Pathological Outcomes of Observational Learning

Lones Smith Massachusetts Institute of Technology

> Peter Sørensen Nuffield College and M.I.T.

> > 1996

(original version July, 1994)

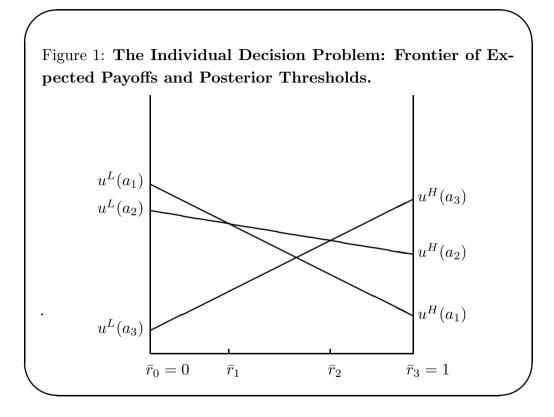
1 OVERVIEW

- pure informational externality; no economic externalities
- Banerjee (1992); BHW (1992)
- Two spins on their pathological learning outcome:
 - 1. Belief Convergence, or Cascades: Public history eventually becomes so informative that individuals disregard their private information \Rightarrow public beliefs enter an absorbing state, possibly wrong one
 - 2. Action Convergence, or Herds: Eventually, all individuals will take the same action, possibly wrong one

- Generalization of the herding model
 - 1. General private *signal space:* With continuous signals, herds generically may exist without cascades
 - 2. Unbounded private signal strength: \exists complete learning in belief and action space \Rightarrow only a correct herd obtains, and herding pathology disappears!
 - 3. Addition of a little *noise*: This does away with the 'overturning principle' (that one single individual's contrary action has drastic effects)
 - 4. *Multiple preference types*: New pathology *confounded learning* arises, even if private signals have unbounded strength
 - 5. Link to experimentation literature: herding is an example of optimal single agent learning model

2 THE STANDARD MODEL

- Infinite sequence of individuals 1, 2, ... who act sequentially, in an exogenous order
- Two underlying states of the world, H and L (assume H)
- Private conditionally i.i.d. signals σ_n (with no perfectly revealing signals) & $g(\sigma_n) = \text{private } L/H$ odds
- Actions a_1, \ldots, a_M with state dependent payoffs
- Individuals have identical preferences over outcomes
- They observe the full action history, and make an inference about other individuals' signals, updating their own posterior
- The observed history of the first n-1 actions leads to a *public* belief q_n that state is H, and a *likelihood* ratio $\ell_n = (1-q_n)/q_n$



Private Belief Distributions

- if H, L are WLOG ex ante equilikely, then individual n has the interim private belief $p \equiv p(\sigma_n) = 1/(g(\sigma_n) + 1)$ that the state is H
- dist'n of private beliefs p = p(σ) is F^H or F^L
 Q: What is the likelihood of L/H given my private beliefs?
- ★ No Introspection Condition: Any two c.d.f.'s can be rationalized iff $dF^L/dF^H = (1-p)/p$ eg. $F^H(p) = p^2$ and $F^L(p) = 2p - p^2$ $\Rightarrow F^H$ and F^L have the same support, with $co(supp(F)) = [\underline{b}, \overline{b}]$ ('Romeo and Juliet' effect) $\Rightarrow F^H \succ_{FSD} F^L$; note: $F^H(p) = F^L(p) \Leftrightarrow F^H(p) \in \{0, 1\}$

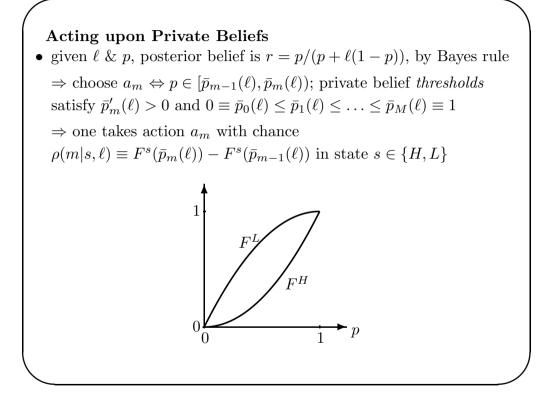
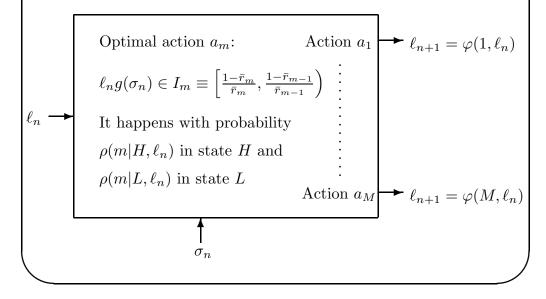


Figure 2: Individual Black Box. Individual n bases his action decision m_n on the public history (\leftrightarrow likelihood ratio ℓ_n) and on his private signal σ_n , implying a new continuation ℓ_{n+1} .



Corporate Learning as a Martingale Process

- Through the individuals' private signals, their actions $\langle m_n \rangle$ are random, and so $\langle q_n \rangle$ and $\langle \ell_n \rangle$ are stochastic processes
- Individual *n* takes action a_{m_n} with chance $\rho(m_n|H, \ell_n)$ in state *H*

$$\Rightarrow \ell_{n+1} = \varphi(m_n, \ell_n) \equiv \ell_n \frac{\rho(m_n | L, \ell_n)}{\rho(m_n | H, \ell_n)} \quad \text{(Bayes' Rule}$$

• We focus on odds $\langle \ell_n \rangle$ rather than beliefs $\langle q_n \rangle$. Why? Because $\langle \ell_n \rangle$ is a martingale conditional on state H: $E[\ell_{n+1} \mid H, \ell_1, \dots \ell_n] = \sum_m \rho(m|H, \ell_n) \ell_n \frac{\rho(m|L, \ell_n)}{\rho(m|H, \ell_n)} = \ell_n$

• Since
$$\ell_n \ge 0$$
 always, MCT applies

 \implies conditional on state H, $\langle \ell_n \rangle$ converges (a.s.) to the <u>random</u> <u>variable</u> limit $\ell_{\infty} = \lim_{n \to \infty} \ell_n$ with (<u>finite</u>) values in $[0, \infty)$.

Corporate Learning as a Markov Process

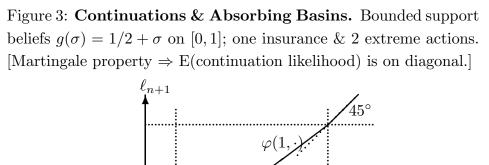
• (m_n, ℓ_n) is a Markov process on $\{1, 2, \dots, M\} \times [0, \infty)$ $(m_n, \ell_n) \mapsto (m_{n+1}, \varphi(m_{n+1}, \ell_n))$ with chance $\rho(m_{n+1}|H, \ell_n)$

Theorem B-1 (Stationarity) If ρ and φ are continuous in ℓ , then any $\hat{\ell} \in \operatorname{supp}(\ell_{\infty})$ satisfies $\forall m : \rho(m|H, \hat{\ell}) = 0 \lor \varphi(m, \hat{\ell}) = \hat{\ell}$

- Intuition: At any $\hat{\ell} \in \text{supp}(\ell_{\infty})$, no further information can be gleaned from any action observation
- Special case: Action absorbing basin for action a_m is $J_m = \{\ell \mid \rho(m|H, \ell) = 1\}$ (hence, $J_m = \{\ell \mid \rho(m|L, \ell) = 1\}$)
- * $\hat{\ell} = \infty$ is stationary, so can fully incorrect learning occur? No! MCT rules out $\ell_n \to \infty$:

Basic Concepts

- Private beliefs are
 - 1. bounded if the private signal has a bounded likelihood range; $g(\sigma)$ and $1/g(\sigma)$ are bounded above
 - 2. *unbounded* if the convex hull of the range of g is $[0, \infty)$
- With bounded beliefs, there *must* exist action absorbing basins for the two extreme actions, J_1 and J_M , and there *may* exist absorbing basins for insurance actions
- With unbounded beliefs, action absorbing basins only exist for extreme actions: $J_1 = \{\infty\}, J_M = \{0\}, \text{ with } J_2, \ldots, J_{M-1} = \emptyset$
- A cascade on action a_m as of individual n means that $\ell_n \in J_m$
- A herd on action a_m as of individual n means that all individuals $n, n+1, \ldots$ choose a_m (logically weaker than cascade)



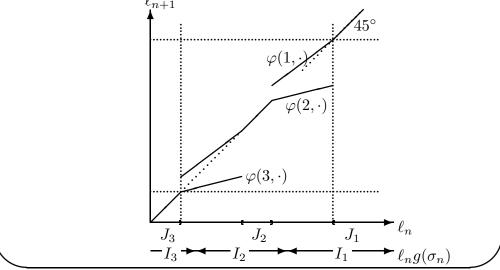


Figure 4: Continuations & Absorbing Basins, Revisited. Bounded support beliefs $g(\sigma) = 1/2 + \sigma$ on [0, 1]; no insurance actions (because preferences are different). ℓ_{n+1} 45° $\varphi(1,$ $\varphi(2,\cdot)$ $\varphi(3,\cdot)$ ℓ_n J_1 J_3 I_1 $\blacktriangleright \ell_n g(\sigma_n)$ $-I_3 \rightarrow I_2$

4 MAIN RESULTS

Convergence of Beliefs

Theorem 1 (Limit Cascades) With bounded beliefs, (1) $\ell_{\infty} \in J_1 \cup \cdots \cup J_M$ almost surely (2) $\ell_0 \notin J_M \Longrightarrow \ell_{\infty} \in J_M$ a.s. is impossible (state H)

Theorem 2 (Complete Learning) With unbounded beliefs, $\ell_n \to 0$ in state H, and $\ell_n \to \infty$ in state L.

Convergence of Actions

Theorem 3 (Herds) With bounded beliefs, a herd on some action will almost surely arise in finite time. Unless there is a cascade on the most profitable action a_M from the very outset, a herd can arise on an action other than a_M .

Theorem 4 (Correct Herds) With unbounded beliefs, eventually everyone takes the optimal action (almost surely).

Why Limit Cascades?

- $\langle \ell_n \rangle$ is a martingale $\Longrightarrow \ell_\infty \equiv \lim_{n \to \infty} \ell_n$ exists, by MCT
- $\hat{\ell} \in \operatorname{supp}(\ell_{\infty})$ $\implies \rho(m|H,\hat{\ell}) = 0 \text{ or } \rho(m|H,\hat{\ell}) = \rho(m|L,\hat{\ell}), \text{ by stationarity}$ $\implies \text{ any } m \text{ with } \rho(m|H,\hat{\ell}) > 0 \text{ satisfies } \rho(m|H,\hat{\ell}) = 1, \text{ since}$

beliefs are shifted towards state H if state H is true

Why Incorrect Limit Cascades?

- in state H, must rule out $\ell_{\infty} \in J_M$ almost surely
- If $\ell_{\infty} \in J_1$ with positive probability, we are done; else, $\ell_n \leq \inf J_1 < \infty$.

 $\implies E[\ell_{\infty}] = \lim_{n \to \infty} E[\ell_n] = \ell_0$ by Lebesgue's Dominated Convergence Theorem

• so $\ell_0 \notin J_M = [0, \underline{\ell}]$ implies $\operatorname{supp}(\ell_\infty) \subseteq J_M = [0, \underline{\ell}]$ is impossible

Why Complete Learning?

• With unbounded support, limit cascades can only arise on extreme actions a_1 and a_M (as $J_2, \ldots, J_{M-1} = \emptyset$)

• $\rho(m|H, \hat{\ell}) \in \{0, 1\} \iff (m, \hat{\ell}) = (1, 0) \text{ or } (m, \hat{\ell}) = (M, \infty)$

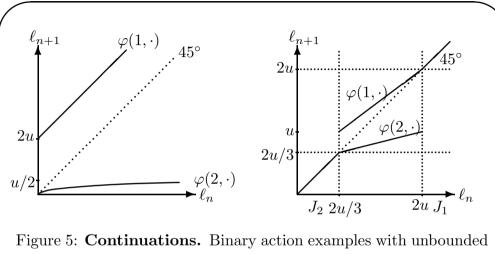
and martingale property of $\langle \ell_n \rangle \Rightarrow Pr(\ell_{\infty} = \infty) = 0$ in state *H* Why Herds?

• idea: convergence in beliefs \Longrightarrow convergence in actions

- Indeed, we only have limit cascades and not cascades
- \star The Overturning Principle

If agent n optimally chooses action a_m , then, before observing his private signal, agent n + 1 would optimally choose a_m too

 \Rightarrow one contrary action will completely overturn the public belief $(\ell_{n+1} \text{ jumps far from } \ell_n)$



private beliefs (left), and bounded private beliefs (right)

- illustrates the Overturning Principle, and
- shows that a cascade need not arise with bounded beliefs, and
- hints why complete learning arises in unbounded case and not in the bounded case.

Fast Learning in Belief Space • If \exists cont's density f^H of F^H (and thus f^L of F^L), then extreme signals are rare iff $f^{H}(\underline{b}) = 0$ or $f^{L}(\overline{b}) = 0$. • ℓ_n converges to $\hat{\ell}$ at rate $\bar{\theta} \in [0,1]$ if $|\ell_n - \hat{\ell}| = O(\theta^n)$ Lemma 9 (Exponential Convergence) Assume bounded beliefs and that extreme signals are not rare. In any limit cascade, if $\hat{\ell} = \lim_{n \to \infty} \ell_n$ then ℓ_n converges to $\hat{\ell}$ at some rate $\theta < 1$. *Proof Idea*: In a limit cascade and herd on action a_1 , with $\ell_n \uparrow \hat{\ell} = \inf(J_1), n \text{ chooses action } a_1 \Leftrightarrow n$'s posterior $\langle \bar{r}_1 \rangle$ $\Leftrightarrow p(\sigma_n) < \bar{p}_1(\ell_n)$. Thus, with smooth private belief distributions, $\ell_{n+1} = \varphi(1, \ell_n) = \ell_n \frac{F^L(\bar{p}_1(\ell_n))}{F^H(\bar{p}_1(\ell_n))} \quad \text{(Bayes' Rule)}$ $\implies [\varphi_{\ell}(1,\hat{\ell}) = \theta < 1 \Leftrightarrow f^L(\bar{p}_1(\hat{\ell})) < f^H(\bar{p}_1(\hat{\ell}))]$ $\implies \hat{\ell} - \ell_{n+1} = \hat{\ell} - \varphi(1, \ell_n) \doteq \varphi_{\ell}(1, \hat{\ell})(\hat{\ell} - \ell_n) = \theta(\hat{\ell} - \ell_n)$

Fast Learning in Action Space

- Bounded beliefs: If learning is exponentially fast, then a herd arises in finite expected time, as every abortive herd ends fast:
- $e_n = exit$ chance from temporary herd vanishes exponentially fast, so *conditional* exit rates are boundedly positive
- ★ The key to fast action convergence is how slowly error is discovered by contrarians.
- Unbounded beliefs: extreme signals in favour of truth are rare if $F^L(p) = O(p^{\alpha})$ and $1 F^H(1-p) = O(p^{\alpha})$, $\alpha \ge 1$, small p
- ★ CASE 1: if extreme signals are rare, then \exists (correct) herd in infinite mean time (the truth is learned, but it takes forever)
- classic example: $F^L(p) = 2p p^2, F^H(p) = p^2$
- * CASE 2: if extreme signals are not rare, so $F^L(p) = O(p^{\alpha})$ and $1 F^H(1-p) = O(p^{\alpha}), \alpha < 1$, then mean time to herd $< \infty$

5 NOISE

- Introduce small amount of i.i.d. noise: eg. crazy/misperceived types, or trembling individuals
- this yields new transition chance $\psi(m|s, \ell)$, where
- Trembling: fraction κ_j^m should take a_j but take a_m $\psi(m|H, \ell) = [1 - \kappa_m(\ell)]\rho(m|H, \ell) + \sum_{j \neq m} \kappa_j^m(\ell)\rho(j|H, \ell)$
- Craziness (special case): fraction κ_m always takes action a_m $\psi(m|H, \ell) = \kappa_m + (1 - \sum_{j=1}^M \kappa_j)\rho(m|H, \ell)$

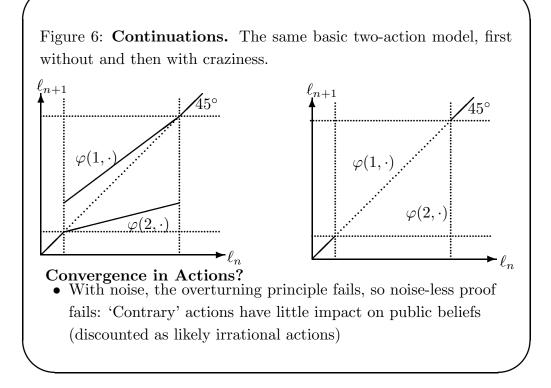
Theorem 6 (Convergence in Beliefs) Let $\ell_n \to \ell_\infty$. With bounded beliefs, (1) $\ell_\infty \in J_1 \cup \cdots \cup J_M$ almost surely; (2) $\ell_0 \notin J_M \Longrightarrow \ell_\infty \in J_M$ a.s. is impossible (state H) With unbounded beliefs, $\ell_\infty = 0$ almost surely (state H).

Why Complete Learning with Unbounded Beliefs?

All ψ are bounded away from zero, so we must investigate stationarity: $\varphi(m|H, \hat{\ell}) = \hat{\ell}$

$$\hat{\ell} \frac{\kappa_m + (1 - \sum_{m=1}^M \kappa_m)\rho(m|L,\hat{\ell})}{\kappa_m + (1 - \sum_{m=1}^M \kappa_m)\rho(m|H,\hat{\ell})} = \hat{\ell}$$

 $\Longrightarrow \rho(m|H, \widehat{\ell}) = \rho(m|L, \widehat{\ell}),$ which as before implies that they are zero or one



- ★ With bounded beliefs and non-rare extreme signals, 'rational herds' still arise (a.s.)
- (first) Borel-Cantelli Lemma \implies an infinite string of rational 'herd violators' a.s. can't occur if $\sum_{n=1}^{\infty} (1 \rho(m|H, \ell_n)) < \infty$
- martingale property $\ell \equiv \sum_{m=1}^M \psi(m|H,\ell) \varphi(m,\ell)$ & AM-GM \Rightarrow

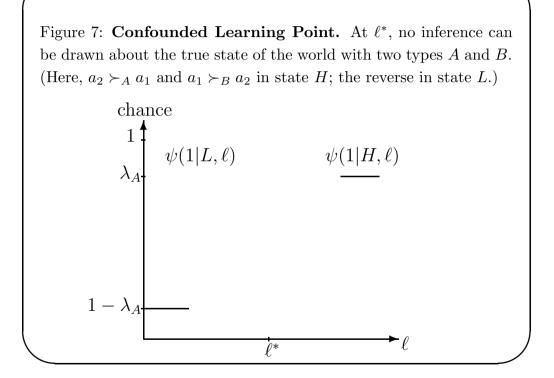
$$1 = \sum_{m=1}^{M} \psi(m|H,\hat{\ell})\varphi'(m,\hat{\ell}) + \sum_{m=1}^{M} \psi'(m|\hat{\ell})\varphi(m,\hat{\ell}) \\ = \sum_{m=1}^{M} \psi(m|H,\hat{\ell})\varphi'(m,\hat{\ell}) > \prod_{m=1}^{M} |\varphi'(m,\hat{\ell})|^{\psi(m|H,\hat{\ell})} \equiv \theta$$

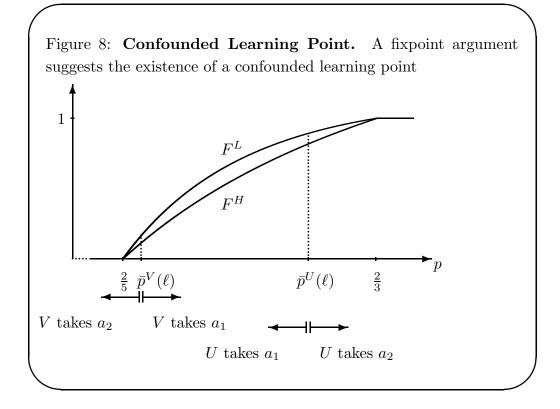
at a stationary point $\hat{\ell},$ where $\varphi(m,\hat{\ell})=\hat{\ell}$ for all m

• appendix: $\theta < 1$ is the criterion for exponential stability of a stochastic difference equation, i.e. $|\ell_n - \hat{\ell}| \approx \theta^n$ if $\ell_n \to \hat{\ell}$

6 MULTIPLE INDIVIDUAL TYPES

- Assume T types of individuals, spread i.i.d. in sequence, with state-dependent preferences (noise = special case)
- new transition probability: $\psi(m|H,\ell) = \sum_{t=1}^T \lambda^t \rho^t(m|H,\ell)$
- history is informative with distinct type frequencies $\lambda^1, \ldots, \lambda^T$
- At a confounded learning point ℓ*, no inference can be drawn from ℓ* as each action occurs with equal chance in states H, L
 ⇒ ψ(m|H, ℓ*) = ψ(m|L, ℓ*), so ℓ* is a stationary point of ⟨ℓ_n⟩

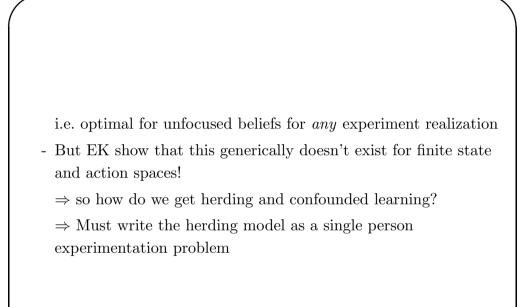




- Still, does confounded learning occur, i.e. l_n → l* occur?
 Yes! Just use local stability criterion (*).
- Even with unbounded beliefs, complete learning need no longer obtain: learning may die out, with ℓ_{∞} unfocused!
- Private signals become totally decisive for individual actions, whereas in a cascade, private signals are ignored

7 LINK TO EXPERIMENTATION LITERATURE

- We can map the pathological outcomes of social learning into the standard outcomes of single person experimentation
- Incorrect herd ↔ settle on suboptimal action, the learning process stops short of revealing the true state (eg. Rothschild (1974) and the two-armed bandit problem)
- Confounded learning ↔ an outcome where statistics are still generated, but they are identically distributed in the two states
- Similar to the learning problem in McLennan (1984)
 - A monopolist faces one of two possible demand curves; consumers arrive one per period, and buy with chances q = a - bp or q = A - Bp
- Easley-Kiefer (1988) calls such actions *potentially confounding*,



How to replace everyone with a single experimenter

- new state space: $\Theta = \{H, L\}$
- new action space: the compact set of n private belief thresholds $X = \{x \in [0,1]^M | 0 \le x_1 \le \ldots \le x_M = 1\} \text{ (NOT finite)}$
- discount factor = 0
- new random expt outcome, or observable signal: old action chosen in herding model from $\{1, 2, \ldots, M\}$.
- Given the action x chosen, the probability that signal m occurs is $\rho(m|s, x) = F^s(x_m) - F^s(x_{m-1})$ in state s without noise, and more generally $\psi(m|s, x)$ with noise.
- to simulate two types, let experimenter choose two sets of thresholds, and not observe which one determines the observed signal