real or metaphorical — determine prices
Matching is decentralized! Everyone picks the maximum wage offer
Google is a massive middleman making huge profits due to barriers to
entry of middlemen
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Efficient Matchings The Transportation Problem as a Convex Optimization

Competitive Equilibrium is Efficient

Proposition (First Welfare Theorem of Matching)

If (m, v ,w) is a competitive equilibrium, then m is an efficient matching

Proof: By contradiction, let (m, v ,w) be an inefficient competitive
equilibrium ⇒ ∃ feasible matching m̂∈M with a higher payoff: (2)∑

x v(x) +
∑

y w(y) ≥
∑

y

∑
x h(x , y)m̂(x , y) (1)

>
∑

y

∑
x h(x , y)m(x , y). (2)

=
∑

y

∑
x [v(x) + w(y)]m(x , y) (3)

=
∑

x v(x) +
∑

y w(y) (4)
Inequality (1)
⇐ free entry: For v(x) + w(y) ≥ h(x , y) for all (x , y)
⇐ feasibility: 1 ≥

∑
x m̂(x , y) ∀y and 1 ≥

∑
y m̂(x , y) ∀x

Inequality (3) ⇐ Free exit (⋆⋆)
Equality (4) ⇐ Complementary slackness (later on)
(CS) v(x) = 0 if

∑
y m(x , y) < 1 and w(y) = 0 if

∑
x m(x , y) < 1

Eg if x and y are unmatched, the constraint does not bind 33 / 82



Efficient Matchings Stability vs. Efficiency

Contrast to a Stable Matching without Transfers

Y1 Y2

X1 2,0 0,7
X2 0,7 2,0

Y1 Y2

X1 2 7
X2 7 2

At left, are the male and female optimal stable outcomes.

The male optimal one is efficient (highest total payoffs)

But stability only reflects ordinal, and not cardinal, preferences.

Let’s see how market wages force the efficient matching

Middlemen compete to offer 7 for the matches (X2,Y1) and (X1,Y2)

If outside options are zero, competitive wages v1, v2,w1,w2 ≥ 0 obey:

v1 + w1 ≥ 2 v1 + w2 = 7
v2 + w1 = 7 v2 + w2 ≥ 2

Crucially, there are many competitive equilibrium wages
Example: v1 = 5, v2 = 0,w1 = 7,w2 = 2
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Shapley and Shubik Trading Model The Problem Formulated

Trading Houses (Shapley and Shubik, 1971)

A good economic story allows many interpretations of its formulation!

Men and women can be metaphors for buyers and sellers

The transferable utility matching model captures trading among
buyers (men) and sellers (women)!

I ≥ 1 sellers (homeowners) and J ≥ 1 prospective buyers.

ci > 0 is opportunity cost of i-th seller for his house (i.e. his value)

ξij > 0 is value of j-th buye for seller i ’s house

If ξij > ci , and seller i sells his house to buyer j for price pi , then
seller i ’s payoff is pi − ci and buyer j ’s is ξij − pi (quasilinear utility).

If ξij < ci , then seller i cannot profitably sell his house to buyer j

Match payoff is the gain from trade

hij = max{0, ξij − ci}
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Shapley and Shubik Trading Model Linear Programming Solution

Primal Problem: Maximizing Total Gains from Trade

Let seller i sell share mij ≥0 of house i to buyer j (time share?)
Two types of (“time share”) constraints on every share mij ≥ 0:

1 No house is oversold
2 No buyer buys more than one house.

The Social Planner solves output maximization primal
problem:

max
(mij )

I∑
i=1

J∑
j=1

hijmij

s.t.
J∑

j=1

mij ≤ 1 ∀i ∈ {1, . . . , I}

and
I∑

i=1

mij ≤ 1 ∀j ∈ {1, . . . , J}
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Shapley and Shubik Trading Model Linear Programming Solution

Dual Problem

Lemma

The dual problem to output maximization is cost minimization:

min
vi ,wj

I∑
i=1

vi +
J∑

j=1

wj s.t. vi + wj ≥ hij ∀i , j and vi ,wj ≥ 0 ∀i , j

A great story is mathematically solvable.

We argue that the primal and dual problems have the same value

⇒ The efficient matching also yields the cheapest way to afford all match
output subject to competitive equilibrium free exit constraint

⇒ Very loose intuition: Two ways of measuring output — gross national
product and gross national income — coincide at the optimum.

What are prices?

In the competitive market, selfish incentive devices.
But in the planner’s problem, they are measures of social value
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Shapley and Shubik Trading Model Linear Programming Solution

Linear Programming (LP) Duality

Question: Find the matrix A for the Shapley and Shubik model

Theorem: These two problems have the same values.

Proof logic:
Primal feasibility ⇒ Az ≤ q and dual feasibility ⇒ p ≤ uA.

⇒ weak duality: pz ≤ uAz ≤ uq ∀u, z ≥ 0
⇒ primal value ≤ dual value

Reverse direction (strong duality) is much harder to show
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Shapley and Shubik Trading Model Linear Programming Solution

Linear Programming Duality as Deja Vu

Flashback: von Neumann’s Minimax Theorem (Saddle Point)
George Dantzig, “A Theorem on Linear Inequalities,” 1948
This is the first formal proof of linear programming duality

Air Force Later Tucker asked me, ”Why didn’t you publish it?” I
replied, ”Because it was not my result; it was von Neumann’s. All I did
was to write up, for internal circulation, my own proof of what von
Neumann had outlined to me.

von Neumann and Dantzig:
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Shapley and Shubik Trading Model Linear Programming Solution

Ideal “PhD Conquer the World” Mindset

Good Will Hunting (1997), written by Ben Affleck and Matt Damon

George Dantzig became a janitor at MIT
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Shapley and Shubik Trading Model Linear Programming Solution

Primal and Dual with Two Buyers and Two Sellers

Example with I = J = 2 buyers and sellers

q′ = (1, 1, 1, 1)

h′ = (h11, h12, h21, h22)

m′ = (m11,m12,m21,m22)

A =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1



Primal Problem: maxm≥0
∑

i

∑
j hijmij = h′m s.t. Am ≤ q

Dual Problem:

min
w ,v≥0

{v1+v2+w1+w2} = min
v ,w≥0

(v ,w)·q s.t. (v ,w)A ≥ h □
41 / 82



Shapley and Shubik Trading Model Linear Programming Solution

Multipliers and Complementary Slackness Conditions

Primal: max{pz |Az ≤ q, z ≥ 0} vs. Dual: min{uq|uA ≥ p, u ≥ 0}
Imagine a fictitious zero sum game with payoff

L(z , u) = pz + uq − uAz [= pz + u(q − Az) = uq + (p − uA)z ]

By the 1928 Minmax Theorem, this game has saddle point:

max
z≥0

min
u≥0

[pz + uq − uAz ] = min
u≥0

max
z≥0

[pz + uq − uAz ] (⋆)

⇒ max
z≥0

min
u≥0

[(p − uA)z + uq] = min
u≥0

max
z≥0

[pz + u(q − Az)]

Let’s intuit complementary slackness (CS):
A finite saddle point requires vector inequalities p − uA ≤ 0 ≤ q − Az

⇒ maximizer puts 0 weight on − payoffs: zℓ = 0 if pℓ − (uA)ℓ < 0
minimizer puts 0 weight on + payoffs: uk =0 if qk−(Az)k > 0.
Notice that CS ⇒ primal value = dual value, given (⋆)

Application of complementary slackness in Shapley-Shubik:

vi + wj

{
≥ hij for all i , j

= hij if buyer xi and seller yj trade (mij > 0) 42 / 82



Shapley and Shubik Trading Model Linear Programming Solution

Multipliers are also Shadow Values!

Primal: max{pz |Az ≤ q, z ≥ 0}
Social planner’s payoff function: L(z , u) = pz + u(q − Az)
Envelope Theorem ⇒ ∂

∂qL(z , u) = u
⇒ dq extra constrained resource lifts planner’s payoff by u dq.
u = shadow value of resource, as it indirectly shows true value
i.e. marginal value of more slackness in constraint
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Shapley and Shubik Trading Model Linear Programming Solution

Shadow Values in Shapley-Shubik Housing Model

Application of complementary slackness in Shapley-Shubik:

vi + wj

{
≥ hij for all i , j

= hij if buyer xi and seller yj trade (mij > 0)

Intuitive economics of competition yields same inequalities!
buyer i and seller j trade ⇒ gains from trade hij
So ε more of i and j raises social payoff by εhij

⇒ All we can say is vi + wj = hij
Who matters more: men or women?

National political debate: firms vs. workers, buyers vs. sellers
We cannot separately identify buyers’ & sellers’ shadow values
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Shapley and Shubik Trading Model The Planner’s Problem and the LP Dual

1971 — Buyer-Seller Trade: Shapley and Shubik

Assume three potential home buyers and three sellers

Buyer Valuations
Seller Costs Buyer 1 Buyer 2 Buyer 3

House 1 18 23 26 20

House 2 15 22 24 21

House 3 19 21 22 17

Match payoffs are gains from trade, or zero, if negative

Buyer 1 Buyer 2 Buyer 3
Seller 1 23− 18 = 5 26− 18 = 8 20− 18 = 2
Seller 2 22− 15 = 7 24− 15 = 9 21− 15 = 6
Seller 3 21− 19 = 2 22− 19 = 3 max(17− 19, 0) = 0
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Shapley and Shubik Trading Model The Planner’s Problem and the LP Dual

1971 — Buyer-Seller Trade: Shapley and Shubik

Assume three potential home buyers and three sellers

Buyer Valuations
Seller Costs Buyer 1 Buyer 2 Buyer 3

House 1 18 23 26 20

House 2 15 22 24 21

House 3 19 21 22 17

Match payoffs are gains from trade, or zero, if negative

Buyer 1 Buyer 2 Buyer 3
Seller 1 5 8 2
Seller 2 7 9 6
Seller 3 2 3 0

Solve the primal problem by eyeballing (infeasible in a large market)
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Shapley and Shubik Trading Model The Planner’s Problem and the LP Dual

Solving the Housing Example via the Dual

Minimize the sum
∑

i vi +
∑

j wj of shadow values vi ≥ 0 and wj ≥ 0:

v1 + w1 ≥ 5 v1 + w2 ≥ 8 v1 + w3 ≥ 2
v2 + w1 ≥ 7 v2 + w2 ≥ 9 v2 + w3 ≥ 6
v3 + w1 ≥ 2 v3 + w2 ≥ 3 v3 + w3 ≥ 0

Since the optimum occurs at the red matching, we just solve

v1 + w1 ≥ 5 v1 + w2 = 8 v1 + w3 ≥ 2
v2 + w1 ≥ 7 v2 + w2 ≥ 9 v2 + w3 = 6
v3 + w1 = 2 v3 + w2 ≥ 3 v3 + w3 ≥ 0

Inequalities capture how all the nonexistent matches are unprofitable

a solution: (v1, v2, v3) = (4, 5.5, 0) & (w1,w2,w3) = (2, 4, 0.5)

These constraints and complementary slackness conditions ensure
that Lagrange multipliers are competitive wages

46 / 82



Shapley and Shubik Trading Model The Planner’s Problem and the LP Dual

An Integer Price Solution of the Housing Example

Buyer 1 Buyer 2 Buyer 3 Seller “wage” vi
Seller 1 5 8 2 v1 = 4
Seller 2 7 9 6 v2 = 6
Seller 3 2 3 0 v3 = 0

Buyer “wage” w1 = 2 w2 = 4 w3 = 0

Fix solution (v1, v2, v3) = (4, 5.5, 0) & (w1,w2,w3) = (2, 4, 0.5)

⇒ home prices are pi = ci + vi , or p1 = 22, p2 = 20.5, p3 = 19

E.g: seller 1 sells his home (cost 18) to buyer 2 (who values it 26) for
a seller surplus v1 = 4 and a buyer surplus w2 = 4: from this, we
deduce the price p1 = 22

We increase the price of home 2 to p2 = 21, increasing the surplus of
seller 2 to v2 = 6 and reducing the surplus of buyer 3 to w3 = 0.

So house prices are now p1 = 22, p2 = 21, p3 = 19

How much can we increase or decrease the prices?

47 / 82



Shapley and Shubik Trading Model The Planner’s Problem and the LP Dual

Offline: Worst Payoffs (“Wages”) for Sellers

y1 y2 y3 Sellers vi
Seller 1 5 8 2 v1 = 3
Seller 2 7 9 6 v2 = 5
Seller 3 2 3 0 v3 = 0
Buyers w1 = 2 w2 = 5 w3 = 1

Buyer 1 does not buy house 1 ⇒ v1 ≥ v3 + 3
Proof: w1 + v1≥5=3 + 2=3 + w1 + v3 (Buyer 1 buys house 3)

Buyer 1 does not buy house 2 ⇒ v2 ≥ v3 + 5
Proof: w1 + v2≥7=5 + 2=5 + w1 + v3

All other buying incentive constraints do not bind as tightly

Solution: Least seller payoffs (v1, v2, v3) = (3, 5, 0)
Associated maximum buyer payoffs (w̄1, w̄2, w̄3) = (2, 5, 1)

Proof: Equality constraints from matches that do occur imply:
v1 + w̄2 = 8, v2 + w̄3 = 6, v3 + w̄1 = 2

Then verify that payoffs (v , w̄) obey all incentive constraints!
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Shapley and Shubik Trading Model The Planner’s Problem and the LP Dual

Offline: Worst Payoffs (“Wages”) for Buyers

y1 y2 y3 Sellers vi
Seller 1 5 8 2 v1 = 5
Seller 2 7 9 6 v2 = 6
Seller 3 2 3 0 v3 = 1
Buyers w1 = 1 w2 = 3 w3 = 0

Buyer 1 does not buy house 2 ⇒ w1 ≥ w3 + 3
Proof: w1 + v2≥7=1 + 6=1 + w3 + v2 (Buyer 3 buys house 2)

Buyer 2 does not buy house 2 ⇒ w2 ≥ w3 + 3
Proof: w2 + v2≥9=3 + 6=3 + w3 + v2

All other buying incentive constraints do not bind as tightly

Solution: Least buyer payoffs (w1,w2,w3) = (1, 3, 0)
Associated maximum seller payoffs (v̄1, v̄2, v̄3) = (5, 6, 1)

Proof: Equality constraints from matches that do occur imply:
v̄1 + w2 = 8, v̄2 + w3 = 6, v̄3 + w1 = 2

Then verify that payoffs (v , w̄) obey all incentive constraints!
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Shapley and Shubik Trading Model The Planner’s Problem and the LP Dual

The Welfare Theorems

Welfare Theorems A competitive equilibrium matching is efficient.
Conversely, an efficient matching is a competitive equilibrium, for a
suitable set of wages.

Proof of (⇒): We already proved this by contradiction

Proof of (⇐): We use linear programming duality.

Maximize output, subject to the linear constraints of not overmatching
any man or woman.
Call the Lagrange multipliers for these constraints the wages
By duality, the maximum total output equals the minimum total
wages, subject to all the incentive constraints.
These constraints and complementary slackness conditions ensure that
Lagrange multipliers are competitive wages

Important. The dual problem resolves the computational complexity
issue — we need only find n wages for men and n wages for women!
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The Marriage Model Sorting Concepts

Types in the Becker Marriage Model

Allow a finite number of m women (xi ) and n men (yi )
We will use calculus to compute wages later on, and so also allow a
continuum mass of M̄ women and N̄ men

If m < n or M̄ < N̄, then:
men are on the long side of the market
women on the short side of the market
If higher types are more productive, the least men will be unmatched

Cumulative mass functions:
M(x) gives the mass of women of type x ′ ≤ x
N(y) gives the mass of men of type y ′ ≤ y 51 / 82



The Marriage Model Sorting Concepts

Assortative Matching

Allocation question: who matches with whom?
Assortative matching with finitely many types:

positive (PAM): k-th highest man & woman pair for all k = 1, . . . , n
negative (NAM): woman 1 with man m, woman 2 with man m − 1,
etc. and men m + 1, . . . , n unmatched

Now consider the continuum analogues:
Pure matching: Use notation man y(x) is the partner of woman x
PAM if M̄ −M(x) = N̄ − N(y(x)) for all matched women x .
NAM if M̄ −M(x) = N(y(x)) for all matched women x .

The mass of men and women might even differ. If M̄ = N̄, then
PAM: q-th highest quantile man & woman match
NAM: q-th highest quantile man matches q-th lowest quantile woman
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The Marriage Model Sorting Concepts

Assortive Matching?

Becker (1973), “A Theory of Marriage: Part I”

I put the @ into Assortive:

My 2000 paper, “Assortative Matching and Search”
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The Marriage Model Sorting with Nontransferable Utility

Assortative Matching with Nontransferable Payoffs

f (y |x) = payoff of woman x matched with man y

g(x |y) = payoff of man y matched with woman x

f and g are comonotone if ∀y2 > y1 and x2 > x1, we have:

[f (y2|x)− f (y1|x)] · [g(x2|y)− g(x1|y)] > 0 ∀x , y

The opposite inequality is reverse comonotone

Ignore weak monotonicity (with a natural definition)

If f and g are differentiable, then both partial derivatives (in first
arguments) have the same sign if comonotone

Theorem: The unique stable matching with NTU is PAM if f and g
are comonotone, and NAM if reverse comonotone.
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The Marriage Model Sorting with Nontransferable Utility

Gentle Proof of NTU Sorting Proposition

Assume comonotonicity without PAM in a stable matching

Then ∃x ′ > x and y ′ > y with matches (x , y ′) and (x ′, y)

Claim: either (x ′, y ′) or (x , y) is a blocking pair
1 If f (y ′|x ′) > f (y |x ′) ⇒ g(x ′|y ′) > g(x |y ′)
2 If f (y ′|x) < f (y |x) ⇒ g(x ′|y) < g(x |y)
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The Marriage Model Sorting with Nontransferable Utility

Positive Sorting is an Empirical Fact

Fun Application (Yale undergrad, 2006): The Dating Market

Data Source 1: Facebook (Meta?) Dating Market early on

Data Source 2: Online beauty contest, like www.rate-my-photo.com
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The Marriage Model Sorting with Nontransferable Utility

Rear View Mirror on Last Class

Transferable utility ⇒ efficiency is well-defined: maximize payoff sum
1st Welfare Theorem: competitive equilibria are efficient
2nd Welfare Theorem: efficiency ⇒ competitive equilibrium

Proof via linear programming duality theory (Minmax Th’m)
shadow values (Complementary slackness) act as competitive prices
Computationally, with many men and women, it is easier to find
competitive equilibria than compute efficient matchings
Shadow values may be:

Eg. 1. wages in the employment model
Eg. 2. consumer and producer surplus in the trading model
Eg. 3. payoffs and rents in the location assignment model
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The Marriage Model Becker’s Marriage Theorem

1973 — Becker’s Marriage Model

x = 1 x = 2 x = 3

y = 3 6,21 12,12 18,3
y = 2 4,14 8,8 12,2

y = 1 2,7 4,4 6,1

1 2 3

3 27 24 21

2 18 16 14

1 9 8 7

At left is positive assortative matching (PAM)

Comonotone payoffs: men prefer higher women x and vice versa

⇒ The stable matching without transfers is PAM.

Assume we indexed men or women oppositely.

Then payoffs are reverse comonotone, and NAM is stable
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The Marriage Model Becker’s Marriage Theorem

1973 — Becker’s Marriage Model

x = 1 x = 2 x = 3

y = 3 6,21 12,12 18,3
y = 2 4,14 8,8 12,2

y = 1 2,7 4,4 6,1

1 2 3

3 27 24 21

2 18 16 14

1 9 8 7

At right, we assume payoffs are transferable (TU)

Now, negative assortative matching (NAM) arises

Why? Matches all profit from higher men, but the matches that profit most
from higher men are those with lower women.

This forces downward sorting.

For instance, rematching the two sorted pairs (1, 1) and (2, 2) as (1, 2) and
(2, 1) changes output by (18 + 8)− (16 + 9) = 26− 25 = 1
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The Marriage Model Becker’s Marriage Theorem

Pairwise Efficiency and Efficiency

Stability with NTU: Can two unmatched people break their matches,
to match with each other, & improve their welfare?
⇒ The losses of the dumped partners do not matter

TU pairwise efficiency: Can two matches break, re-match
differently, and improve their welfare?
⇒ All losses matter: cardinal strength of the preferences matters

A matching m is pairwise efficient with TU if for all matched pairs
(x1, y1) and (x2, y2):

h(x1, y1) + h(x2, y2)− h(x1, y2)− h(x2, y1) ≥ 0

An efficient matching maximizes the sum of all match outputs, and
so rematching any set of couples cannot help.

Lemma

Any efficient matching m ∈ M is pairwise efficient.

The converse of this lemma is false
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The Marriage Model Becker’s Marriage Theorem

Pairwise Efficiency ̸⇒ Efficiency

With NTU, our target is stability: no pairwise blocking.

But pairwise efficiency does not suffice for TU efficiency:

y1 y2 y3

x1 3 3 0

x2 0 3 3
x3 2 0 3

The pairwise efficient green matching has a lower total payoff than
the pairwise efficient cyan matching, and is inefficient.

Q: What bribery scheme would unravel the green matching?
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The Marriage Model Becker’s Marriage Theorem

TU — Strategic Substitutes Drives Negative Sorting

1 2 3

3 27 24 21

2 18 16 14

1 9 8 7

Cross Partial Payoff Differences (Synergies)

12 23

23 18 + 24− 27− 16 = −1 16 + 21− 14− 24 = −1

12 9 + 16− 18− 8 = −1 8 + 14− 16− 7 = −1

Strategic substitutes:
all cross partial differences of match payoffs are negative
pairwise efficiency ⇒ positive sorting is not locally efficiency

Strategic complements:
all cross partial differences of match payoffs are positive
pairwise efficiency ⇒ negative sorting is not locally efficiency
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The Marriage Model Becker’s Marriage Theorem

TU — Strategic Substitutes Drives Negative Sorting

NTU Matching TU Matching

x = 1 x = 2 x = 3

y = 3 6,21 12,12 18,3
y = 2 4,14 8,8 12,2

y = 1 2,7 4,4 6,1

1 2 3

3 27 24 21

2 18 16 14

1 9 8 7

Left: payoffs are men get 2xy and women get y(10− 3x).

Men’s payoffs 2xy increases in women’s type x
Women’s payoffs y(10− 3x) increases in men’s type y
⇒ PAM is the stable allocation without transfers

Right: match payoffs are 2xy + y(10− 3x) = 10y − xy .

Cross partial derivative is −1
⇒ strategic substitutes
⇒ NAM
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The Marriage Model Becker’s Marriage Theorem

Becker (1973): Assortative Matching with Transfers

Match payoff h(x , y) is (strictly) supermodular [SPM] if

h(x ′, y ′) + h(x , y) ≥ (>) h(x ′, y) + h(x , y ′) (5)

for any women x ′ ≥ x and men y ′ ≥ y (also: complements)
h(x , y) is (strictly) submodular if the reverse inequality holds
For twice differentiable match payoffs, this says h12(x , y) ≥ 0

Proposition (Becker’s Marriage Model)

(a) If h(x , y) is supermodular (SPM), then PAM is efficient.
If h(x , y) is strictly SPM, then PAM is uniquely efficient.
(b) If h(x , y) is submodular (SBM), then NAM is efficient.
If h(x , y) is strictly SBM, then NAM is uniquely efficient.
(c) If h(x , y) is modular (SPM & SBM), any matching is efficient.

Proof (by Buz Brock): Assume strictly supermodular (SPM)
If matching is not PAM, then matching is not pairwise efficient, and
so not efficient
Corollary: If production is modular for a set of agents that match,
then any re-matching among them is also efficient.
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The Marriage Model Becker’s Marriage Theorem

Example: Matching with and without Transfers

PAM NAM

x = 1 x = 2 x = 3

y = 3 6,21 12,12 18,3
y = 2 4,14 8,8 12,2

y = 1 2,7 4,4 6,1

1 2 3

3 27 24 21

2 18 16 14

1 9 8 7

Women earn f (y |x) = y(10− 3x) and men earn g(x |y) = 2xy

⇒ ∂f (x |y)
∂x = 10− 3x > 0 (women prefer higher men)

∂g(y |x)
∂y = 2x > 0 (men prefer higher women)

⇒ unique stable matching is PAM

⇒ Hence, the DAA delivered PAM

With transfers, strictly submodular match payoffs
h(x , y) = f (x |y) + g(y |x) = 10y − xy since hxy < 0
⇒ unique efficient matching is NAM

This is an unusual function that is increasing in x , y and yet with a
negative cross partial (since domain is bounded)
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The Marriage Model Computing Wages

How to Compute Competitive Wages with PAM or NAM

To use calculus, we will assume a continuum of types
SPM match payoffs: h(x , y) = x2y
Types of women x and men y uniformly distributed on [0, 1]

Since hxy = 2x > 0, PAM is the efficient outcome (by Becker)
Let w(x) and v(y) be the competitive wage functions
If a middleman matches x and y , paying them their wages, his profits
are:

π(x , y) = x2y − w(x)− v(y)

Exercise: Use Topkis’ Theorem to prove sorting is a competitive eq’m.
With free entry by middlemen, competition forces a zero profit max at
y = x (competitive equilibrium, by welfare theorem):

πx = 0 ⇒
[
2xy = w ′(x)

]
y=x

⇒ w ′(x) = 2x2

πy = 0 ⇒
[
x2 = v ′(y)

]
x=y

⇒ v ′(y) = y2

Men compete with men, and women compete with women.
Aside: This proof applies the “revelation principle” that allows you to
solve for bidding strategies in a sealed bid first price auction FPA 65 / 82



The Marriage Model Computing Wages

Outside Options and the Wages of Men vs. Women

Evaluating these at the efficient matches, (x , x) and (y , y),

w(x) =
2

3
x3 + β

v(y) =
1

3
y3 + δ

By zero profits, π(x , x) = 0 ∀x , and so β + δ = 0 because

0 = x2 · x − w(x)− v(x) = x3 − 2

3
x3 − 1

3
x3 − (β + δ)

If unmatched people earns zero, then β = δ = 0

A dowry δ > 0 — a fixed transfer that women pay men — only arises
if unmatched women earn a payoff at most −δ < 0

A bride price β > 0 — a fixed transfer that men pay women — only
arises if unmatched men earn a payoff −β < 0

If unmatched men and women earn negative payoffs, then a dowry or
bride price reflects a social norm (a Nash equilibrium)
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The Marriage Model Computing Wages
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The Marriage Model Sorting with Search Frictions

Advanced Theory Topic: Assortative Matching and Search

We don’t see perfect PAM in reality. Find a less wrong model!
̸ ∃ stock exchange for marriage partners or firm-worker pairs
One must search for partners, which takes time!

⇒ Shimer-Smith (2000): Even given SPM, higher types might settle for
lower parters since the cost of search (willingness to wait) is higher.

With search frictions, PAM requires that log hx(x , y) is SPM

Eg: h(x , y) = exy and h(x , y) = (x + y − 1)2 are SP ⇒ PAM:
y(x) = x .
With search frictions ⇒ matching sets:
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The Marriage Model Frictionless Matching: Sorting Comparative Statics

Advanced Topic: The Comparative Statics of Sorting

We don’t see perfect PAM in reality. Find a less wrong model!
What if we SPM or SBM fail and thus PAM or NAM fail?
The transportation problem unsolved ⇒ we cannot characterize
efficient matching — except in PAM or NAM extreme cases!
Idea: derive the comparative statics of the efficient matching
synergy: any cross partial difference of match outputs

h(x2, y2)− h(x2, y1) + h(x1, y2)− h(x1, y2) for x2 ≥ x1, y2 ≥ y1

Special cases: PAM/NAM iff synergy is everywhere +/−
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The Marriage Model Frictionless Matching: Sorting Comparative Statics

Advanced Topic: Sorting Need not Rise in Synergy

Increasing Sorting Theorem

Sorting is “higher” with production function hB than hA if

synergy is higher with hB than hA, for every x2 ≥ x1, y2 ≥ y1
For every x2 ≥ x1, y2 ≥ y1, the synergy for each hi obeys:

hi (x2, y2)− hi (x2, y1) + hi (x1, y2)− hi (x1, y2)

shifts from negative to positive as x1 or x2 or y1 or y2 increases.

Example: Synergy rises at each stage, but sorting does not

NAM1 is efficient Matrix of Cross Differences

x = 1 x = 2 x = 3

y = 3 9 14 18

y = 2 5 2 14
y = 1 1 5 9

8 −8

−7 8
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The Marriage Model Frictionless Matching: Sorting Comparative Statics

Advanced Topic: Sorting Need not Rise in Synergy

Increasing Sorting Theorem

Sorting is “higher” with production function hB than hA if

synergy is higher with hB than hA, for every x2 ≥ x1, y2 ≥ y1
For every x2 ≥ x1, y2 ≥ y1, the synergy for each hi obeys:

hi (x2, y2)− hi (x2, y1) + hi (x1, y2)− hi (x1, y2)

shifts from negative to positive as x1 or x2 or y1 or y2 increases.

Example: Synergy rises at each stage, but sorting does not

NAM3 is efficient Matrix of Cross Differences

x = 1 x = 2 x = 3

y = 3 9 16 24
y = 2 5 3 16

y = 1 1 5 9

9 −5

−6 9
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The Marriage Model Frictionless Matching: Sorting Comparative Statics

Advanced Topic: Sorting Need not Rise in Synergy

Increasing Sorting Theorem

Sorting is “higher” with production function hB than hA if

synergy is higher with hB than hA, for every x2 ≥ x1, y2 ≥ y1
For every x2 ≥ x1, y2 ≥ y1, the synergy for each hi obeys:

hi (x2, y2)− hi (x2, y1) + hi (x1, y2)− hi (x1, y2)

shifts from negative to positive as x1 or x2 or y1 or y2 increases.

Example: Synergy rises at each stage, but sorting does not

NAM1 is efficient Matrix of Cross Differences

x = 1 x = 2 x = 3

y = 3 9 20 30

y = 2 5 6 20
y = 1 1 5 9

10 −4

−3 10
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The Marriage Model Frictionless Matching: Sorting Comparative Statics

Advanced Topic: Sorting Need not Rise in Synergy

Increasing Sorting Theorem

Sorting is “higher” with production function hB than hA if

synergy is higher with hB than hA, for every x2 ≥ x1, y2 ≥ y1
For every x2 ≥ x1, y2 ≥ y1, the synergy for each hi obeys:

hi (x2, y2)− hi (x2, y1) + hi (x1, y2)− hi (x1, y2)

shifts from negative to positive as x1 or x2 or y1 or y2 increases.

Example: Synergy rises at each stage, but sorting does not

NAM3 is efficient Matrix of Cross Differences

x = 1 x = 2 x = 3

y = 3 9 22 36
y = 2 5 7 22

y = 1 1 5 9

11 −1

−2 11
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The Marriage Model Double Auctions Emerge from the Marriage Model

Double Auctions

Consider a world with homogeneous houses (Levittown)

Buyer j ’s values all goods at ξj = ξij for all i

Sellers still differ by opportunity costs ci

Gains from trade: h(ξ, c) ≡ max{0, ξ − c} for buyer ξ and seller c

The price pi divides this surplus between matched traders

producer surplus: vi = pi − ci
consumer surplus: wj = ξij − pi = ξj − pi

We next argue that gains from trade h(ξ, c) is submodular.

Math intuition: max preserves SBM, and min preserves SPM
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The Marriage Model Double Auctions Emerge from the Marriage Model

Lemma (Gains from Trade)

Gains from trade h is SBM in (ξ, c).
(a) If ξ′ ≤ ξ′′ and c ′ ≤ c ′′, then h(ξ′′, c ′′)+ h(ξ′, c ′) ≤ h(ξ′′, c ′)+ h(ξ′, c ′′).
(b) Equality holds in (a) when two or zero trades should happen

Proof:

.
1 If two trades should occur (case A), then h(ξ, c) is modular.

h(ξ′′, c ′′) + h(ξ′, c ′) = h(ξ′, c ′′) + h(ξ′′, c ′) = ξ′′ + ξ′ − c ′ − c ′′.
2 If one trade should occur, then h(ξ, c) is strictly submodular.

B. h(ξ′′, c ′′) + h(ξ′, c ′) = ξ′′ − c ′′ < ξ′′ − c ′ = h(ξ′, c ′′) + h(ξ′′, c ′)

C . h(ξ′′, c ′′) + h(ξ′, c ′) = ξ′ − c ′ < ξ′′ − c ′ = h(ξ′, c ′′) + h(ξ′′, c ′)

3 If no trades should occur (case D), then h(ξ, c) is modular.
h(ξ′′, c ′′) + h(ξ′, c ′) = h(ξ′, c ′′) + h(ξ′′, c ′) = 0.

Inequalities are strict if c ′ < c ′′ and ξ′ < ξ′′, since trade surplus falls
when the wrong good is traded. □
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The Marriage Model Double Auctions Emerge from the Marriage Model

The Supply and Demand Paradigm

We view a market as a set of pairwise trades of buyers and sellers
The highest value buyers trade with the lowest cost sellers.
Rank order buyers: ξ1 < · · · < ξk < ξk+1 < · · · < ξN
Rank order sellers: c1 < · · · < ck < ck+1 < · · · < cN

Wages and prices are usually not unique in the finite marriage model
The price is common across all units traded in a double auction

Since h(ξ, c) is submodular, Becker’s Marriage Theorem ⇒ NAM
⇒ high value buyers trade with low cost sellers (intuitive)
h(ξ, c) is locally modular for agents trading (ξ > c), and not (ξ < c);

Matching among those trading sellers and buyers is irrelevant.
Matching among sellers and buyers not trading is irrelevant.

Eg: continuum agents with ξ, c ∼ U(0, 1)
NAM efficient in shaded green & blue areas
⇒ every other matching on those two sets
is also efficient, and thus is an equilibrium
⇒pairwise matching model⇝double auction
So a market maker just clears the market.
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The Marriage Model Double Auctions Emerge from the Marriage Model

Competitive Equilibrium in a Double Auction

Proposition (Double Auctions)

(a) If ξN < c1, there is no trade. Assume c1 ≤ ξN henceforth.
(b) The k∗ highest value buyers purchase from the k∗ lowest cost sellers,
where k∗ is the largest k with ck ≤ ξN+1−k .
(c) The law of one price holds, with a common price

p∗ ∈ [max(ck∗ , ξN−k∗),min(ck∗+1, ξN+1−k∗)]

(d) A competitive equilibrium is efficient, maximizing the gains from trade.
(e) The final allocation is immune to side bribes.

Notice that part (c) captures four constraints!
The top k value buyers, and bottom k cost sellers want to trade, and
the k + 1st highest buyer or lowest seller does not.

markets clear : supply balances demand
To understand typical deviations from the law of one price, we can
add search or information frictions to the model 74 / 82



The Marriage Model Double Auctions Emerge from the Marriage Model

Is There One Price? What is it?

Proof of (c): If buyer j trades, then the social planner is indifferent
across all matches with any (low cost) sellers i , who must trade

⇒ buyer j ’s shadow value wj = ξj − pi > 0 must not vary in j

⇒ Seller prices pi = p cannot vary with i , assuming they trade
The price p∗:

encourages last transaction: ck∗ ≤ p∗ ≤ ξN+1−k∗

deters another transaction: ξN−k∗ ≤ p∗ ≤ ck∗+1

Hence, crossing of supply and demand determines quantity:

max(ck∗ , ξN−k∗) ≤ p ≤ min(ck∗+1, ξN+1−k∗)

The competitive price is not pinned down unless the last trade yields
no surplus, whereupon the last unit needn’t be traded

A game has a learning dynamic: an impartial Walrasian auctioneer
finds a competitive equilibrium by raising the price with excess
demand and reducing the price with excess supply

Opening stock market prices are set to clear the market
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Beyond Unit Supply and Demand: Limit Orders

The same can be done to construct the supply curve.
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Overnight Market in Stock Exchanges

To open/close, many stock exchanges use single price double auction

The buyer must ask for a limit order (my choice) or a market order
(limit order with unspecified price)
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Offline: Easy Double Auction Example

Consider 20 traders: buyers 2,4,. . . , 20, and sellers 1,3,. . . ,19
Buyer valuations are ξi = 2i and sellers costs are cj = 3j .
Ordering the valuations from high to low:

40, 36, 32, 28, 24, 20, 16, 12, 8, 4

Ordering costs from low to high:

3, 9, 15, 21, 27, 33, 39, 45, 51, 57

An efficient matching clears the market: the high value buyers and
low cost sellers ⇒ k∗ = 4 (but actual pairing irrelevant)
The price p∗ encourages the value 28 buyer and cost 21 seller to
trade:

21 ≤ p∗ ≤ 28

The price p∗ deters the value 24 buyer and cost 27 seller from trading:

24 ≤ p∗ ≤ 27

any price in the interval [24, 27] clears the market
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All Positive Gains from Trade are Realized

Okay, I admit my plot is deformed around [15, 16] :)

All traders earn positive surplus: e.g. at p∗ = 25, the marginal buyer
earns 28− 25 = 3 and the marginal seller 25− 21 = 4
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When are Gains from Trade Larger?

Heterogeneity is good and the source of all gains from trade.
If everyone had identical valuations, then no consumer secures
consumer surplus at the market clearing price
the more heterogeneous are consumers or producers, the larger the
total gains from trade. 80 / 82
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Thinker Problem About Merging Markets

∃ > 50 Thinkers (!)
What happens to the price & quantity if we merge markets?
Important question as world markets merge via trade!
Assume an exchange market for a good in cities A and B.
Competitive prices are pA < pB and quantities are qA, qB .
Then the markets merge.

1 How does the new competitive price compare to pA and pB?
2 How does the new competitive quantity compare to qA + qB?
3 Is total trade surplus higher or lower after the merger?

Hint: Find examples where quantity traded rises or falls. 81 / 82
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Paternalism Does Not Maximize Efficiency

Paternalism is imposing your values on another. Examples:

Volunteer vs. Draft Army (Welfare Theorem Application)

A volunteer army maximizes gains from trade: it sets a wage so that
the people who most want to serve willingly do so.
Milton Friedman’s opposition the Draft helped end it in 1973.

Old exam Q: how much trade surplus did the draft erase?

Organ Sale Example: only Iran allows kidney sales

Scalping Example: Ticket Resale Laws vary (my advisee Axel)

Regifting Example: Jay Leno’s freely gave away Tonight Show tickets
to unemployed in Detroit in 2009.

People resold tickets on eBay and Leno mocked them.
Q: how much trade surplus did resale create?

Gifting Example: giving gifts usually means value < cost

Waldfogel (1993), “The Deadweight Loss of Christmas”
Lost surplus was about ten billion dollars per holiday season!

82 / 82


	Preamble
	Matching Without Transfers
	Girl-Guy Band Contest
	Gale and Shapley's Theorem
	Stable Matchings

	Transfers
	A Matching Bribery Scheme

	Efficient Matchings
	Transportation Problem as a Combinatorial Optimization
	The Transportation Problem as a Convex Optimization
	Stability vs. Efficiency

	Shapley and Shubik Trading Model
	The Problem Formulated
	Linear Programming Solution
	The Planner's Problem and the LP Dual

	The Marriage Model
	Sorting Concepts
	Sorting with Nontransferable Utility
	Becker's Marriage Theorem
	Computing Wages
	Sorting with Search Frictions
	Frictionless Matching: Sorting Comparative Statics
	Double Auctions Emerge from the Marriage Model


