An Economic Theory Masterclass

Part II: Competitive Markets in Partial Equilibrium

Lones Smith

February 28, 2024

Paul Samuelson Produced this Economic Idea

- And not Chadwick Boseman

Rear View Mirror on Matching (TU)

- Allowing for transfers, efficiency becomes an equal treatment measure of social goodness ("better" is well-defined)
- A unique stable matching need not be efficient
- E.g. because comonotonicity \neq SPM (musician matching)
- Competitive equilibrium: everyone's paid \geq best outside option \Rightarrow many incentive constraints (not unique?)
- 713B topic: Auction theory integrates constraints, proving all auctions give the same revenue (Revenue Equivalence Th'm)
- Welfare Theorems
A. Competitive equilibrium is efficient: easy contradiction proof
B. Efficiency can emerge in a competitive equilibrium
- Proof: LP duality (primal $=$ dual) yields multipliers on constraints; these shadow values act as competitive prices
- The dual is less complex to compute
- Shadow values may be:

Eg. 1. wages in the employment model
Eg. 2. consumer and producer surplus in the trading model
Eg. 3. payoffs and rents in the location assignment model

- Becker Marriage: PAM/NAM \Leftrightarrow SPM/SBM (extreme_cases!)
- Trade surplus is $\mathrm{SBM} \Rightarrow$ NAM matching in a double auction

Supply and Demand

- Assume a competitive price-taking environment
- Double auctions: just an extensive margin (in or out) for all trades
- WTP (willingness to pay) and WTA (willingness to accept)
- Supply \& demand curves will also reflect intensive margins
- usually upward sloping supply curve
- usually downward sloping demand curve
- very negative income effects \Rightarrow demand rises in price
- addictive behavior \Rightarrow WTP rises with quantity (oh no, drugs)
- These two curves answer out-of-equilibrium hypothetical "what if" questions: what would the supply and demand be at any other price?
- By parsing our logic into supply and demand, we can compartmentalize our analysis, and make clearer predictions
- Supply and Demand: "Father Guido Sarducci's 5 Minute University"

Ours "Static" Models are Really Steady States

- Supply quantity Q^{S} and inverse supply price P^{S}
- Demand quantity Q^{D} and inverse demand price P^{D}
- The model need not be static. Everything could be steady-state!
- Supply and demand could be flows (units are per week, or per day)
- Life is all about dynamics: Heraclitus - Panta Rhei
- "All entities move and nothing remains still"
- "No man ever steps in the same river twice"

Stability

(a) stable equilibrium
(b) Unstable equilibrium

- Unstable equilibria are not reliable fixed points

Stability: Does Competitive Equilibrium Happen?

- Why does market equilibrium arise?
- adjustment tatonnement process - check Google translate :)
- Walrasian price stability (Elements of Pure Economics, 1874)
- price adjustment process of fictional double auctioneer \Rightarrow change in the price shares the sign of net demand $Q^{D}(P)-Q^{S}(P)$.

Walrasian Stability

- Dynamic stories
- Search by people who engage in pairwise bargaining over prices
- forward-looking optimization about willingness to accept
- During the adjustment, the short side of the market fixes quantity.
- Demanders won't demand more than they want at that price.
- Suppliers won't sell more than they are willing at that price.

Detour: The Market "Learns"

- The market is the ultimate in artificial intelligence
- Groups of individuals might screw up but the larger market learns
- Financial Crisis of 2008: When markets do not learn, we are stunned
- How could the price not clear the market?
- The answer is that our story misses something about "money"
- The IOU nature of money created a game of strategic complements which tend to have multiple equilibria
- Advanced Theory Topic: Games of Strategic Complements

Stability: Downward-sloping Demand and Supply

- Supply steeper than demand \Rightarrow Walrasian stable
- Demand steeper than supply \Rightarrow Walrasian unstable
- So Walrasian stability holds iff $Q_{P}^{S}(P)>Q_{P}^{D}(P)$
- ... formulated using direct and not inverse supply \& demand curves!
- Not Even A Thinker Q: What if supply and demand slope up?

Comparative Statics aka Comparison of Steady States Analysis

- Comparative statics are a peasant's comparative dynamics
- Intuitively, monotone dynamics from one steady-state to the next \Rightarrow comparing the two static situations is informative of dynamics
- What if demand shifts quickly, but supply shifts slowly?

Identification of Supply and Demand Curves

- Price and quantity reflect both supply and demand.
- If you wanted to "identify" the demand curve, you find something that just shifts supply and leaves demand invariant.
- Ragnar Frisch (1933) first highlighted the identification problem first winner of Economics Nobel prize (1969)
- With enough variation in supply, we can identify the demand.
- Likewise, variation in demand but not supply would allow one to pin down the supply curve.

Deja Vu: Flash Elasticities Review of Economics 711

- For small price changes:

$$
\mathcal{E}(Q, P)=\frac{d Q}{d P} \frac{P}{Q}=\frac{d \log Q}{d \log P} \approx \frac{\% \text { change quantity }}{\% \text { changeprice }}
$$

\Rightarrow Coefficients in log regressions are elasticities

- Elasticity is a ratio of proportionate changes \Rightarrow unit-free!
- More elastic supply or demand \Rightarrow quantity changes more if price falls
- The long run has fewer constraints than the short run
- Le Chatelier's Principle: The absolute change of any choice variable is weakly higher in the longrun than shortrun.
\Rightarrow |long run elasticity| $>$ |short run elasticity|

Constant Elasticity Supply and Demand Curves

- Let's write the supply or demand curve as $Q(P)$
- Rewrite $Q^{\prime}(P) P / Q=\varepsilon$ as $d Q / Q=\varepsilon d P / P$
- Integrating yields $\Rightarrow \log Q=\varepsilon \log P+\log K \Rightarrow Q=K P^{\varepsilon}$.
- Hyperbolic downward sloping curves $\varepsilon<0: P \propto Q^{1 / \varepsilon}$
- Geometric upward sloping supply curves $(\eta>0)$ are linear if $\eta=1$

- Supply is elastic if $\eta>1$ and demand is elastic if $|\varepsilon|>1$
\Rightarrow Quantity changes proportionately more than price
- PS Demand elasticity is spoken of in absolute terms!

Large Price Volatility in the Oil Market

- Consider the facts of the oil or gasoline market
- Huge price volatility
- Minimal quantity volatility
- Small change in fundamentals (i.e. small shift in supply and demand)

Q

Large Price Volatility in the Oil Market

- Consider the facts of the oil or gasoline market
- Huge price volatility
- Minimal quantity volatility
- Small change in fundamentals (i.e. small shift in supply and demand)

Large Price Volatility in the Oil Market

- Consider the facts of the oil or gasoline market
- Huge price volatility
- Minimal quantity volatility
- Small change in fundamentals (i.e. small shift in supply and demand)

Large Price Volatility in the Oil Market

- Consider the facts of the oil or gasoline market
- Huge price volatility
- Minimal quantity volatility
- Small change in fundamentals (i.e. small shift in supply and demand)

Large Price Volatility in the Oil Market

- Consider the facts of the oil or gasoline market
- Huge price volatility
- Minimal quantity volatility
- Small change in fundamentals (i.e. small shift in supply and demand)

Large Price Volatility in the Oil Market

- Consider the facts of the oil or gasoline market
- Huge price volatility
- Minimal quantity volatility
- Small change in fundamentals (i.e. small shift in supply and demand)

Large Price Volatility in the Oil Market

- Small fundamentals shifts cause large proportionate price changes iff both supply and demand are both highly inelastic.
- Inelastic supply or demand \Rightarrow low quantity volatility
- Small fundamentals changes can lead to large quantity changes iff supply and demand are both highly elastic.
- Elastic supply or demand \Rightarrow low price volatility
- Volatility of prices is greater in the short run, of quantity in long run

Thinker: 2020-24 Food Inflation > Average Inflation

- Assume COVID Stimulus Checks Raised Demand
- Food in Cities (24.7\% Inflation)

FRED. Consumer Price index for All Urban Consumers: Food in U.S. City Average

- All Urban Goods (19.3\% Inflation)

FRED - Consumer Price Index for All Urban Consumers: All lems in U.S. City Average

Samuelson's Correspondence Principle (1941)

- Comparative statics are "intuitive" if the equilibrium is stable: price falls if supply rises, or demand falls
- Standard case: increasing supply and decreasing demand
- More subtle cases: direct supply curve is steeper than demand NOT STABLE EQ
 comparative statics

This Comparative Statics Slide is Ironically Timeless

- Add a shift parameter to supply $Q^{S}(P, \beta)$, with $Q_{\beta}^{S}(P, \beta)>0$
- Competitive equilibrium price \& quantity solve: $Q^{D}(P)=Q^{S}(P, \beta)$
- Implicitly differentiate equilibrium identity in β, with $P(\beta)$ a function:

$$
\frac{d P}{d \beta}=\frac{-Q_{\beta}^{S}(P, \beta)}{Q_{P}^{S}(P, \beta)-Q_{P}^{D}(P)}
$$

\Rightarrow Price falls when supply rises, provided stable: $Q_{P}^{S}(P, \beta)>Q_{P}^{D}(P)$

- Multiply (\star) by $(\beta / P)=(\beta / Q) /(P / Q)$. Then the equilibrium price elasticity is

$$
\mathcal{E}(P \mid \beta) \equiv \frac{d P}{d \beta} \frac{\beta}{P}=\frac{-\mathcal{E}\left(Q^{S}, \beta\right)}{\eta-\varepsilon}
$$

- Likewise, let index demand as $Q^{D}(P, \alpha)$, with $Q_{\alpha}^{D}(P, \alpha)>0$.
- Price rises if demand increases, given a stable equilibrium. Indeed:

$$
\frac{d P}{d \alpha}=\frac{Q_{\alpha}^{D}(P, \alpha)}{Q_{P}^{S}(P, \beta)-Q_{P}^{D}(P, \alpha)}=\frac{\mathcal{E}\left(Q^{D}, \alpha\right)}{\eta-\varepsilon}
$$

- Home work: Do the quantity comparative statics

Shared Incidence or Tax or Tariff

- Trump added a 10% tariff on Chinese imports, to rise to 25%
\Rightarrow wedge between supply and demand prices: $P_{D}>P_{S}$.
- Incidence: Who pays the tariff or tax?
- "China is paying us billions of dollars in tariffs." - Trump
- Fact: The more elastic is demand, the less of the tariff buyers pay.
- Fact: The more elastic is supply, the less of the tariff suppliers pay.

Deadweight Loss of Tax

- Double auctions: No effect of small tax! Here: small effect.
- Lost gains from trade = lost consumer + producer surplus
- Assume tariff revenue is socially neutral: gain to government balances loss to producers or consumers
\Rightarrow deadweight loss (excess burden) of tariff is red + purple Deadweight loss -consumer surplus side
 producer surplus side
\leftarrow Taxes erase marginal trades

Changes in the Deadweight Loss of Tax

- The deadweight loss of a tariff increases in the quantity reduction, larger with more elastic demand or supply

(less elastic S and D) (shortrun)

Tax Irrelevance Theorem

- Tariff or sales or ad valorem tax: $P_{D}(Q)=P_{S}(Q)+\tau P_{S}(Q)$
- Specific tax $\tau: P_{D}(Q)=P_{S}(Q)+\tau$
- Wisconsin specific tax examples
- Gas tax: state 32.9ϕ and federal 18.4ϕ per gallon
- Beer: $6 \phi /$ gallon and wine: $25 \phi /$ gallon and liquor: $\$ 3.25 /$ gallon
- Also exists for cigarettes
- Specific tax is easier to analyze: parallel demand / supply shift

Theorem (Tax Irrelevance Theorem)
Regardless of whether demand or supply pays a specific tax, the demand and supply prices, market quantity, and efficiency loss are the same.

- USA: A sales tax is paid by demanders \Rightarrow down-shift in demand
- Most of world: VAT (hidden tax) is paid by suppliers \Rightarrow up-shift in supply, since the marginal cost of sellers is higher by the tax

Elasticities and Tax Incidence: Who pays the tax?

- A small tax has no effect in a double auction.
- In our continuous world, we focus on a small tax (Taylor series)
- The more inelastic side of the market pays more of a tax and benefits more from a subsidy, but how much more?
- Demand elasticity $\varepsilon=D^{\prime}(P)\left(P_{D} / Q_{D}\right)<0$
- Supply elasticity $\eta=\left(d Q_{S} / d P_{S}\right)\left(P_{S} / Q_{S}\right)>0$

Theorem (Tax Incidence Theorem)

The share of a small tax τ paid by demand is $\frac{\eta}{\eta-\varepsilon}$, and by supply is $\frac{-\varepsilon}{\eta-\varepsilon}$.

- Proof: By Tax Irrelevance Theorem, impose the tax τ on demand.
- Differentiate $D(P(\tau)+\tau) \equiv S(P(\tau))$, where $P(\tau)$ is supply price
- Hence, $D^{\prime}(P(\tau)+\tau)\left(P^{\prime}(\tau)+1\right)=S^{\prime}(P) P^{\prime}(\tau)$
- Supply price slope in the tax:

$$
\Rightarrow \quad P^{\prime}(\tau)=\frac{D^{\prime}(P(\tau)+\tau)}{S^{\prime}(P)-D^{\prime}(P(\tau)+\tau)} \approx \frac{\varepsilon}{\eta-\varepsilon} \in(-1,0)
$$

- Finally, demand price rises with slope $P^{\prime}(\tau)+1 \approx \eta /(\eta-\varepsilon) \in(0,1)$

Deadweight Loss for Small Taxes

- Since $\varepsilon=D^{\prime}(P)(P / D)$, the quantity demanded changes by

$$
d Q=\epsilon \frac{Q d P^{D}}{P^{D}} \approx \epsilon\left(\frac{\eta}{\eta-\epsilon}\right) \tau\left(\frac{Q}{P^{D}}\right)=\left(\frac{1}{\frac{1}{\epsilon}-\frac{1}{\eta}}\right) \tau\left(\frac{D}{P^{D}}\right)
$$

- Deadweight loss: Lost gains from trade $=$ lost CS + PS
- Hence, the deadweight loss is the area of the standard triangle:

$$
\frac{1}{2}(d Q)\left(d P^{D}-d P^{S}\right)=\frac{1}{2}(d Q) \tau \approx\left(\frac{1}{\frac{1}{\epsilon}-\frac{1}{\eta}}\right)\left(\frac{Q}{2 P^{D}}\right) \tau^{2}
$$

- Exercise: check the units in this formula!
- Thinker: What about Quantity Taxes?
- Feudal system: Give a tithe of crops to the church!
- Tithe $\tau: P^{D}(Q)=P^{S}(Q+\tau)$

Political Economy of Taxes: Tax or Subsidy Incidence

- Tax or subsidy incidence invariably explains who pushes for it
- In 2009, Michigan ended the Promise Scholarship program, giving 96,000 in-state students up to $\$ 4,000$ for college
- Can't \uparrow shift supply curve \Rightarrow shift demand (Tax Irrelevance Theorem)
- Who fought to keep the subsidy? Colleges! (Tax Incidence Theorem)
- Take our message for governments: taxing inelastic supply is efficient

Demand Elasticity and the Laffer Curve for Total Revenue

- Tax revenue $t q(t)$ is rising / falling when $t q^{\prime}(t)+q(t) \gtrless 0$ iff $\varepsilon \gtrless-1$
- If tax revenue peaks at an intermediate quantity, then this rules out a constant elasticity demand
- Linear demand curves have falling elasticities $|\varepsilon|=\left|\frac{d q}{d p} \frac{p}{q}\right|=p / q$
- Tax revenue is maximized (in example midway, as slope is minus one)

Art Laffer's 1974 Back of the Envelope Explanation to Rumsfield

Public Finance: the Ramsey Inverse Elasticity Tax Rule

- Social planners hate deadweight losses
\Rightarrow Optimal taxes minimize deadweight losses for any given revenue
- Tax revenue falls when the tax rises if the demand is elastic:

$$
[D(P+\tau) \tau]^{\prime}=D(P+\tau)+D^{\prime}(P+\tau) \tau=D(P+\tau)\left[1+\varepsilon \frac{\tau}{P+\tau}\right]
$$

\Rightarrow never tax an elastically demanded good

- Ramsey (1927): Minimize the social cost of raising revenue R

$$
\text { max } V(p+\tau, I) \text { s.t. } \tau \cdot x(p+\tau, I) \geq R
$$

where $V(p, I)$ is the indirect utility function for prices p and income I

- Cool! This long predates the 1950 invention of Kuhn Tucker analysis!!
- Ramsey inverse elasticity rule:
"taxes should be proportional to the sum of the reciprocals of its supply and demand elasticities"
- \Rightarrow governments shouldn't tax elastically demanded goods or supplied goods

Planner Optimization SOC Story for Stability (Lones' Lemma)

- Maximize $U(x, \beta)$, a twice differentiable function.
- What is $x^{\prime}(\beta)$?
- FOC $U_{x}(x, \beta)=0$ at an interior solution.
- Differentiate FOC $U_{x x}(x, \beta) x^{\prime}(\beta)+U_{x \beta}(x, \beta)=0$.
- Use SOC $U_{x x}(x, \beta) \leq 0$ to get

$$
x^{\prime}(\beta)=-\frac{U_{x \beta}(x, \beta)}{U_{x x}(x, \beta)} \propto U_{x \beta}(x, \beta)
$$

- Equilibrium comparative statics. What is $p^{\prime}(\beta)$?
- Lemma: If demand \& supply slope down, welfare $=\int_{p}^{\infty} D(z)-S(z) d z$
- Proof: Plot the picture - visually, this is integrating by parts.
- Maximize welfare $\int_{p}^{\infty} D(z)-S(z) d z$ at competitive equilibrium
- FOC $D(p)-S(p, \beta)=0$
- Use SOC $D_{p}(p)-S_{p}(p, \beta) \leq 0$
$p^{\prime}(\beta)=\frac{-S_{\beta}(P, \beta)}{S_{p}(p, \beta)-D_{p}(p, \alpha)} \propto-S_{\beta}(p, \beta)$
- Stability \Leftrightarrow SOC of planner!
\Rightarrow Stable equilibrium is a local welfare max

Rear View Mirror on Competitive Supply and Demand

- Demand curve fall \& supply curves rise \Leftrightarrow heterogeneity \& convexity
- Both P and Q change given shocks $-Q$ more with greater elasticity
- Stability \Leftrightarrow signed elasticities $\eta>\varepsilon$
- Correspondence Principle: stability \Rightarrow intuitive comparative statics
- Less elastic side of market pays more of a tax (political economy 101)
- Laffer curve. PS Optimal taxation says tax more elastic goods less
- Utilitarian social welfare: area between $S \& D$ curves (units $\left(\frac{\$}{q}\right) \times q=\$$)
- Planner's SOC \Leftrightarrow stability of equilibrium

Optimal Taxation Theory Explains Real World Taxes

- Ramsey's basic insight is intuitively understood by governments
- They know to tax inelastically supplied resources:
- Oil taxes, mineral taxes
- existence tax: poll tax (head tax) in Britain (fertility impact?)
- wealth taxes are usually real estate, or at death taxes
- millionaire tax? billionaire tax?
- More rationality $\leadsto \rightsquigarrow$ more elastic response
- Example: Does income reflect effort, ability, luck or networks?
- Tax luck or ability or networks - inelastically supplied. Politically:
- left wing thinks earnings reflect luck \& networks more, right wing effort
- left wing understates elasticities \Rightarrow higher peak of Laffer curve
- Funny example of a tax fail:
- 2008, Maryland "millionaire's tax" of 6.25% tax on income $>\$ 1 M$
- 30% drop in millionaire's taxpayers and 22% drop in declared income.
\Rightarrow income taxes from this group fell by $\$ 257$ million
- Tax ended in 2010

Supply / Demand Curves: Intensive and Extensive Margins

- We introduced the supply and demand in the double auction
- There, all gains from trade - namely, producer plus consumer surplus - reflect heterogeneity.
- We now allow a realistic intensive margin,
- Output from every firm, and consumption from every consumer, increases in the market price
- the producer surplus also increases in cost convexity, and consumer surplus increases in preference convexity

Deja Vu: Flash Cost Function Review of Economics 711

- Escapable costs can be avoided vs. sunk (inescapable) costs
- "Sunk costs are sunk": they cannot possibly affect dynamically rational behavior, and should be ignored
$=$ essence of dynamic programming
- A fixed cost is invariant to the quantity.
- It can be sunk or escapable
- A variable cost has an intensive margin
- So variable costs are escapable (just vary them down to zero)
- Marginal costs are the derivative of variable costs
- Average costs are fixed plus variable costs divided by quantity
- Optimization Big Picture
- All firms equate marginal costs and price \Leftrightarrow intensive margin
- All firms: Average costs \leq price \Leftrightarrow extensive margin (no exit)
- Marginal firm: Average costs $=$ price \Leftrightarrow extensive margin (no entry)

Deja Vu: Short, Medium, Long Runs Review of Economics 711

- As the run increases, there are more choice margins, and so inescapable costs \rightsquigarrow escapable (e.g., rental contracts end).
- Short run

1. fixed costs are inescapable; cost function is just variable costs
2. Insufficient time for entry; reducing output to zero

- Ukraine consumes entire UK supply of artillery every 8 days!
- Long run

1. All costs are escapable, and so are included in the cost function
\Rightarrow Costs are higher in the long run than the short and medium runs
2. firms enter if there are profits to be made and otherwise exit

- John Maynard Keynes: "In the long run we are all dead"
- Naturally, Keynes developed a short run theory
- "Medium run"
- more decision margins available
\Rightarrow more costs escapable than in short run
\Rightarrow fewer costs escapable than in long run
- Time Magazine Cover 12/31/1965 \longrightarrow

Long Run Supply with Homogeneous Firms and Intensive Supply

- Goal: show how intensive and extensive margins interact
- We explore an illustrative extended example, focusing on supply!
- Industry supply curve locus (Q, P)
- Taking P as given, existing firms i in the short run, or all potential firms in the long run - profitably produce q_{i}, and $Q=q_{1}+\cdots+q_{n}$
- Price-taking behavior is incredible with few firms
- Cost functions $C(q)=1+q^{2}$ (fixed cost $1 \&$ variable cost q^{2})
- Continuous quantity allows us to compute supply by differentiation!
- Optimal production: $C^{\prime}(q)=P \Rightarrow$ output $q^{*}=P / 2$.
- Long Run
- No firm wishes to enter or exit, with all costs escapable: $P=C(q) / q$

$$
2 q^{*}=C^{\prime}\left(q^{*}\right)=P=C\left(q^{*}\right) / q^{*}=\frac{1}{q^{*}}+q^{*} \Rightarrow 2 q^{*}=\frac{1}{q^{*}}+q^{*} \Rightarrow q^{*}=1 \Rightarrow P=2
$$

\Rightarrow The long run inverse supply curve is $P=2$.

- Every firm earns zero profits in the long run

Short Run Supply with Homogeneous Firms and Intensive Supply

- Short run: each firm still produces $C^{\prime}(q)=P \Rightarrow$ output $q^{*}=P / 2$
- This intensive margin effect - firms sell more with a higher price was absent with double auctions
- Fix the mass m of firms $\Rightarrow Q_{m}^{S R}(P)=m q=m P / 2$ (OOd)

- All firms earns positive profits: $C_{S R}(q)=\left(q^{*}\right)^{2} \Rightarrow A C=q^{*}<P$
- The short run supply curve rises simply due to cost convexity.
- Short run profits owe to cost convexity (diminishing returns is good?)
- Example: The same firms produce, but use overtime

Short Run and Long Run Response to a Demand Increase

- Short run
- Every firm produces more (along its marginal cost curve)
- The price increases to $P^{\prime}>2$ and the quantity to $Q^{\prime}=Q^{S R}\left(P^{\prime}\right)>Q$
- Quasi-rents: temporary positive profits during adjustment $(A C<P)$
- Long run (after enough time passes so that entry occurs)
- Firm mass rises to $m^{\prime}>m$ so that short run supply allows $P=2$
\Rightarrow quantity rises to $Q^{\prime \prime}>Q^{\prime}$
- Entry \Rightarrow long run supply is more elastic (Le Chetalier's Principle)

Supply with Heterogeneous Firms and Intensive Supply

- Firm with index x has costs $C_{x}(q)=1+x^{2} q^{2}$
- Assume the index x has a unit mass density on $[1, \infty)$
- Higher index firms produce less output q_{x} when positive
- Firm x supplies $2 x^{2} q_{x}=M C_{x}=P \Rightarrow$ supply $q_{x}(P)=P /\left(2 x^{2}\right)(\dot{\circ})$
- Short run: No one shuts down, since the price exceeds non-sunk costs: $A C_{x}(q)=x^{2} q_{x}<2 x^{2} q_{x}=M C_{x}(q)=P$
- Long run
- The fixed cost 1 is escapable, and included in costs
$\Rightarrow A C_{x}(q)=1 / q_{x}+x^{2} q_{x}=2 x^{2} / P+P / 2 \leq P$ for all firms $x \leq \frac{1}{2} P$
$\Rightarrow U$-shaped average costs
\Rightarrow minimum efficient scale of firm x is $q_{x}^{*}=1 / x<1$.
\Rightarrow The minimum average cost is $A C_{x}\left(q_{x}^{*}\right)=1 / q_{x}+x^{2} q_{x}^{*}=2 x \geq 2$
- Marginal firm earns 0 profits at min $A C: P=A C_{x}\left(q_{x}^{*}\right)=2 x$
- Why? The min AC is the most efficient a firm can be!
\Rightarrow Marginal firm is $x(P)=\frac{1}{2} P$
- Price ≥ 2 : must pay for minimum average costs
- Thinker: Find long run supply for costs $C_{x}(q)=x+q^{2}$. (Hint: Elegant answer)

Long Run vs. Short Run Supply with Heterogeneous Firms

- Continuous firms allows us to compute supply by integration!
- Long run supply is all supply (\because...) by inframarginal firms $x \leq x(P)$:
$Q_{S}^{L R}(P)=\int_{1}^{x(P)} q_{x}(P) d x=\int_{1}^{P / 2} P /\left(2 x^{2}\right) d x=\left.[P / 2]\left[-x^{-1}\right]\right|_{1} ^{P / 2}=\frac{1}{2} P-1$
- This integral [or "mass" or "measure"] is well-defined for $P \geq 2$.
- The supply curve now rises due to cost convexity and heterogeneity
- Market supply is more elastic than firm supply
- Short run supply starting at a price P_{0}, i.e. with marginal seller $x\left(P_{0}\right)$:

$$
Q_{S}^{S R}\left(P \mid P_{0}\right)=\int_{1}^{x\left(P_{0}\right)} P /\left(2 x^{2}\right) d x=\left.[P / 2]\left[-x^{-1}\right]\right|_{1} ^{x\left(P_{0}\right)}=(P / 2)\left[1-2 / P_{0}\right]
$$

Thinker Q: Natural Resources Tend to be Price Volatile

- Their supply tends to be inelastic, since a well or mine has been dug, and extraction costs are lower
- What supply and demand shifts led to this price rise?

Concluding Thoughts on Extensive and Intensive Margins

- We just fleshed out the logic for supply curves
- Demand with Heterogeneous Consumers:
- If supply increases and so price falls, the new consumers like the good less and prior consumers buy more
- Demand elasticity is higher accounting for entry
- Smart phones: inframarginal consumers buy the fancier phones US SMARTPHONE OWNERSHIP OVER TIME

