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1 OVERVIEW

e Individuals sequentially choose an action based on private

information, and observation of all predecessors’ actions
—> not simple statistical learning

e pure informational externality; no economic externalities
e Banerjee (1992); BHW (1992)
e Two spins on their pathological learning outcome:

1. Belief Convergence, or Cascades: Public history eventually
becomes so informative that individuals disregard their
private information = public beliefs enter an absorbing
state, possibly wrong one

2. Action Convergence, or Herds: Eventually, all individuals

will take the same action, possibly wrong one
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e Generalization of the herding model

1.

~

General private signal space: With continuous signals, herds
generically may exist without cascades

Unbounded private signal strength: 3 complete learning in
belief and action space = only a correct herd obtains, and
herding pathology disappears!

Addition of a little noise: This does away with the
‘overturning principle’ (that one single individual’s contrary
action has drastic effects)

Multiple preference types: New pathology confounded
learning arises, even if private signals have unbounded

strength

Link to experimentation literature: herding is an example of

/
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THE STANDARD MODEL

Infinite sequence of individuals 1,2, ... who act sequentially, in

an exogenous order
Two underlying states of the world, H and L (assume H)

Private conditionally i.i.d. signals o,, (with no perfectly
revealing signals) & ¢(o,,) = private L/H odds

Actions aq,...,ay with state dependent payoffs
Individuals have identical preferences over outcomes

They observe the full action history, and make an inference
about other individuals’ signals, updating their own posterior

The observed history of the first n — 1 actions leads to a public
belief q, that state is H, and a likelihood ratio £, = (1 — qp)/qn
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Figure 1: The Individual Decision Problem: Frontier of Ex-

pected Payoffs and Posterior Thresholds.
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Private Belief Distributions
o if H L are WLOG ex ante equilikely, then individual n has the

interim private belief p = p(0,)=1/(g9(0y)+ 1) that the state is H

e dist'n of private beliefs p = p(o) is F¥ or FL
Q: What is the likelihood of L/H given my private beliefs?

* No Introspection Condition:
Any two c.d.f.’s can be rationalized iff dF'L/dFH = (1 —p)/p
eg. F(p) = p* and F'(p) = 2p — p°
= FH and FL have the same support, with co(supp(F)) = [b, b]
(‘Romeo and Juliet’ effect)
= 2 ~psp F¥; note: FH(p) = FL(p) & FH(p) € {0,1}
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Acting upon Private Beliefs
e given ¢ & p, posterior belief is = p/(p + ¢(1 — p)), by Bayes rule

= choose a,,, < p € [Pm—1(£), Dm(£)); private belief thresholds
satisfy p,(£) >0and 0 =po(4) <p1 () < ... <pm(¥) =1

= one takes action a,, with chance

p(m|s, ) = F*(pp(£)) — F*(pm—1(¢)) in state s € {H, L}

A
1
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Figure 2: Individual Black Box. Individual n bases his action

decision m,, on the public history (< likelihood ratio ¢,,) and on his

private signal o,,, implying a new continuation ¢, 1.

Optimal action a,,: Action ay [ £, 11 = o(1,4,)

lngloy) € I, = | =0 1—4m—1>

T'm Tm—1

It happens with probability
p(m|H,{,) in state H and

p(m|L,¢,) in state L '
Action ay [ 4,11 = (M, 1)




Pathological Outcomes of Observational Learning

4 )

Corporate Learning as a Martingale Process

e Through the individuals’ private signals, their actions (m,,) are
random, and so (g,) and (¢,) are stochastic processes

e Individual n takes action a,,, with chance p(m,|H,¥¢,) in

state H
= lpy1 = p(mp, ly) =4 —p(mn|L,€n)
’ p(my|H, L)

e We focus on odds (¢,,) rather than beliefs (¢,,). Why?
Because (¢,,) is a martingale conditional on state H:

E[ETL-H ’ H,ty,.. En] = Em p(m|H7£n)gn% = {y

(Bayes’ Rule)

e Since ¢,, > 0 always, MCT applies

—> conditional on state H, ({,) converges (a.s.) to the random

variable limit £, = lim,,_, o, £, with (finite) values in [0, c0).
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Corporate Learning as a Markov Process

e (mp,4,) is a Markov process on {1,2,..., M} x [0, 00)
(M, bn) = (Mypg1, ©(Mpt1,y)) with chance p(my,11|H, ¢,,)

Theorem B-1 (Stationarity) If p and ¢ are continuous in ¢,
then any { € supp(ls) satisfies Vm : p(m|H,0) =0V o(m,l) =1
e Intuition: At any ¢ € supp(¢s ), no further information can be
gleaned from any action observation
e Special case: Action absorbing basin for action a,, is
Im = {l| p(m|H,¢) =1} (hence, J,, = {¢|p(m|L,{) = 1})
*x 0= oo is stationary, so can fully incorrect learning occur? No!
MCT rules out ¢,, — oc:
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Basic Concepts
e Private beliefs are

1. bounded if the private signal has a bounded likelihood range;
g(o) and 1/g(o) are bounded above

2. unbounded if the convex hull of the range of g is [0, c0)

e With bounded beliefs, there must exist action absorbing basins
for the two extreme actions, J; and Jy;, and there may exist
absorbing basins for insurance actions

e With unbounded beliefs, action absorbing basins only exist for
extreme actions: J; = {oo}, Jyr = {0}, with Ja, ..., Jy—1 = O
e A cascade on action a,, as of individual n means that ¢,, € J,,

e A herd on action a,, as of individual n means that all individuals
n,n + 1,... choose a,, (logically weaker than cascade)

N /
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Figure 3: Continuations & Absorbing Basins. Bounded support

beliefs g(0) = 1/2+ o on [0, 1]; one insurance & 2 extreme actions.
[Martingale property = E(continuation likelihood) is on diagonal.]

€n+1
A
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Figure 4: Continuations & Absorbing Basins, Revisited.

Bounded support beliefs g(o) = 1/240 on [0, 1]; no insurance actions
(because preferences are different).

€n+1
A
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CONVERGENCE OF BELIEFS

Theorem 1 (Limit Cascades) With bounded beliefs,
(1) boo € J1U---U Jpr almost surely
(2) by & Iy = U € I a.s. is impossible (state H)

Theorem 2 (Complete Learning) With unbounded beliefs,
£, — 0 in state H, and £,, — oo in state L.

CONVERGENCE OF ACTIONS

Theorem 3 (Herds) With bounded beliefs, a herd on some
action will almost surely arise in finite time. Unless there is a
cascade on the most profitable action ap; from the very outset, a

herd can arise on an action other than as.

Theorem 4 (Correct Herds) With unbounded beliefs,
Qventually everyone takes the optimal action (almost surely).

/
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/ Why Limit Cascades? \

e (/) is a martingale = /o, = lim,,_, ¢, exists, by MCT

o /e supp(loo)
— p(m|H,0) = 0 or p(m|H,?) = p(m|L,{), by stationarity
— any m with p(m|H, {) > 0 satisfies p(m|H,{) = 1, since
beliefs are shifted towards state H if state H is true

Why Incorrect Limit Cascades?
e in state H, must rule out ¢, € Jy; almost surely

o If /., € J; with positive probability, we are done; else,
l, <inf J; < oo.
— E[l] = lim, o E[l,] = £y by Lebesgue’s Dominated
Convergence Theorem

e 50 ly ¢ Jy = [0, 4] implies supp(Y) C Jpr = [0, 4] is impossible

Why Complete Learning?
e With unbounded support, limit cascades can only arise on

\ extreme actions a1 and aps (as Ja, ..., JJy—1 = 9) J

14
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o p(mlH, Q) € {0,1} <= (m, ) = (1,0) or (m, ) = (M, )
and martingale property of (¢,,) = Pr({o = 00) = 0 in state H
Why Herds?

e idea: convergence in beliefs = convergence in actions
e Indeed, we only have limit cascades and not cascades

* The Overturning Principle
If agent n optimally chooses action a,,, then, before observing
his private signal, agent n + 1 would optimally choose a,, too
= one contrary action will completely overturn the public belief
(€41 jumps far from ¢,,)

N /

15



Pathological Outcomes of Observational Learning

(27 )

n

®
>/

n

J2 2u/3 2u ;.

Figure 5: Continuations. Binary action examples with unbounded
private beliefs (left), and bounded private beliefs (right)

e illustrates the Overturning Principle, and

e shows that a cascade need not arise with bounded beliefs, and

e hints why complete learning arises in unbounded case and not in
the bounded case.

N /
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Gast Learning in Belief Space \

e If 3 cont’s density f7 of F¥ (and thus f¥ of F¥), then
extreme signals are rare iff f7(b) =0 or fL(b) = 0.

e £, converges to { at rate 6 € [0,1] if [¢, — | = O(0™)

Lemma 9 (Exponential Convergence) Assume bounded
beliefs and that extreme signals are not rare. In any limit cascade,
zf@ = lim,, o0 ¥y, then £, converges to { at some rate 6 < 1.

Proof Idea: In a limit cascade and herd on action ay, with
1 =inf(Jy), n chooses action a; < n’s posterior < 7
< p(oy) < p1(€y). Thus, with smooth private belief distributions,

FL (]51 (gn))

gn - 1a€n ZEn%
w1 =eLb) = by @)

(Bayes’ Rule)

)
= [pe(1,0) =0 <1 & fH(p(0) < H(pa(0))]
eN

— by =4 V(= 0,) =000 — 1,)
N ) .

=0 —p(1,0,) =

17
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Fast Learning in Action Space
e Bounded beliefs: If learning is exponentially fast, then a herd

arises in finite expected time, as every abortive herd ends fast:
- e, = exit chance from temporary herd vanishes exponentially fast,
so conditional exit rates are boundedly positive

* The key to fast action convergence is how slowly error is
discovered by contrarians.

e Unbounded beliefs: extreme signals in favour of truth are rare if
FL(p)=0((p*) and 1 — FE(1 — p) = O(p®), a > 1, small p

* CASE 1: if extreme signals are rare, then 3 (correct) herd in
infinite mean time (the truth is learned, but it takes forever)

- classic example: FL(p) =2p — p? FH(p) = p?

x CASE 2: if extreme signals are not rare, so F'X(p) = O(p®) and

1—FH(1 - p)=0(p®), a < 1, then mean time to herd < co

N
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5 NOISE \

e Introduce small amount of i.i.d. noise: eg. crazy/misperceived

types, or trembling individuals
e this yields new transition chance ¥ (m|s, ¢), where
- Trembling: fraction 7" should take a; but take a,
b(m|H, 0) = [1 = km(O)lp(m|H, €) + 31, 557" (O p(i] H, £)
- Craziness (special case): fraction k,, always takes action a,,

Y(m|H,0) = ki + (1= 300 k) p(m] H, 0)

Theorem 6 (Convergence in Beliefs) Let ¢, — (. With
bounded beliefs,

(1) oo € J1U---UJpr almost surely;

(2) by & Jpg = U € Jpr a.s. is impossible (state H)

With unbounded beliefs, £~ = 0 almost surely (state H ).

/
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Why Complete Learning with Unbounded Beliefs?
All 1) are bounded away from zero, so we must investigate
stationarity: ¢(m|H,0) = ¢

é’fm + (1 _ er\rle Hm)p<m|Lag)

n ) _g
o+ (1= S0 ) p(m] H. D)

— p(m|H,¢) = p(m|L,{), which as before implies that they are

Zero or one

N
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Figure 6: Continuations. The same basic two-action model, first

without and then with craziness.

£n+1 gn
A 50 A +1 450

>/ -0
Convergence in Actions? o ) .
e With noise, the overturning principle fails, so noise-less proof

fails: ‘Contrary’ actions have little impact on public beliefs
(discounted as likely irrational actions)

/
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* With bounded beliefs and non-rare extreme signals, ‘rational

herds’ still arise (a.s.)

e (first) Borel-Cantelli Lemma = an infinite string of rational

M . M X )
= E Y(m|H, )@ (m, &) > [] 1&'(m, )]0 =6
=1 m=1

at a stationary point ¢, where o(m, E) ={ for all m

e appendix: # < 1 is the criterion for exponential stability of a

N

stochastic difference equation, i.e. [¢, — | ~ 6™ if £, — ¢

‘herd violators” a.s. can’t occur if > 7 | (1 — p(m|H,{,)) < oo
e martingale property ¢ = 2%21 (m|H, l)p(m,£) & AM-GM =

/
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MULTIPLE INDIVIDUAL TYPES

Assume T types of individuals, spread i.i.d. in sequence, with
state-dependent preferences (noise = special case)

new transition probability: ¢ (m|H,£) = S21_, M pt(m|H, )

history is informative with distinct type frequencies A!,..., AT

At a confounded learning point £*, no inference can be drawn

from £* as each action occurs with equal chance in states H, L

= Y(m|H,l*) = (m|L,£*), so £* is a stationary point of (£,,)

~

/
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(Here, as =4 a1 and a1 =p ag in state H; the reverse in state L.)

chance
1“
(1L, £) V(1| H, L)
A -
1 — A

~

Figure 7: Confounded Learning Point. At ¢*, no inference can
be drawn about the true state of the world with two types A and B.
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Figure 8: Confounded Learning Point. A fixpoint argument
suggests the existence of a confounded learning point
A
1
2 SV U 2 "
= p (0 P~ (0) 3
>
V takes ao V takes a; ——
U takes a1 U takes as
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e Still, does confounded learning occur, i.e. ¢,, — £* occur?

Yes! Just use local stability criterion (x).

e Even with unbounded beliefs, complete learning need no longer

obtain: learning may die out, with /., unfocused!

e Private signals become totally decisive for individual actions,

whereas in a cascade, private signals are ignored

N /
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(7 LINK TO EXPERIMENTATION )

LITERATURE

We can map the pathological outcomes of social learning into
the standard outcomes of single person experimentation
Incorrect herd < settle on suboptimal action, the learning
process stops short of revealing the true state (eg. Rothschild
(1974) and the two-armed bandit problem)

Confounded learning <+ an outcome where statistics are still
generated, but they are identically distributed in the two states
Similar to the learning problem in McLennan (1984)

A monopolist faces one of two possible demand curves;
consumers arrive one per period, and buy with chances
g=a—bporq=A—Bp

Easley-Kiefer (1988) calls such actions potentially confoundmgj

27
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i.e. optimal for unfocused beliefs for any experiment realization

But EK show that this generically doesn’t exist for finite state
and action spaces!

= s0 how do we get herding and confounded learning?

= Must write the herding model as a single person

experimentation problem

28
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How to replace everyone with a single experimenter

~

new state space: © = {H, L}

new action space: the compact set of n private belief thresholds
X={zec0,1]M0<2; <...<xp =1} (NOT finite)
discount factor = 0

new random expt outcome, or observable signal: old action
chosen in herding model from {1,2,..., M}.

Given the action x chosen, the probability that signal m occurs
is p(mls,x) = F*(x,,) — F*(x,;,—1) in state s without noise,
and more generally 1(m|s, x) with noise.

to simulate two types, let experimenter choose two sets of
thresholds, and not observe which one determines the observed

signal

/
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