An Economic Theory Masterclass

Part X: General Equilibrium with Spatial Competition

Lones Smith

March 7, 2024

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The Hotelling Model

- Iris and Joe each own lemonade pushcart along a unit beach.
- Iris is located at a and Joe at b, where $0 \le a \le b \le 1$.
- Lemonade is \$2 per glass, by fiat.
- Customers are located evenly along beach [0, 1]
 - have willingness to pay v > 1 for a single cup of lemonade
 - ▶ Buyer $x \in [0, 1]$ pays transportation cost |x a| to walk to a
 - Total sales are independent of where sellers locate (as v > 1)

Principle of Minimum Differentiation

- Given an equal sharing tie break rule if Iris and Joe locate at the same spot, the unique Nash equilibrium is a = b = 1/2.
- When Hotelling relaxed the fixed \$2 lemonade price, adding a price setting subgame, firms move away from each other.
 - d'Aspremont, Gabszewicz and Thisse (1979) famously corrected Hotelling, fifty years later!
 - ▶ Hotelling predated Nash and so learned from Cournot (1838)
- As a location metaphor for a left-right political spectrum, it explains why parties move toward the center
 - If entry is allowed, then this explains the appearance of extreme left and right third parties

Chamberlin's Monopolistic Competition

Chamberlin, A Theory of Monopolistic Competition (1933)

- Monopolistic: firms to not take prices as given
- Competitive: ∃ free entry
- Chamberlin allows both price and location competition.
- If two sellers were very close, say near x = 1/2, then each seller raises its demand by moving away from the other.
- Why? That lowers the transportation costs for a larger mass of consumers than it raises transportation costs for.
 - Chamberlin coined the term "product differentiation", Canada and Canada an

Circular Monopolistic Competition

- "Spatial" need not refer to geography
 - Transportation costs may be metaphorical
 - \Rightarrow firm demand curves are falling (steal business from neighbors)
- Firms can freely enter \Rightarrow
 - After each entry, demand curves facing all firms shift down
 - marginal firm earns zero profits
 - This is a story of State Street shops
- ⇒ Price then exceeds marginal cost when profits vanish at just one quantity q^* (demand curve is tangent to average cost)
 - This is really just a model of Bertrand-Nash price competition: since firms have falling demand curves, it is not competitive
 - ► Example: A small slice of the economics principles textbook market ⇒ millionaire: Mankiw (!!). Bernanke, Krugman.

Circular Monopolistic Competition in Models

- Hotelling's beach had two ends that were captive markets.
- For many firm applications, we desire a symmetry across firms.
- This suggests using a circle rather than a line segment:

Offline Helpful Detour: Where to Live

- Consider an in-or-out decision: which city to live in?
- Assume we pick cities for two reasons:
 - money M (wages and cost of living)
 - amenities A (museums, beaches)
- Using the theory, if k's utility is U_k(M, A) = M+A, we can impute the **unobserved** factor A from the **observed** factor M
- If consumers k vary by their marginal rate of substitution between M and A, then cities with better M have a lower A
 - Example: If the same caliber worker accepts a wage \$30K less to live in San Francisco than Chicago, then living in SF is arguably worth \$30K more than Chicago
- We now identify simultaneously the equilibrium market clearing values of living in many places

Offline: Where to Live

Flickr/A McLin

How Much Are You Willing to Pay to Live in America's Best Neighborhoods?

RICHARD FLORIDA JUNE 29, 2015

< ∃⇒

Rosen's Competitive Model of Hedonic Pricing

- Multimarket equilibrium with spatially indexed markets
- This is an important market design for IO and maybe labor
- Rosen (1974): With small fixed costs, competitive price taking behavior is a better model of product differentiation
- Goods vary by attribute size, power, weight, location
 - How does a car price vary with size, power, weight, or an apartment price vary with location?
- Hedonic prices are the implicit prices of attributes, as revealed by the observed prices of differentiated products.
- Market-clearing competitive price function of characteristics z

 $p(\mathbf{z}) = p(z_1,\ldots,z_n)$

The Consumer's Spatial Problem

- Utility $U(x, \mathbf{z})$ depends on money x and $\mathbf{z} = (z_1, \dots, z_n)$.
- ▶ The consumer with utility *U* and money income *y* solves

$$\max_{(x,\mathbf{z})} U(x,\mathbf{z}) \text{ s.t. } x + p(\mathbf{z}) = y$$

- Competition: Consumer takes the price function as given
- ► The bid function $b(\mathbf{z}, \bar{u})$ solves $U(y b, z_1, ..., z_n) \equiv \bar{u}$.
 - ▶ Indifference curve $U(y b, \mathbf{z}) \equiv \bar{u}$ has MRS $b_{z_i}(\mathbf{z}, \bar{u}) = U_{z_i}/U_x$.
 - FOC: Bid function is tangent to the price function $b_{z_i} = p_{z_i}$
- Price function p(z) is the upper envelope of the bid functions.
- Direction of lower bid functions indicated:

The Firm's Spatial Problem

- Rosen studies short run equilibrium, fixing each firm's good z
- $C(Q, \mathbf{z}) = \text{cost of quantity } Q \text{ of good } \mathbf{z} = (z_1, \ldots, z_n).$
- In the long run, the firm chooses Q and z to maximize profits

$$\max_{Q,\mathbf{z}}\Pi(p,Q,\mathbf{z})=Qp(\mathbf{z})-C(Q,\mathbf{z})$$

Competition: Firm takes the price function as given.

- FOC in Q: $p(z) = C_Q(Q, z) \Rightarrow$ supply function $Q^* = Q^*(p, z)$
- FOC in z: $\Pi_{z_i}(p, Q^*, \mathbf{z}) = 0$ for all *i* yields $p_{z_i} = C_{z_i}/Q^*$.
- Offer function $\phi(\mathbf{z}, \bar{\pi})$ solves $\Pi(\phi(\mathbf{z}, \bar{\pi}), Q^*(p, \mathbf{z}), \mathbf{z}) \equiv \bar{\pi}$.
 - FOC: Offer function is tangent to the price function $b_{z_i} = p_{z_i}$
- Price function p(z) is the lower envelope of the offer functions.
- Direction of higher offer functions indicated:

$$p \rightarrow \phi^{2}(\mathbf{z}, \pi) \rightarrow \phi^{1}(\mathbf{z}, \pi)$$

$$\phi^{1}(\mathbf{z}, \pi') \rightarrow \phi^{1}(\mathbf{z}, \pi)$$

$$z_{1} \rightarrow \phi^{2}(\mathbf{z}, \pi) \rightarrow \phi^{2}(\mathbf{z}, \pi)$$

$$11/14$$

Market Equilibrium

- Market equilibrium is
 - ▶ a price function p(z)
 - demand density $\delta(\mathbf{z})$ and supply density $\sigma(\mathbf{z})$
 - such that markets clear: $\delta(\mathbf{z}) \equiv \sigma(\mathbf{z})$ for all \mathbf{z} .
- Heterogeneity is essential: The slope of the price function reflects the value of quality change of no particular consumer.
 - ▶ p(z') p(z) overstates the value of the quality change for a consumer who buys z, and understates the value of the quality change for consumers who buy z'.
 - ▶ p(z''') p(z'') understates the cost of quality improvement for producers who sell z'', and overstates the cost of quality improvement for producers who sell z'''.

Two Location Hedonic Example

Rosen solves an elegant example but needs a differential equation, which might scare some. Let's try two locales.
Live next to the Capitol (z = 1), or far from it (z = 0)
The competitive rent at z = 0 is fixed at r > 0
There is an endogenous premium rent R > r at z = 1
Ms. θ has utility U(x, z|θ)=x + z/θ over locale z & money x
Mass μ of residents has taste 1/θ ∈ [0, μ] for Capitol
We expect low θ residents live near Capitol, and high θ far
Height h costs C(h) = L + h², given land cost premium L>0.
Height is like Rosen's quantity Q

Offline: Hedonic Example Solution (Don't Peek!)

- Mass $\bar{\theta}$ of residents $\theta \in [0, \bar{\theta}]$ live at z = 1, for some $\bar{\theta} > 0$
- A spatial competitive equilibrium $(\bar{\theta}, h, L, R)$:
 - (1) Buildings at z = 1 earn zero profits: $L + h^2 = C(h) = hR$
 - The Capitol location price premium
 - (2) Price: Each building's height is optimal: 2h = C'(h) = R
 - Production quantity: The Capitol location building height
 - (3) Resident type $\bar{\theta}$ is indifferent: $R = r + 1/\bar{\theta}$

Optimal consumer allocation between locations

- (4) Apt. market clears at z = 1: $h = \overline{\theta} =$ resident mass in $[0, \overline{\theta}]$
 - Market clearing at Capitol location
- Solving the four equations in four unknowns:
 - Solution:

 $\sqrt{L} = r + \sqrt{r^2 + 8} \& \bar{\theta} = h = r + \sqrt{r^2 + 8} \& R = 2r + 2\sqrt{r^2 + 8}$

Derivation to check on your own:

- From (1) and (2): $L = h^2 \Rightarrow h = \sqrt{L}, R = 2\sqrt{L}$
- From (3): $1/\bar{\theta} = R r = 2\sqrt{L} r$
- From (4): $\bar{\theta} = h = \sqrt{L}$
- \Rightarrow With higher land cost premium L, we have taller apartments, charging a higher rent premium R
 - Hence, Manhattan has very tall buildings and insane rents