
An Equilibrium Model of Rollover Lotteries

Giovanni Compiani Lorenzo Magnolfi Lones Smith∗

March 2024

Abstract

In a rollover lottery, buyers pick their own numbers, and a jackpot not won adds
to the next draw. We develop an equilibrium model of this lottery, since it is
a major source of government revenue. Buyers differ in their lottery enjoyment
levels, and the market-clearing price is the expected monetary loss on a lottery
ticket — namely, ticket face value less expected winnings. The supply curve
captures the relation between tickets sold and expected loss implied by the rules
of the game. We use this equilibrium model in two empirical applications. First,
we test the model’s predictions on the optimal relationship between odds and
population size using data from many countries, and across U.S. states. Second,
we propose a structural empirical implementation of the model and nonpara-
metrically estimate demand for U.S. national rollover lotteries by exploiting the
randomness inherent in the rollover mechanism. We find that the model predicts
well out of sample and show how to use it to inform lottery design.
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1 Introduction

Lotteries have a long history across the world and are very popular by many
measures. For example, American consumers spent almost $100 billion on
state-run lotteries in 2022. These revenues exceeded sales of other forms of
entertainment (such as video streaming services, concert tickets, books, and
movie tickets) combined. The national reach of lotteries is tremendous — half
of U.S. adults play the lottery at least once a year, and one-eighth play at
least once a week (Cohen, 2022). The popularity of lotteries makes them a
significant source of revenue for governments, generating $31 billion in revenue
for state and local governments in the U.S.in 2021.1 Given the sheer size of this
market, and its contribution to government revenue, lottery design questions
are important.

The major lottery format is the rollover lottery, in which (a) ticket buyers
pick their own number combinations, (b) all tickets matching a randomly drawn
winning combination win an equal share of a jackpot prize, and (c) if no one
wins, the jackpot rolls over to the next draw. The lottery authority chooses
the odds (the number of possible combinations) as well as the share of ticket
sales that rollover to the next jackpot. Such lottery changes may dramatically
impact ticket sales and government revenues. For instance, after Powerball
lengthened the odds in October 2017, average per-draw revenues increased
from $16.8 million to over $26 million.2 How can researchers make predictions
on alternative lottery designs?

In this paper, we propose a novel equilibrium model of the lottery market
based on supply and demand. We assume that the good purchased is the lottery
experience itself, which we call thrill. One buys a lottery ticket if the expected
monetary loss — the ticket price minus the expected winnings — is less than
the gambling thrill. Potential ticket buyers vary by thrill, and this heterogene-
ity generates an aggregate demand curve. In our novelty, the market-clearing
price in a lottery equilibrium is not the stated ticket price but instead the ex-
pected monetary loss on a lottery ticket — since that is formally the cost of
experiencing the lottery thrill. Next, lottery rules mechanically imply an (in-
verse) supply function that maps ticket sales to the expected monetary loss,

1Source: https://www.statista.com/statistics/249128/us-state-and-local-lottery-revenue/.
2This change will be further discussed in Section 5.5.
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conditional on the jackpot inherited from the previous draw. Of course, the
new jackpot incorporates a fraction of the current draw’s ticket sales. The in-
tersection of lottery supply and rationally forecast demand determines the new
ticket sales and expected loss. For buyers to compute the expected loss from
buying a ticket, it must be that they form an expectation of the overall number
of tickets sold. We adopt the standard assumption that their expectations are
rational.

A range of comparative statics analyses immediately follow, illuminating
the economics of rollover lotteries. For example, each rollover improves the
expected payoffs of lottery ticket buyers — i.e., it lowers the inverse supply
curve of losses, acting as a subsidy — and therefore induces more people to
play the lottery. From a revenue perspective, higher inherited jackpots have
a cost — as the jackpot may be won and paid out — but also a benefit due
to increased sales. For elastic demand (which we find in our application), we
show that a higher rollover has a net positive marginal profit up to a certain
jackpot level ($584 million for Powerball), thus shedding light on the success
of rollover lotteries. Besides providing insights into the existing lotteries, our
modeling framework allows us to extrapolate out of sample, and thus evaluate
counterfactual lottery designs.

Our model makes predictions of ticket sales, individual losses, and govern-
ment revenues, and skips a comprehensive model of individual decision-making
underlying the demand curve. We take no stand on how many tickets any-
one purchases, for instance. Instead, we directly target the aggregate demand
curve, which we estimate with market-level data on ticket sales and jackpots
commonly available to lottery authorities. This simple framework explains
the data and performs well in predicting revenues both in and out of sample.
Second, our model does not speak to a range of normative questions, such
as the regressivity of lotteries — again, because we are silent on the underly-
ing consumer optimization. Nevertheless, our positive framework complements
normative approaches. For instance, we can quantify how much revenue the
government must sacrifice if it chooses lottery parameters according to any can-
didate welfare-maximizing policy. Alternatively, given socially optimal levels of
expected loss or jackpots (e.g., Lockwood et al., 2021), our model can be used
to devise lottery designs that achieve these outcomes. This requires a notion
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of market equilibrium, which is our main theoretical contribution.
We explore the model’s empirical implications in two applications. First,

we derive a relationship between lottery odds and market size. If lottery ticket
demand scales in proportion to market size, we find that the revenue-optimal
lottery has odds that scale linearly with the market size. To test this prediction,
we construct two separate datasets: one on rollover lotteries across developed
nations all over the world, and another on state-level lotteries across U.S. states.
When using population as a proxy for market size, we find in both datasets
that the model’s predictions hold. In particular, across U.S. states — where
we expect demand conditions to be quite similar — we find an R2 coefficient
above 0.75, suggesting that the model explains the relationship between odds
and market size in the data very well.

We then consider a structural empirical implementation of the model, and
nonparametrically estimate demand for the two U.S. national rollover lotteries:
Mega Millions and Powerball. To identify their demand curves, we exploit
the peculiar nature of supply functions in this market. In a typical oligopoly
with differentiated products, supply involves strategic interaction among firms.
But in our case, inverse supply is pinned down by lottery rules. Furthermore,
inverse supply shifts down after each rollover: For any ticket sale level, expected
losses fall as the inherited jackpot rises. We exploit the randomness inherent in
the rollover mechanism to trace out the demand functions. This is analogous
to the classic idea of using cost shocks to identify demand. While our theory
provides a supply and demand framework to study the lottery market, it does
not suggest or require a specific form of consumer utility. We instead use
nonparametric methods (Compiani, 2022) to estimate the demand system as
a flexible function of expected losses and thrill components. We find average
own-loss elasticities in the range of 1.5–1.7, and little cross-substitution among
the two national lotteries, consistent with the existing literature. When we
apply the estimates to predict equilibrium outcomes out of sample, we find
that our approach fits the data well.

These two applications highlight how our modeling framework can either
suggest stylized theoretical implications, or provide quantitative counterfactual
predictions. In particular, we can predict changes in sales and revenues when
the lottery design adjusts. In our framework, changes in lottery design impact
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the lottery market equilibrium through the supply function. We illustrate this
in our last section, by showing that a higher take rate — the share of ticket
sales not contributing to the jackpot — would increase government revenues.

Our paper relates to several research strands. A large literature investigates
the public economics aspects of lotteries, including their potentially regressive
nature (e.g., Clotfelter and Cook, 1987; Oster, 2004; Kearney, 2005), the addic-
tive behavior they may generate (Guryan and Kearney, 2010), the competition
that ensues when neighboring jurisdictions offer different lotteries (Knight and
Schiff, 2012), and optimal lottery design (Lockwood et al., 2021). With re-
spect to this literature, our work is complementary as it focuses on positive
questions, characterizing the lottery market equilibrium and performing coun-
terfactual analyses. Related to our findings on lottery odds across nations and
U.S. states, Cook and Clotfelter (1993) are the first to note the empirical reg-
ularity that lottery odds tend to scale with population. While they propose an
explanation based on prospect theory, we show that this linear relationship is
also predicted by a theory with rational, risk-neutral players.

Another important literature empirically investigates the individual deter-
minants of risk preferences using either individual-level data on insurance choice
(e.g., Cohen and Einav, 2007; Barseghyan et al., 2013) or aggregate data on
betting (Aruoba and Kearney, 2011; Gandhi and Serrano-Padial, 2015; Chiap-
pori et al., 2019). In contrast, our focus is not on risk preferences, but rather
on building an equilibrium model to explain outcomes in lottery markets.

This paper is related to previous studies that estimate demand for lotter-
ies. Gulley and Scott (1993) and Forrest et al. (2000b) estimate parametric
models of demand for U.S. state lotteries and the UK national lottery, respec-
tively. With respect to these existing studies, our equilibrium model allows us
to separately study the factors affecting demand (e.g., the appeal of the outside
option) from those affecting supply (e.g., the lottery odds). This, paired with
a nonparametric approach to estimate demand, leads to more accurate predic-
tions out of sample and enables counterfactual analyses.3 In this latter aspect,
this paper adopts the spirit of recent work that leverages state-of-the-art tools
in empirical industrial organization to address policy questions where equilib-

3Walker and Young (2001) consider questions of lottery design akin to those we examine in this
paper. They use a regression of sales on moments of the prize distribution to comment on optimal
lottery design. Without an equilibrium model, it is hard to interpret their results.
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rium effects and supply responses are first-order. For instance, in the case of
Miravete et al. (2018) the response of oligopolistic firms significantly affects
the analysis of optimal taxation. Similarly, in our case, considering the supply
response (arising from the rules of the game as opposed to strategic behavior)
is fundamental to studying lottery design.

Lotteries were a famous first application of the 1944 expected utility model
of von Neumann and Morgenstern. Indeed, Friedman and Savage (1948) posed
the basic puzzle of why the same people both gamble and buy insurance. A
vast literature has since followed up exploring this natural question, which
we speak to. We assert that people gamble or buy lottery tickets for both the
expected winnings and the thrill. As a result, people buy tickets despite having
an expected loss. In Section A.1, we use the tremendously large jackpots to
rule out substantial risk preference or risk aversion since it is incompatible with
the responsiveness we observe to increasing jackpots.

The paper is organized as follows. Section 2 gives the background on rollover
lotteries. Section 3 develops our model and equilibrium analysis. Section 4
presents a first empirical application to the variation of lottery odds across
nations. Section 5 introduces a second application to the U.S. national lottery
market. Section 6 discusses how the model can be used for counterfactual
analysis. Section 7 concludes.

2 Background: Rollover Lotteries

Since ancient times, lotteries have been used to randomly allocate prizes. Ex-
amples can be found in the Bible,4 in classical Rome, and in the Han Dynasty
in China (Haigh, 2008). The concept of a lottery as a form of gambling, where
a state entity sells chances and awards monetary prizes, originated in Europe
during the Renaissance period: there are records of this practice in Venice and
Florence during the 1520s (see Bradley, 2001, and its sources). Early lotteries
adopted a similar format to modern day fundraising raffles. Tickets sold come
with a receipt that identifies the buyer, and for each prize in a pre-determined
set, the winning ticket is randomly drawn from a container. This format is

4In Numbers, 34:13: “Moses commanded the Israelites: ‘Assign this land by lot as an inheritance’.”
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impractical for anything but small-scale lotteries.5

The key innovation that would enable large-scale lotteries originated in the
1530s in Genoa, Italy (Bellhouse, 1991). In a Genoese lottery, buyers pick their
a set of different numbers, and winning numbers are drawn without replace-
ment. So selecting winners straightforward, as it involves drawing a few num-
bered balls from an urn, as opposed to drawing winning tickets that correspond
to the set of players in each raffle. Prizes (including the jackpot, corresponding
to guessing all numbers correctly) may be won by no one, or shared by many.
Early Genoese lotteries offered fixed prizes set in advance, which entailed a risk
of bankruptcy if sales were insufficient to cover prizes. This problem spurred
further innovation.

Today’s lotteries adopt a pari-mutuel payout, at least for jackpots and the
largest prizes, in which all winning tickets share the prize money equal to a
fraction of ticket sales. Moreover, a jackpot not won rolls over to the next
draw. This format has been helped by the advent of online vending, which
facilitates keeping an electronic ledger of bets and computing the prize pool in
real-time. Not surprisingly, large-scale rollover lotteries became widespread in
the late 20th century, as retail locations started being connected to comput-
erized networks. Several U.S.states introduced new lotteries in the 1980s.6 In
1982, Canada introduced the first modern national rollover lottery, Lotto 6/49,
replacing a standard fixed prize national lottery (Bellhouse, 1991).

Modern rollover lotteries currently exist in many countries across the world.
Their rules are largely similar: players choose numbers before each draw. Cor-
rectly guessing all numbers wins the jackpot, while identifying some of the
numbers wins lesser fixed prizes. Lotteries allocate a fixed share of ticket sales
to their prize pools (the take rate), and unwon jackpots roll over. The remain-
ing portion of sales is withheld by the lottery authority and is what we refer to
as government revenue.

The two national U.S. lotteries, i.e., Powerball (1992–) and Mega Millions
(2002–), have similar rules. Powerball (Mega Millions) players pick five num-
bers from 1 to 70 (69) and another from 1 to 25 (26). Both lotteries had

5When the first English state lottery was held in 1567, adopting the raffle format and resulting
in more than 400,000 tickets sold, the draw took four months to be completed (Haigh, 2008).

6For instance, New Jersey introduced Pick-6 Lotto in 1980 after establishing a retail network of
up to 2,000 locations. See https://www.njlottery.com/en-us/aboutus/history.html.
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bi-weekly draws, one midweek and one on the weekend, until Powerball intro-
duced a third draw in 2021. These lotteries add more to state revenues than
the corporate income taxes in many states.7

States face complex dynamic tradeoffs when setting lottery policy. Consider
for instance that a higher take rate yields more revenue for any given ticket
sales, but deters ticket sales and so hampers jackpot growth. Similarly, longer
odds reduce the winning probability for any given jackpot, discouraging playing
the lottery; on the other hand, they raise the chance of long rollover streaks
with high eventual jackpots, boosting later ticket sales. Our equilibrium model
allows us to use lottery data to estimate demand and smartly make these
tradeoffs. It can thus guide lottery design.

3 Model

3.1 Setup

In our theoretical framework, ticket sales and jackpots arise from an equilibrium
crossing of demand and supply for lottery tickets.

On the demand side, we assume that consumers cannot individually impact
the current outcomes or future trajectory of jackpots. They thus act myopically
for the current draw. Consumers trade off two lottery attributes: the gamble
over the monetary loss — calculated using a risk-averse, neutral, or loving
utility function — and the non-monetary thrill of the lottery experience. In
what follows, we assume risk neutrality8 in which case, the expected monetary
loss from the lottery is decisive. Someone with a negative thrill dislikes the
lottery experience but might play if they expect to win a positive amount. But
anyone who enjoys a positive thrill is willing to play if they don’t expect to
lose too much money. As the expected loss increases, the number of lottery
tickets sold Q falls. Integrating over the distribution of thrill values gives rise
to a standard downward-sloping inverse demand function loss Λ(Q). Notably,
the loss plays the role of the price in our market, and not the lottery ticket
face value. Here, we can act without loss of generality as if everyone buys at

7Source: U.S. Census Bureau, State Government Finances, https://www.census.gov/topics/
public-sector/government-finances/data.html.

8We discuss preferences with risk loving or risk aversion in Appendix A.1.
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most one lottery ticket. For given our exclusive focus on aggregate demand, a
consumer buying n tickets yields the identical demand of n individuals all with
the same thrill level buying one ticket each. Assume that Λ(Q) is differentiable.
Lottery demand functions are the main primitives estimated empirically in the
application of Section 5.

We now flesh out the ticket supply. As usual, a supply function summarizes
purchase opportunities available to consumers. But unlike standard markets,
supply does not reflect active choices made by firms but rather embeds the
lottery rules. The inverse supply curve maps the quantity Q of tickets sold in
a given draw to the corresponding expected monetary loss implied by the laws
of probability.9 Under risk neutrality, the expected monetary loss is the ticket
price p minus the expected winnings — namely, the sum of the expected jackpot
winnings and the expected payoff w > 0 from lesser, non-jackpot prizes.10

The expected jackpot winnings depend on the final jackpot at the end of
the draw period and the probability of winning inclusive of possible ties. A
fraction τ (the take rate) of ticket revenues is withheld to pay for lesser prizes,
lottery expenses, and government revenue.11 Thus, the final jackpot is the
inherited jackpot J from any rollover plus a share 1 − τ of the current draw
revenues not withheld by the lottery authority. So the jackpot for the current
draw is J+(1−τ)pQ, where J is zero if someone won the jackpot in the previous
draw.12 Each ticket has an equal probability π of winning the jackpot, equally
split among all winners. To facilitate our derivations, we let α = − log(1−π) ≈
π; the approximation error O(π2) is very small — since π is of order 10−8 for
national lotteries in the U.S. For simplicity, we hereafter call α the win chance,
and 1/α the lottery odds.

Combining these pieces yields an inverse supply curve L(Q|J), mapping
the ticket quantity sold Q into the uniquely associated expected monetary loss
based on the lottery rules, given inherited jackpot J . The expected loss L also
depends on the take rate τ , winning chance π, and ticket price p, but we often

9Throughout the analysis, we treat Q as a real number as opposed to an integer for simplicity.
10These are fixed probability prizes, excluded from the rollover mechanism, awarded to whomever

matches three to five of the six winning numbers.
11Consistent with the data for Powerball and Mega Millions, we maintain that w < pτ , which

ensures that the non-jackpot prizes are fully covered, meaning that the lottery does not lose money.
12Some rollover lotteries, including Powerball and Mega Millions, reset to a positive prize floor

after someone wins the jackpot. We abstract from this aspect to streamline the model presentation.
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suppress these arguments. The rollover feature plays a key role in identifying
our demand, since the lottery changes draw by draw. Theorem 1 formulates
the precise supply curve.13

Theorem 1 (Risk Neutral Supply) The inverse supply is:

L(Q|J) = p − w − [J/Q + p(1 − τ)][1 − e−αQ]. (1)

For a quick proof, observe that the expected winnings per ticket equal w

plus the expected per-ticket jackpot winnings, namely J + p(1 − τ)Q times the
chance 1−e−αQ that the jackpot is won this draw,14 divided by the quantity Q

of tickets sold. Appendix B.1 offers an instructive alternative derivation of (1)
that accounts for the many ways the jackpot can be multiply shared among
2,3,4,. . . winners.15

The inverse supply function depends on the quantity of tickets Q via two
channels. As Q grows, more revenues inflate the final jackpot, thus lowering the
expected loss. On the other hand, ties among multiple winners are more likely
if more tickets are sold, which raises the expected loss. Thus, unlike textbook
cases, here the inverse supply curve might fall in Q. This occurs when the first
force dominates, which intuitively happens at small inherited jackpots J when
new ticket sales matter more.

The supply curve depends on the inherited jackpot J . First, inverse supply
shifts down as J rises. For the expected loss intuitively falls as the inherited
jackpot rises, all else equal. Also, as J increases, inverse supply transitions
from decreasing and convex in Q (for low J), to decreasing and then increasing
in Q (for medium J), to increasing and concave (for large J). For any J , the
inverse supply tends to pτ − w as Q → ∞, since a large enough number of

13A formula for the expected value of the jackpot in a rollover lottery appears in Cook and
Clotfelter (1993). The novelty in Theorem 1 is formulating loss as a supply function, enabling
equilibrium analysis.

14This is the win chance for integers Q > 0, for no one wins with chance (1−π)Q =
(
elog(1−π)))Q =

e−αQ. For instance, if ticket sales equal the lottery odds 1/α, then no one wins the lottery with
chance 1/e ≈ 37%.

15Our characterization of supply implicitly assumes that players choose numbers at random. Al-
though there is evidence that this is not the case (see, e.g., Thaler and Ziemba, 1988), previous
research finds that this is unlikely to matter quantitatively. For instance, Cook and Clotfelter
(1993) find the correlation between actual coverage (i.e., the number of combinations played at least
once) and random coverage to be almost 1 in Illinois lottery data.
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Expected Loss
p − w

pτ − w

Q

L1

L2

L3

L4

Figure 1: Inverse Supply Curves as the Jackpot Rises. We depict Theorem 2,
with schematic inverse supply curves Li = L(·|Ji) for respective jackpots J1 < J2 <
J3 < J4. For low jackpots J < 2p(1 − τ)/α, supply is first convex then concave,
and first decreasing then increasing, while supply is concavely increasing for high
jackpots J > 2p(1 − τ)/α.

tickets sold for a draw swamps any inherited jackpot J . Theorem 2 formalizes
these claims if inverse supply, depicted in Figure 1.

Theorem 2 (Shape of Inverse Supply Curve)
(a) Inverse supply is positive at Q = 0 for low inherited jackpots: J < (p−w)/α.
(b) At inherited jackpot J = 0, supply is both globally falling and strictly convex.
(c) If 0 < J < 2p(1 − τ)/α, then supply is initially positive, falling and strictly
convex, then rising and strictly convex, and finally rising and strictly concave.
The supply minimum and inflection points fall in the inherited jackpot J .
(d) If J > 2p(1 − τ)/α, then supply is rising and strictly concave.
(e) For any inherited jackpot J , supply tends to pτ − w as Q → ∞.

A classic fixed jackpot lottery has monotonically rising supply curve L(Q|J) =
p−J/Q. A pure parimutuel has an infinitely elastic inverse supply L(Q|J) = τp

(from the take rate). The original Genoese lottery with no rollover has an in-
creasing supply curve L(Q|J) = p−J [1−e−αQ]/Q, while a parimutuel Genoese
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lottery has a falling supply curve L(Q|J) = p−w[1−e−αQ]. The rollover lottery
yields a supply curve like a parimutuel Genoese at low jackpots and original
Genoese at high jackpots.

Proof of Theorem 2: For the vertical intercept of supply in part (a), consider:

L(0|J) = p − w − [J/Q + p(1 − τ)][1 − e−αQ]
∣∣∣
Q=0

= p − w − Jα. (2)

The proofs of (b)–(d) are in Section B.2, but the rely on the derivative of (1):

L′(Q|J) = J/Q2 − e−αQ
(
[J/Q + p(1 − τ)]α + J/Q2

)
. (3)

By rewriting this and L′′(Q|J) as Taylor series, we compute thresholds
Q ≥ Q ≥ 0, such that supply shifts from falling to rising at Q, and has an
inflection point Q. Also, 0 < Q < Q for small inherited jackpots, 0 = Q < Q

for larger inherited jackpots, and Q = Q = 0 for the largest inherited jackpots.
Part (e) follows by inspecting (1). 2

3.2 Equilibrium Analysis

A lottery equilibrium for a draw is a crossing of supply and demand — namely,
the equilibrium quantity Q(J) at which inverse supply (1) equals inverse de-
mand Λ(Q):

L(Q(J)|J) ≡ Λ(Q(J)). (4)

In words, Q(J) is market-clearing equilibrium quantity for the inverse demand
Λ(Q) and inverse supply (expected loss) L(Q|J) at jackpot J . Since consumers
must correctly forecast how many tickets will be sold to compute the expected
ticket loss, a lottery equilibrium is a rational expectations equilibrium. While
a strong assumption, this is supported by the good fit of the model in our
empirical applications (Sections 4 and 5). In addition, Forrest et al. (2000a)
find empirical evidence for rational expectations for the UK national lottery.

We now provide conditions under which the equilibrium is unique and stable
— namely, such that, given a small over- or under-purchase of tickets, market
forces push demand back toward equilibrium. As usual, a lottery equilibrium
is stable if the (possibly downward-sloping) inverse supply cuts the inverse
demand curve from below at any crossing, i.e. Λ(Q) = L(Q|J) implies Λ′(Q) <
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Expected Loss
p − w

pτ − w

Quantity

L1

L2

L3

L4

E1

E2

E3
E4

Figure 2: Lottery Equilibria as Inherited Jackpot Rises. This shows lottery
equilibria for supply curves with inherited jackpots J1 < J2 < J3 < J4 from Figure 1.

L′(Q|J). For then, if slightly more tickets sell (so Q > Q(J)), the available
inverse supply loss exceeds the inverse demand (see Figure 2), discouraging
marginal ticket purchases.

We can now establish the existence and uniqueness of a stable equilibrium.

Theorem 3 Assume inverse demand Λ(Q) exceeds inverse supply (2) at Q =
0, is below p − w for large Q, and is steeper than supply at any crossing where
L′ < 0. Then there is a unique equilibrium, and it is stable.

The proof in Section B.3 uses the intermediate value theorem, a falling demand
curve, and a unique supply inflection point. We will see empirically that the as-
sumptions on demand in Theorem 3 are met in our application to U.S. rollover
lotteries. Uniqueness of the equilibrium is helpful in empirical analysis as it im-
plies that one need not worry about multiple equilibria both in estimation and
in counterfactual analysis. In addition, as Samuelson’s correspondence princi-
ple makes clear, stability in partial equilibrium models is critical for intuitive
comparative statics predictions. In our case, it ensures that the equilibrium lot-
tery loss falls in the inherited jackpot, since the inverse supply L falls in J , as
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depicted in Figure 2. We record this and other comparative statics predictions
in the following theorem.

Theorem 4 The stable equilibrium quantity Q(J) falls in the ticket price p

and take rate τ , and rises in the inherited jackpot J and winning chance α.

Proof: Easily, from (1), the supply loss falls in the inherited jackpot J :16

LJ(Q|J) = −[1 − e−αQ]/Q < 0.

Differentiate (4) in J , using (1). Since LJ < 0 and Λ′(Q(J)) − L′(Q(J)|J) < 0
by stability:

Q′(J) = LJ(Q(J)|J)
Λ′(Q(J)) − L′(Q(J)|J) > 0. (6)

We can proceed likewise, and compute supply derivatives in α, p, and τ from (1):

Lα(Q|J, τ, α, p) = −Q[J/Q + p(1 − τ)]e−αQ < 0
Lp(Q|J, τ, α, p) = 1 − (1 − τ)[1 − e−αQ] > 0
Lτ (Q|J, τ, α, p) = p[1 − e−αQ] > 0. (7)

and then analyze quantity shifts in p, α, and τ . For example, we can differen-
tiate (4) in τ at Q = Q(J, τ, α, p), and sign it with (7) and stability:

Qτ (J, τ, α, p) = Lτ (Q|J, τ, α, p)
Λ′(Q) − L′(Q|J, τ, α, p) = p[1 − e−αQ]

Λ′(Q) − L′(Q|J, τ, α, p) < 0.

We likewise can conclude Qα > 0 > Qp at any stable equilibrium. 2

This result sheds light on the economics of the jackpot rollover. Why would
a rollover lottery be preferable to a fixed prize lottery? Loosely, the rollover
acts like a per unit subsidy on the next lottery draw, since it reduces the
ticket loss. When taxing an activity, a greater subsidy is profitable when the
response is elastic — namely, above the Laffer curve peak. So for a supply
elasticity η = ∞ — such as for a standard parimutuel lottery with a constant
take rate — a demand subsidy is profitable with elastic demand — namely,
demand elasticity ε < −1.

16Here, when necessary, we make explicit the dependence of the inverse supply and of the equi-
librium quantity on the take rate τ , the win chance α and the ticket price p. We denote partial
derivatives of the loss function in J , τ , α or p by subscripts throughout the paper.
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But the supply curve for a rollover lottery is not infinitely elastic. Adapt-
ing (6), in equilibrium, the slope of lottery revenue in the inherited jackpot J

is:
MRJ = (pτ − w)Q′(J) = (1 − e−αQ)(pτ − w)/L

1/η − 1/ε
. (8)

Meanwhile, the marginal cost of a rising jackpot J is MCJ = 1−e−αQ, namely,
the probability that the jackpot is won next draw.17

By Theorem 2, at low jackpots J , supply is falling and so its elasticity η is
negative, but absolutely smaller than ε. In this case, the J-marginal revenue
(8) exceeds |ε|MCJ — since the numerator in (8) exceeds one at large jackpots,
by Figure 2. We will see later in Figure 6 that demand is everywhere elastic for
the two national rollover lotteries in the U.S., and thus if the lottery authority
could deviate from the rules at low jackpots, a small jackpot increment would
be strictly profitable.18

But for large enough jackpots J , supply is forever rising by Theorem 2,19

and so has a positive elasticity η > 0. So the J-marginal revenue (8) is strictly
below |ε|MCJ , and thus potentially below MCJ . The lottery authority at this
point would strictly desire a lower jackpot subsidy starting at that point, if it
could do so. This suggests why the jackpot rollover is profitable, and clarifies
the limits on its profitability.

Theorem 4 is also important because it motivates our identification strategy
in Section 5.3: exogenous increments in inherited jackpots shift the inverse sup-
ply down and thus help trace out the demand curve, as illustrated in Figure 2.

To conclude, in this section we have focused on the case of a single lottery.
With multiple lotteries (e.g., Powerball and Mega Millions, which we study
empirically in Section 5), the proofs readily extend. Specifically, each supply
function is independent of the other since the rules of the game do not involve
any interaction between different lotteries. On the demand side, there may be
interactions between lotteries (we estimate them to be small), in which case the
arguments in this section apply with “residual demand” replacing “demand.”

17To see that equality of MCJ and MRJ determines static optimality, note that a $1 increase in
J has a net payoff of (pτ − w)Q′(J) − 1 if someone wins (chance 1 − e−αQ) and (pτ − w)Q′(J) if not.

18Not surprisingly, in many cases including the large U.S. rollover lotteries we examine in our
application, the lottery subsidizes early draws by guaranteeing a minimum jackpot.

19This happens if J > 2p(1 − τ)/α. For instance, for Powerball, τ = 50%, p = 2 and α is 1 in 292
million, implying a jackpot threshold of over $584 million.
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4 Application 1: Lottery Odds Across Jurisdictions

We now explore the model’s dynamic theoretical predictions. Specifically, we
provide a first informal test of the model by shedding light on a known empirical
regularity: lottery odds tend to vary in proportion to the population of the
country or state. For instance, Powerball and Mega Millions each have jackpot
odds of around 300 million to one, while Canada’s Lotto Max has odds of about
33 million to one. We show that our model predicts this regularity under the
additional assumption that lottery authorities maximize revenues, and that it
holds broadly across different datasets.

4.1 Odds and Population: a Theoretical Analysis

We now assume that ticket demand, as formulated in Section 3, scales with
the population. Namely, there is a fixed function Λ such that inverse demand
is ΛN(Q) = Λ(Q/N) for a country that is N times as populous. For example,
if country A is twice as populous as country B, then A has double the lottery
ticket demand of B, for each expected loss. For supply, if the lottery win
chance scales to α/N , then the probability that someone wins 1 − e−(α/N)(NQ)

is unchanged at each loss — since ticket sales rise by a factor N . All told, the
equilibrium quantity function QN(·|α) for a country N times more populous
than the country solving (4) obeys QN(·|α/N) ≡ NQ(·|α).20

Now, assume a new lottery cycle starts. If no one wins in periods 0, 1, . . . k−
1, the kth positive jackpot Jk(α) adds the untaxed portion of all past lottery
ticket sales: Jk(α) = (1 − τ)pQ(J0(α)|α) + · · · + (1 − τ)pQ(Jk−1(α)|α). By
independence of lottery draws, the probability that a new cycle starts with
k + 1 rollovers is the product:

e−αQ(J0(α)|α) · · · e−αQ(Jk(α)|α) = e−αJk(α)/[p(1−τ)].

This yields the following formula for the time undiscounted average lottery
20Indeed, we see that given the assumption on demand, the equilibrium equation (4) holds for any

scale factor N > 0 — namely, L(QN (J)|J, α/N) ≡ ΛN (QN (J)) — if it holds for N = 1.
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revenue:21

V (α) = pτ
Q(J0(α)|α) + e−α

J0(α)
p(1−τ) Q(J1(α)|α) + e−α

J1(α)
p(1−τ) Q(J2(α)|α) + · · ·

1 + e−α
J0(α)

p(1−τ) + e−α
J1(α)

p(1−τ) + · · ·
.

(9)
A rollover lottery is innately dynamic, and this formula accounts for the

intertemporal trade-off the lottery authority faces in devising lottery rules. For
instance, a lower win chance α raises the initial loss and so reduces demand
and early lottery revenues. But it raises the chance that the jackpot grows
very large, thus increasing demand and revenues later on. If lottery ticket
demand is proportionately similar across states or countries, (9) allows us to
deduce that the optimal lottery win chance scales with the population, and
that consequently, the stochastic process of jackpot win chances should not
vary in the population.

Theorem 5 Assume that ticket demand scales proportionately in the popula-
tion N , so that inverse demand is Λ(Q/N), for some fixed function Λ. If
the win chance α is optimal, the win chance α/N is optimal in a region with
population N times higher.

Proof: For a country N times as populous, write (9) as VN(α) ≡ pτBN(α)/CN(α),
where BN(α)≡NB1(Nα) and CN(α) ≡ C1(Nα). Maximizing VN , the FOC is:

B′
N(α)CN(α) = BN(α)C ′

N(α) ⇔ B′
1(Nα)C1(Nα) = B1(Nα)C ′

1(Nα).

So α∗/N is optimal for N iff α∗ is optimal for N = 1, as asserted. 2

4.2 Lottery Data and Empirical Analysis

We introduce two datasets that we use for testing the predictions of Theorem 5:
a dataset of rollover lotteries across countries and one of U.S. state lotteries.

First, we construct a database of large rollover lotteries from OECD coun-
tries. For each country, we obtain population data from the Census Bureau.
We identify the largest (by sales) rollover lottery in each country, collect in-
formation on lottery rules, including odds, and exclude lotteries that substan-

21Given a stochastic process of rewards zn in periods n = 0, 1, 2, . . . that eventually may stop, and
continues in period n with chance pn, the mean reward is (z0 +p0z1 +p1z2 + · · · )/(1+p0 +p1 + · · · ).
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(a) Odds across countries

(b) Odds across U.S. states

Figure 3: Lottery odds and population. The two panels show scatter plots of
rollover lottery odds (in millions) and country (in panel a) or U.S. state (in panel
b) populations (in millions). Each panel also shows a simple regression line. Slope
estimates (t−statistics in parentheses) are 0.59 (1.53) and 1.14 (10.49), respectively.

tially alter the rollover mechanism (e.g., by capping the maximum number of
rollovers, or by capping the jackpot). This yields a database of twenty-four
countries, each with a corresponding rollover lottery.

We now turn to the U.S. Almost all states participate in Powerball and

18



Mega Millions. We consider detailed data from these lotteries in Section 5,
where we construct an empirical model of the national lottery market. Instead,
here we focus on smaller state-level rollover lotteries. These lotteries are run by
state agencies and are regulated by state legislatures, with state laws setting
lottery rules including odds. Compared to national lotteries, state rollover
lotteries have similar rules, but much smaller jackpots. For each state, we
collect population data, and obtain data on the lottery’s odds from the websites
of state lottery agencies. Overall, forty states offer rollover lotteries with rules
that match our model.

By Theorem 5, as long as demand for rollover lotteries scales proportionally
with population, revenue-maximizing lottery authorities would set odds in a
way that also scales with population. We seek evidence on this by computing
the relation between population and lottery odds in each of our datasets (across
countries for the first and across states for the second). We report scatter plots
and regression lines in Figure 3.

Across nations (panel (a)), we observe a positive relationship between odds
and population, as the model predicts, but with large outliers. A potential
explanation for this result is that, across very different nations, the demand
functions vary substantially, which violates the assumption from Theorem 5
that demand scales proportionally with population. On the other hand, across
U.S. states, the demand functions for state lotteries is likely to be much more
homogeneous. Panel (b) of the figure supports this theory: a simple regres-
sion of state-level odds on population now has an R2 of 0.76. Thus, in a more
homogeneous context where demand may scale with population, our theory of
optimal lottery odds is supported by the data. We further note that, even in a
homogeneous context, we would not expect a perfect correlation between lot-
tery odds and population if the lottery authorities’ objective function depends
on other factors besides revenues.

In sum, the data broadly supports the relationship between lottery odds
and market size predicted by our model, assuming that lottery authorities
maximize revenue and demand scales with population. Although these strong
assumptions are needed to obtain immediate testable implications from the
model, our framework can also be used as a basis for quantification exercises
when combined with credible estimates of demand, which we pursue next.
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Mega Millions Powerball
Start date Oct 19, 2013 Jan 15, 2012 Oct 7, 2015
Ticket price ($) 1 2 2
Format 5/75 + 1/15 5/59 + 1/35 5/69 + 1/26
Jackpot (avg., $ million) 98 105 176
Reset value ($ million) 16 40 40
Probability of Jackpot Win 1/258, 890, 000 1/175, 223, 510 1/292, 201, 338
Expected loss (avg., $) 0.38 0.60 0.60

Table 1: Lottery Rules and Main Summary Statistics. This table reports in-
formation on lottery rules and summary statistics. Different columns refer to the two
U.S. national lotteries (Mega Millions and Powerball) after the start date indicated.
All dollar amounts are in nominal dollars. We convert annuity values to cash values
using the discount rates applied by the lottery authority — see Appendix C for more
details.

5 Application 2: The National U.S. Lottery Market

We now use our theoretical framework from Section 3 to construct and estimate
an empirical model of the U.S. national lottery market.

5.1 Lottery Data

We obtain data on draw-level prizes and sales for the two U.S. national lotteries,
Powerball and Mega Millions, scraped from official lottery worksheets. We also
collect state-draw-level sales data from the website LottoReport.com.22 We
estimate the model on the period from October 19, 2013 to October 4, 2015
(204 draws) and use the period from October 7, 2015 to October 28, 2017 (216
draws) for out-of-sample validation.23 In this latter period, Powerball changed
its rules by substantially lengthening the odds of winning. This change allows us
to assess how well our model captures equilibrium outcomes when taken truly
out of sample, which corresponds to many counterfactual exercises that are
relevant for lottery design. Table 1 shows the main lottery rules and summary
statistics in our data.

As shown in Figure 4, national sales of the two lotteries fluctuate across
22Further information on our data is in Appendix C.
23Starting on October 28, 2017, Mega Millions changed its ticket price from $1 to $2. Since we

offer no model of individual decision-making, we cannot speak to this change. If buyers choose to
spend a given amount of money to secure their thrill, then this change should be neutral, since
buyers would choose to buy half as many tickets after the price doubles.
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Figure 4: Mega Millions and Powerball sales. This shows the time series of sales
(millions of tickets sold nationwide) for Mega Millions and Powerball in our sample.

draws, responding to the large fluctuations in the jackpot, which in turn gen-
erate large swings in expected loss. To quantify this elasticity, we estimate
a flexible demand model in the rest of this section. We also note that sales
and expected losses have a cyclical nature, and that the rollover mechanism
generates outliers, such as the $1.6 billion Powerball jackpot of January 2016.

5.2 Empirical Model and Identification

Our equilibrium model takes as key inputs the demand and supply functions.
Supply is fully determined by the lottery rules and therefore requires no esti-
mation. Turning to demand, we choose to model it nonparametrically. This
allows us to estimate the functions flexibly, which is important in our setting,
as the shape of demand — and particularly its curvature — is known to af-
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fect market equilibrium.24 More specifically, we maintain risk neutrality, so
that only expected loss matters, but do not impose parametric restrictions on
how demand depends on expected loss and thrill (besides intuitive monotonic-
ity restrictions). Because we directly target the demand functions and do not
commit to a specific model of individual behavior, our estimates are consistent
with a range of micro-foundations (Berry and Haile, 2014).

We model the demand for the two lotteries in draw t and state s as follows:

qMM,s,t = σMM(δMM,s,t, δP B,s,t, λMM,t, λP B,t)
qP B,s,t = σP B(δP B,s,t, δMM,s,t, λP B,t, λMM,t),

(10)

where qj,s,t is the quantity of tickets sold for lottery j, λj,t denotes the expected
loss for lottery j, and

δj,s,t = x′
j,s,tβ + ξj,s,t

for observed attributes xj,s,t and unobservable lottery characteristics ξj,s,t cap-
turing any drivers of lottery demand that vary at the state-draw level (e.g.,
demand for lotteries may be especially low in Kentucky during the week of
the Kentucky Derby since other betting opportunities are particularly salient).
The vector xj,s,t consists of the number of years since the lottery was introduced
in the state, fixed effects — for state, week, and lottery — and a dummy for
whether the draw was in the first or second part of the week. The expected
loss λj,t is the same across states s since this is a national lottery, i.e. the sales
across all states contribute to the jackpot and thus to the expected loss. Let

Qj,t =
∑

s

qj,s,t

denote the corresponding aggregate demand across states in a given draw. To
connect the empirical model with the theoretical framework, fix (δMM,s,t, δP B,s,t)
for all s and the loss for the competing lottery, and invert Qj,t in λj,t to obtain
the (residual) inverse demand. This corresponds to the function Λ in Section 3.

We now discuss what variation in the data identifies the model. We focus
on the residual demand of either lottery and drop state subscripts. Our point
of departure is the standard equilibrium analysis in markets for differentiated

24Standard models (e.g., mixed logit) can accommodate rich demand curvatures (Miravete et al.,
2023), but it may be hard to estimate sufficiently flexible specifications with aggregate data.
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products. In the standard model, one typically uses exogenous supply shifts
(induced by, e.g., cost shocks) to trace out the demand curve. Similarly, here
the rollover mechanism exogenously shifts the supply curve. Thus, the key
source of identifying variation is similar.

However, our setting differs from the standard contexts in meaningful ways.
First, we note that supply — usually determined by a cost function and a
markup function — is trivially identified in our setting, as it is purely a me-
chanical by-product of the lottery rules. This contrasts with what happens
in a standard model, where marginal cost needs to be identified, and firms’
markups are determined by an assumed model of strategic interaction. Thus,
our empirical context rules out one standard econometric endogeneity concern:
while typically firms set prices responding to the full vector of demand and cost
unobservables in a market, our supply is known and non-strategic.

But unobserved demand shocks ξ may still be present and make the iden-
tification of demand non-trivial. In fact, since the supply curve is not flat,
demand shocks will generally be correlated with a lottery’s expected loss via
the equilibrium mechanism. Note that, depending on the shape of the supply
function, this correlation may have a surprising sign. In standard settings,
demand shocks tend to be positively correlated with prices, thus attenuating
the elasticity estimates towards zero if endogeneity is not taken care of. In
our setting, demand shocks are also positively correlated with expected loss
as long as supply is upward-sloping at the equilibrium. But in areas where
supply is downward-sloping, demand shocks and expected loss will be nega-
tively correlated, thus potentially generating a downward bias on loss elasticity
estimates. This mechanism is illustrated in Figure 5: a shift in demand from
Λ to Λ′ corresponding to a negative shock to lottery demand — for example,
a big sporting event yielding alternative betting opportunities — results in a
decrease in equilibrium expected loss as it occurs along the upward-sloping
part of the supply curve. However, a further negative shift in demand would
have potentially resulted in an increase in expected loss, as demand meets the
downward-sloping part of the supply curve.

This analysis underpins our identification strategy: because supply is gener-
ically non-flat, we need an instrument to identify the demand curve. The in-
strument needs to affect the expected loss for the lottery, and be exogenous to
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Figure 5: Negative Lottery Demand Shock. This figure depicts the equilibrium
effects of a negative shock to lottery demand, shifting inverse demand from Λ to Λ′.

unobserved demand shocks. A strong predictor of the level of the jackpot, and
thus the expected loss, is whether a rollover occurred in the last lottery draw
— which happens if no one won the lottery. But directly using an indicator for
whether someone won at time t − 1, denoted as winjt−1, as an instrument for
the expected loss at time t is not a viable strategy. A positive shock to ξjt−1

will result in higher sales Qjt−1, and thus a higher probability that someone
wins the lottery at time t − 1. So ξjt−1 and winjt−1 are correlated. If demand
shocks ξjt are serially correlated across time periods, winjt−1 is also correlated
with ξjt, violating exogeneity.

Rather than directly using winjt−1, we leverage our knowledge of the supply
function to construct an instrument for the expected loss. Denoting by It the
time t information set, we know that

E [winjt−1|It−1] = 1 − e−αjt−1Qjt−1 .

While E [winjt−1|It−1] clearly depends on Qjt−1, which in turn depends on
ξjt−1, we seek to isolate (as a residual) the pure randomness of the draw to
generate exogenous variation in expected loss. To this end, we define

zjt−1 = winjt−1 − E [winjt−1|Ijt−1] .

By construction, this variable is independent of all variables determined at time
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t−1, including Qt−1, thus making zjt−1 a viable instrument even in the presence
of serial correlation in the unobservables ξjt−1. Our identification assumption
is then:

E [ξjt|zt−1, xt] = 0,

where xt are the observed exogenous characteristics. Consistent with Berry
and Haile (2014), the excluded instruments zt−1 provide exogenous variation
to tackle the endogeneity of expected losses, whereas the exogenous variables
xt serve as (included) instruments for quantities, which are also endogenous
in equilibrium. When we regress the endogenous variables on exogenous vari-
ables, we obtain large F -statistics and coefficient signs that are consistent with
economic intuition.25

While we maintain that this strategy is credible in our setting, we also
mention possible threats to identification. Even when using only the “sur-
prise” element of a lottery win, if unobserved demand shifters ξjt are set in
a way that is dependent on zt−1, our identification strategy is invalid. This
could occur for instance if the lottery authority ramps up promotional activity
following a jackpot win – which we do not believe is happening in our empiri-
cal environment. Alternatively, a big jackpot win could boost demand for the
lottery in subsequent draws. In particular, Guryan and Kearney (2008) find
that stores selling the winning ticket tend to see increased ticket sales in later
draws. This effect is highly localized and thus does not pose a threat to our
identification strategy since our data is at the state level. Only the case where
demand for the entire state is boosted as a result of a previous win invalidates
our instrument, and that is not consistent with the available evidence.

Finally, while in the standard model the causality goes from exogenous ξ to
price (a higher demand shock ξ leads to higher prices in equilibrium), here the
causality could go in both directions. For example, ξ could represent media
buzz that is itself generated by higher jackpots. This is relevant for how one
should treat the unobservables ξ in the counterfactuals, but econometrically
nothing changes as long as the exogeneity condition is met.

25See Table 4 in Appendix C.3 for the full set of results.
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5.3 Nonparametric Estimation of Demand

We estimate demand functions σMM and σP B as well as the coefficients β on the
exogenous x variables using the sieve-GMM approach proposed in Compiani
(2022). Specifically, denoting a given lottery by j and the other lottery by k,
we use results in Berry and Haile (2014) to write

δj,s,t = σ−1
j (qj,s,t, qk,s,t, λj,t, λk,t)

and approximate σ−1
j via Bernstein polynomials. Note that (σ−1

MM , σ−1
P B) is

the inverse of the demand system (σMM , σP B) in (10) with respect to its first
two arguments — the δ indices — while keeping the last two arguments (the
expected losses) fixed. A sufficient condition for the inverse to exist is that the
two lotteries be weak substitutes, i.e. that as the expected loss of one lottery
increases, the number of tickets sold for the other lottery (weakly) increases.
We impose this restriction in estimation, but avoid any parametric assumptions
on the shape of the demand curves. Specifically, we approximate the function
σ−1

j (qj,s,t, qk,s,t, λj,t, λk,t) using a linear combination of Bernstein polynomials:

σ̂−1
j (qj,s,t, qk,s,t, λj,s,t, λk,s,t) ≡

∑
0≤v1,v2,y1,y2≤m

θv1,v2,y1,y2bm
v1(qj,s,t)bm

v2(qk,s,t)bm
y1(λj,t)bm

y2(λk,t)

where θ denotes coefficients to be estimated and {bv,m}m
v=0 the univariate Bern-

stein basis polynomials of degree m26, so that the overall approximation degree
is 4m. We estimate the coefficients (β, θ) by minimizing a sieve-GMM criterion
function obtained by projecting the residuals σ̂−1(qj,s,t, qk,s,t, λj,t, λk,t) − x′

j,s,tβ

onto the exogenous variables (x, z). The objective function is a quadratic form
in the coefficients (β, θ). Paired with the fact that substitution between the
lotteries can be enforced via linear constraints on θ, this yields a well-behaved
convex programming problem. We refer the reader to Compiani (2022) for
details on the implementation of the estimator.27

26The Bernstein polynomials of degree m are bv,m(x) =
(

m
v

)
xv(1 − x)m−v for v = 0, . . . , m.

27We also constrain the coefficients θ to be the same across the two lotteries. In words, this means
that the shape of the two demand functions is assumed equal. Of course, this does not mean that
the demand levels will be the same, since the two functions take different arguments (e.g., in our
data the ticket price for Powerball — and thus its expected loss — is higher than for Mega Millions).
This restriction is standard in demand estimation as it is implied by the common assumption that
the coefficients on product attributes, as well as the distribution of the unobservables, be the same
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As a comparison, we also consider the following log-log model of demand:

log(qj,s,t) = γ0 + γown log(Jj,t) + γother log(J−j,t) + γxxj,s,t + εj,s,t, (11)

where j is a lottery subscript, −j is the other lottery (e.g., −j is Powerball if j

is Mega Millions), Jj,t denotes the jackpot of lottery j inherited from draw t−1,
and xj,s,t is as in the main model of equation (10). While simple and easily
interpretable, this model misses that the final jackpot in draw t is a function of
ticket sales in that draw and is thus an equilibrium outcome. In this respect,
it is similar to models of demand for lotteries estimated in the literature (e.g.,
Forrest et al., 2000b). In contrast, we achieve that by specifying demand as a
function of the expected loss and relating it to the number of tickets sold via the
supply function. Also, the log-log model assumes constant demand elasticities,
whereas our nonparametric approach learns the shape of the demand curves
from the data. As we show next, we will find meaningful violations of the
constant elasticity assumption.

5.4 Estimation Results

Panel (a) of Figure 6 plots Powerball’s estimated aggregate inverse demand
curve (we fix all demand drivers other than the own expected loss at their me-
dian values). Table 2 shows the mean elasticities of aggregate demand to own-
and cross-expected loss, for the model imposes substitution between the two
lotteries. We set m = 2, corresponding to a Bernstein approximation of degree
8.28 The own-loss elasticities are larger than one in magnitude. Also, the cross
elasticities are not statistically different from zero. The pattern is broadly con-
sistent with the finding in Lockwood et al. (2021) of little substitution between
the two lotteries. This could be driven by format differences of the lotteries
(e.g., the ticket price was lower and the odds were less favorable for Mega Mil-
lions relative to Powerball in our estimation sample) as well as differences in
the days of the week in which the lottery draws take place. Additionally, habit
formation may contribute to this pattern. For instance, long-term Powerball
players may not be prone to switching to Mega Millions, even if its expected
across products. We also estimated a version of the model that relaxes this assumption and found
no meaningful differences in the point estimates at the cost of increased standard errors.

28The results are similar for m = 3, 4, corresponding to resp. approximations of degree 12, 16.

27



λMM λP B

QMM -1.70 0.13
(0.13) (0.10)

QP B 0.03 -1.55
(0.02) (0.09)

Table 2: Mean Elasticities in Expected Loss. This table represents mean elas-
ticities of lottery demand (quantities) to expected loss. Each row corresponds to
quantities for one U.S. national lottery, and each column the expected loss for one
U.S. national lottery. Standard errors are in parenthesis below each elasticity.

loss is lower, purely out of habit. (We capture this by including the number of
years since each lottery was introduced in a given state in the demand model).

Next, Figure 6, panel (b) shows the relationship between the expected loss
and the estimated own-loss elasticity for Powerball across draws. The relation-
ship between loss and elasticity is quite nonlinear, with relatively low elasticities
for high values of the expected loss (i.e., when the inherited jackpot is low) and
higher elasticities for intermediate values of the expected loss (i.e., when the
inherited jackpot is higher). This is consistent with the following intuition:
at low jackpots, the lottery tends to attract gamblers that are mostly driven
by the thrill motive and are not very responsive to changes in the monetary
loss, whereas as the jackpot grows the lottery attracts more gamblers that are
mainly motivated by the monetary gain and thus more responsive to changes
in the expected loss. This pattern suggests that more restrictive models (such
as our benchmark log-log regression with constant elasticity) would likely lead
to misspecification.

Finally, we test the assumptions of Theorem 3 that guarantee the existence
of a unique equilibrium and find that they are satisfied. Specifically, we verify
that at every equilibrium in the data, the derivative of the (residual) inverse
demand for each lottery is below the derivative of the inverse supply.

5.5 Model Fit

To assess the fit of the model, we compare the average per-draw revenue ob-
served in the data with the model predictions leveraging again the formula in
(9). We do this for two main reasons. First, average revenue is obviously an
outcome of interest to the lottery authority. Second, the randomness inherent
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(a) Inverse Demand Curve (b) Elasticities

Figure 6: Inverse Demand Curve and Own-Loss Elasticity for Powerball.
Panel (a) plots the inverse demand curve for Powerball (while fixing all drivers of
demand other than the expected loss at their median values). Notably, nowhere in
this range is it strictly profitable to play the lottery without a positive thrill. Panel
(b) plots the relationship between expected loss and estimated own-loss elasticity
across the draws in the sample.

in the lottery (and thus the potential for outlier jackpots) makes short-run
prediction very challenging. By focusing on average revenues we smooth out
the randomness inherent in the rollover mechanism, and predict instead a more
stable, medium-run target.

Figure 7 shows the results of our prediction exercise. In panel (a), we
look at how the model performs in sample, i.e. on the same data used for
estimation, and find that our approach captures the average per-draw revenues
from Powerball and Mega Millions well. As a comparison, we also compute
the predictions from the simpler log-log model in (11).29 This simpler model
ignores that the final jackpot for any given draw is determined in equilibrium
(since it is affected by how many tickets are sold during that period) and mimics
the specifications commonly used in the literature that focus on the demand
side alone. Interestingly, the log-log model tends to underestimate per-draw
revenues for both lotteries. The intuition is clear: by ignoring how the final
jackpot is larger than the inherited jackpot due to the current ticket sales, the

29Here we show the estimates obtained without instrumenting for inherited jackpots. We also tried
a version of the model with the same instruments as in our approach and found revenues estimates
very similar to those obtained without instruments, but with larger standard errors.
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(a) In sample (b) Out of sample

Figure 7: Average Per-Draw Revenues (in millions of dollars). We plot
cumulative average per-draw revenues for Powerball and Mega Millions. The three
bars in each panel are the data (left bar), estimated revenue according to our main
demand specification (center bar), and estimated revenue according to a simple log-
log model of demand. Panel (a) reports in-sample results, while panel (b) reports
out-of-sample predicted values.

log-log model predicts lower sales volumes and thus lower revenues.
In panel (b), we repeat the same exercise out of sample. Specifically, we use

the same two models to predict revenues in the period from October 7, 2015
to October 28, 2017. Relative to the estimation sample, in this period a few
changes took place, notably, the Powerball odds lengthened from around 175
million to 1, to around 292 million to 1. Thus, this is a good test of whether our
model can capture how revenues adjust to the levers that the lottery authority
can pull, which is exactly the kind of counterfactual exercises one would want to
perform to inform lottery design. Similar to the in-sample fit exercise, we find
that our approach estimates out-of-sample revenues reasonably well, whereas
the simpler log-log model tends to deliver underestimates.

6 Discussion: How Can the Model Be Used?

While ours is a positive theory of lottery markets, it is useful in applications.
First, the model generates comparative statics and motivates simple rules-of-
thumb that can be used to rationalize lottery designs across countries. Second,
as in our analysis of the U.S. national lottery market, the model can be brought
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to data to generate quantitative counterfactual predictions and thus inform
lottery design.

Without an empirical model that captures both the demand and the supply
response implicit in the rollover mechanism, it is impossible to study counter-
factual questions that involve the design of the lottery. For instance, suppose
that a researcher estimates demand for lottery tickets, e.g., as a function of
jackpots in each draw and other lottery characteristics. The researcher then
wishes to predict how changes in the take rate, ticket prices, odds, or minor
prizes of a lottery affect sales and revenues. Such changes do not automati-
cally translate to a change in expected loss: the expected loss is an equilibrium
outcome, and can only be determined jointly with sales. Hence, without a
full equilibrium model — for example, if one only specifies demand — it is
not possible to predict the effects of counterfactual policies. Although supply
in this market is governed by lottery mechanics rather than by strategic firm
behavior, the equilibrium aspect cannot be ignored.

Our approach can be used to investigate several counterfactual questions
relevant to lottery authorities who may want to predict the effects of changes to
the lottery rules on revenues. To this end, we consider one such counterfactual
question: do current take rates on U.S. rollover lotteries maximize revenues?
To address this, we use the demand model estimated in Section 5 and predict
expected revenues for the out-of-sample period while varying the fraction τ of
lottery revenues that are taken by the government in each draw. Again applying
equation (9), we calculate the average per-draw revenues for both lotteries and
find that the overall revenues per draw increase monotonically with τ , from
around $30.6 million when τ is 10% lower than in the status quo to around
$36.2 million when it is 10% higher than in the status quo (Table 3). Thus,
at least locally, the lottery authority may increase revenues by increasing take
rates.

We emphasize that, despite our ability to address counterfactual questions,
our model is positive since it takes no stand on the underlying normative utility.
However, it can be used to complement normative analyses. For instance,
Lockwood et al. (2021) characterize the optimal levels of the ticket price and
jackpot. Since jackpots are equilibrium objects and cannot be directly set by
the lottery authority, a natural question is how to reach that desired jackpot
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% Change in Take Rate τ -10% -5% Status Quo +5% +10%

Per-draw revenues ($million) 30.6 32.5 34.0 35.2 36.2

Table 3: Counterfactual revenues as take rate varies. This table shows how
the average per-draw revenues from Mega Millions and Powerball combined vary as
the take rate τ varies. The calculation is based on the expression in (9) and refers
to the period from October 7, 2015 to October 28, 2017. Thus, the lottery authority
can increase revenues by locally increasing the take rate τ .

level. Our model can be used to characterize the values of the parameters under
the control of the lottery authority — i.e., odds and take rate — that would
generate those jackpot levels in equilibrium.

7 Conclusion

We have proposed a positive model of rollover lottery markets in which the
number of tickets sold arises as a partial equilibrium outcome — but where
the expected monetary loss on the ticket plays the role of the market clearing
price. The equilibrium demand curve reflects how gamblers trade off the ex-
pected monetary loss against the thrill of gambling while the the lottery rules
determine the supply curve. This is a rational expectations equilibrium since
ticket buyers do not see the ticket sales, and so cannot compute the lottery loss
at the time of purchase. Rather they infer it knowing the equilibrium. Stan-
dard comparative statics in our market explain why a rollover is profitable. The
rollovers loosely constitute a stochastic second degree price discrimination.

Rollovers ensure that the supply curve sometimes crosses demand when
jackpots are very high, and so expected losses are low. We show how to use
exogenous variation induced by the rollover mechanism, and recent advances
in nonparametric methods, to flexibly identify and estimate the demand curve.

We test the validity of our framework in two empirical applications. First,
comparing rollover lotteries across U.S. states as well as different countries,
we find that longer odds are positively correlated with the size of the market
as measured by population. This is consistent with what the model predicts
lottery authorities should do if they wished to maximize expected revenues.
Second, for the national U.S. rollover lotteries, we show that the model predicts
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out-of-sample outcomes reasonably well.
We also find that counterfactually increasing the take rate would boost gov-

ernment revenues. A natural avenue for future research is to apply the proposed
framework to address other lottery design questions. For example, one could
use the model to compute the revenue-maximizing lottery parameters, such
as the odds. In this sense, our positive analysis is complementary to existing
normative analyses on optimal lotteries that prescribe optimal jackpot levels
but do not address how to achieve those jackpots (as they lack an equilibrium
notion).
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Appendix A Robustness and Alternative Models

A.1 Risk Preference or Dispreference

We have so far assumed that lottery players are risk neutral and willing to play
the lottery even when they expect to lose money from it because they derive a
non-monetary thrill from it. This contrasts with the vast literature that follows
Friedman and Savage (1948) explaining why people can both buy insurance and
play the lottery. (Our answer is that lottery has an extra fixed thrill.) They
posited initially risk-averse and eventually risk-loving behavior. Of course, by
itself, this cannot explain why individuals would play low-stakes lotteries.30

Still, it is worth asking: might our lottery players employ a nonlinear utility
function, thus deviating from risk neutrality?

Posit Bernoulli utility function ur(x) = (1 − e−rx)/r, where r ̸= 0, and
wealth x > 0. This is constant absolute risk aversion (CARA) if r > 0, and
constant absolute risk loving (CARL) if r < 0, and is risk neutral at r = 0 via
l’Hopital’s Rule: limr→0 ur(x)=limr→0 xe−rx =x. We assume individuals differ
by lottery thrill and share a common risk preference parameter r.

We have not specified the number of tickets needed for the lottery thrill, as
it was inessential. (We pursue an aggregate demand curve — and could not
identify this number in any event.) But now we must take a stand to derive
the supply curve. Assume lottery buyers buy a single ticket. For any initial
wealth I > 0, the final wealth is I − p plus thrill and winnings.31 To derive
supply, we must focus on the marginal ticket buyer who is indifferent about the
purchase, and derives the same expected utility from playing and not playing
the lottery. The expected lottery utility of the marginal ticket buyer replaces
the thrill by the loss L(Q|J), i.e. 1/r times

1−(1−π)e−r[I+L(Q|J)−p+w− 1
2 rwσ2]−πe−αQ

n∑
k=0

C(Q, k)πke−r[I+L(Q|J)−p+ [J+p(1−τ)Q]
k+1 ],

given the expected value w and variance σ2 of smaller prizes. As the utility of
30Rabin and Thaler (2001) call this utility function “contrived”, and note it has implausible

implications.
31That is, we impose the assumption that utility is additively separable in loss and thrill. This

restriction is not needed for the model with risk neutrality in the main text.

36



not buying is 1
r
(1 − e−rI), the indifference equation does not depend on I:

(1 − π)e−r[w− 1
2 rwσ2] + πe−αQ

n∑
k=0

C(Q, k)πke−r
[J+p(1−τ)Q]

k+1 = e−r[p−L(Q|J)].

We can now solve this equation for L to obtain the loss that must be offered
in order to sell Q tickets. If the loss was higher than this level, fewer than Q

tickets would be sold; if the loss was lower, more than Q tickets would be sold.

Theorem 6 With CARA or CARL utility ur(x), the inverse supply is:

Lr(Q|J) = p+ 1
r

log
(1 − π)e−r[w− 1

2 rwσ2] + πe−αQ
Q∑

k=0
C(Q, k)ρke−r

[J+p(1−τ)Q]
k+1

 .

For small α, in the risk neutral limit r → 0, the lottery loss Lr(Q|J) tends
to (1).

Proof: Equating utility with income I and no ticket to the expected utility
with a ticket, and its attendant costs and benefits:

(1 − e−rI)/r = (1 − π)(1 − e−r[I−p+L(Q|J)+w− 1
2 rwσ2])/r

+π

r

Q∑
k=0

C(Q, k)πk(1 − π)Q−k
[
1 − e−r[I−p+L(Q|J)]−r

[J+p(1−τ)Q]
k+1

]
.

Rearranging terms:

er[−p+Lr(Q,J)] = (1 − π)e−r[w− 1
2 rwσ2] + π

Q∑
k=0

C(Q, k)πk(1 − π)Q−ke−r
[J+p(1−τ)Q]

k+1 .

Take logs, and put (1 − π)Q = e−αQ to get the limit. By l’Hopital’s rule,
p − Lr(Q, J)→(1 − π)w + πe−αQ∑Q

k=0 C(Q, k)ρk
[

J+p(1−τ)Q
k+1

]
as r → 0. Small π

gives the limit. 2

So Theorem 1 is the risk neutral limit r → 0 of Theorem 6.
We now exploit our very large lottery jackpots to show that unless the

absolute Arrow-Pratt measure of risk preference is extremely small, we arrive
at implausible implications for losses or counterfactual predictions of ticket
sales. For this exercise, we calibrate lottery characteristics to typical values for
national U.S. rollover lotteries. Specifically, we assume the lottery price, odds,
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Figure 8: Inverse Supply Curves with Risk Preference. Plotted are the supply
curves with a typical inherited jackpot of $67M, against quantity (×107). Inverse
supply quickly becomes negative for slight risk loving preference r ≥ −10−7. Inverse
supply is almost perfectly elastic for risk aversion preference r ≤ 10−8.

and take rate are such that p(1−τ)
α

≈ 100M , set the inherited jackpot at 50M
and the non-jackpot prices w at 0.25.

First, consider any slight risk preference — namely, a fixed negative risk
aversion parameter r < 0. In the context of the U.S. national lotteries, this
leads to implausibly large certainty equivalents for typical, large enough, in-
herited jackpots. (See Figure 8.) In other words, this forces our inverse supply
curve to explode negatively. So, marginal lottery players — who, say, play at
a jackpot of $40M but not $20M — have a negative thrill. This implies that
typical lottery players dislike playing, which is not realistic. Note that this
argument holds for any demand function.

On the other hand, slight risk aversion leads to implausible ticket sales
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predictions (Rabin, 2000). As seen in Figure 8, for r > 10−8, the exponent of
the last term in (6) does not vary by more than 0.1 if the jackpot grows by
$10M. Since the supply curve is nearly perfectly elastic, large inherited jackpots
have essentially no impact on ticket sales for a fixed demand curve. To explain
the patterns we see in our data, we would need to posit large unobservable
shifts in demand that are systematically correlated with inherited jackpot size,
thus requiring a theory on how the shocks are generated.

All told, we find the risk neutral analysis more parsimonious, and we dis-
pense with risk preference as an explanation for the observed behavior.

A.2 Jackpot Levels in Demand

In our lottery market model, demand depends on the expected loss. This
allows us to establish an intuitive parallel with standard partial equilibrium
analysis, done in the price-quantity space. But different modeling assumptions
are possible: for example, demand may depend directly on the jackpot level,
as opposed to the expected loss.

This would require choosing a definition of jackpot. Possible candidates
are lagged jackpots from the previous draw, rational expectation jackpots for
the current draw, or advertised jackpots. In the latter case, performing coun-
terfactual analyses requires a model of how the lottery authority determines
advertised jackpots given the available information, which can be problematic
if we think that the lottery authority has more information than researchers.
Including jackpots alone in demand would also limit the range of counterfactu-
als we can run: for instance, we could not examine how counterfactual changes
in odds affect equilibrium outcomes in this market – something our framework
can address given that the expected loss is a function of the odds. Finally, in
our specific application to U.S. national lottery markets, we find that including
lagged jackpots instead of the expected loss in the demand function leads to
similar out-of-sample fit.

Another option is to include in demand both jackpots and expected loss.
There are empirical considerations that suggest avoiding this route: jack-
pots and expected loss, though not identical, are highly correlated, and sep-
arately identifying the effects of these variables on demand (especially in a
non-parametric context) is very hard. While it is possible to add instruments
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(e.g., more lags of our instrument) to mechanically obtain estimates for our
model, we have not been able to come up with sources of variation that cleanly
identify the separate effects of jackpots and expected loss.

Appendix B Omitted Proofs

B.1 Risk Neutral Supply: Proof of Theorem 1

For completeness, we derive the earlier formula directly, considering all the
possible numbers of ticket winners — highlighting the positive probability of a
shared jackpot. Here, we assume Q is a natural number. The chance of exactly
k other winners is C(Q − 1, k)πk(1 − π)Q−1−k, where C(n, k) = n!

k!(n−k)! . So the
expected winnings are

w + π[J + p(1 − τ)Q]
Q−1∑
k=0

C(Q − 1, k)
k + 1 πk(1 − π)Q−1−k (12)

So winners secure a 1/(k + 1) share when k others pick the same winning
sequence. We use generating functions to show that this collapses to (1). Define
ρ ≡ π/(1 − π) and a new function f(ρ) ≡ ∑Q−1

k=0
C(Q−1,k)

k+1 ρk+1. Then expected
winnings (12) are:

w + [J + p(1 − τ)Q]f(π/(1 − π))(1 − π)Q

Since f ′(ρ) ≡ (1+ρ)Q−1 and f(0) = 0, integration yields f(ρ) = 1
Q

[(1+ρ)Q −1].
As 1 + ρ = 1/(1 − π), and (1 − π)Q = e−αQ, winnings per ticket (12) imply
losses:

w + [J + p(1 − τ)Q] · (1/(1 − π))Q − 1
Q

· (1 − π)Q

This reduces to the expected gains subtracted in (1) from the price p. 2

B.2 Curvature of Inverse Supply: Proof of Theorem 2

We argue that when supply is not monotone, a unique inverse supply minimum
exists:

x = Q(J) ⇔ eαx − 1 − αx = [p(1 − τ)/(αJ)]x2 (13)
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Since eαx > 1 + αx + 1
2α2x2, the root Q(J) exists if 0 < J < 2p(1 − τ)/α,

and falls in J . Easily, it explodes at small inherited jackpots: Q(J) ↑ ∞ as J

vanishes.

Lemma 1 (a) If J =0, then supply is monotonically falling for all Q.
(b) If J < 2p(1 − τ)/α, then supply is falling then rising for Q ≶ Q(J).
(c) At high inherited jackpots J ≥ 2p(1−τ)/α, supply is monotonically increas-
ing.
(d) The supply minimum Q(J) falls in J , and obeys Q(J)< 3

α

(
2p(1−τ)

αJ
− 1

)
.

Proof: The slope of inverse supply in (3) implies:

L′(Q|J) =
(
eαQ − 1 − αQ[1 + p(1 − τ)Q/J ]

)
Je−αQ/Q2 (14)

=
(

α2Q2

2

(
1 − 2p(1 − τ)

αJ

)
+

∞∑
k=3

1
k!(αQ)k

)
Je−αQ/Q2 (15)

Then
L′(0|J) = 1

2α[αJ − 2p(1 − τ)]

So supply starts falling if J = 0, as L′(0|J) = −αp(1 − τ). If J ≥ 2p(1 − τ)/α,
then L′(Q|J) > 0 always, by (15). If J <2p(1 − τ)/α, the lead term of (15) is
negative: So L′(Q|J) < 0 for small Q > 0.

Finally, the zero of (14) is obviously Q(J), and its properties have been laid
out. Also, tossing aside all but one term in the infinite sum yields:

1
2

(
1 − 2p(1 − τ)

αJ

)
+ 1

3!(αQ(J)) < 0 ⇒ Q(J) <
3
α

(
2p(1 − τ)

αJ
− 1

)

Supply starts positive iff J < (p − w)/α, and falling iff Q(J) > 0, or iff
J < 2p(1 − τ)/α. Since p − w > 2p(1 − τ), supply starts off positive and falling
for low J , positive and rising for intermediate J , and negative and rising for
high J . 2

We next argue that supply is first convex and then concave in Q. Loosely,
since higher degree polynomials grow faster, the supply slope LQ in (15) changes
sign at most once, − to +, and ends +. Inverse supply curvature turns on
understanding the root:

x = Q(J) ⇔ eαx = 1 + αx + α2x2/2 + α2p(1 − τ)x3/(2J) (16)
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Since eαx > 1+αx+ 1
2α2x2 + 1

6α3x3, a root Q(J) exists iff 0 < J < 3p(1−τ)/α.

Lemma 2 (a) If Q(J) = 0, inverse supply L(Q|J) is concave.
(b) If Q(J) > 0, inverse supply L(Q|J) is strictly convex in Q on [0, Q(J)],
and strictly concave in Q on [Q(J), ∞), where the roots (13) and (16) obey
Q(J)>Q(J).
(c) The supply curve inflection point Q(J) is falling in J .
(d) At inherited jackpots J ≥ 3p(1 − τ)/α, supply is initially concave in Q.

Proof : Differentiating (3):

L′′(Q|J) = −2J/Q3 + e−αQ(αQ + 2)J/Q3 + αe−αQ
(
[J/Q + p(1 − τ)]α + J/Q2

)
=

[
−eαQ + 1 + αQ + α2Q2/2 + α2p(1 − τ)Q3/(2J)

]
2Je−αQ/Q3

=
[
α2p(1 − τ)Q3/(2J) −

∞∑
k=3

1
k!(αQ)k

]
2Je−αQ/Q3

Then
L′′(0|J) = α2[p(1 − τ) − αJ/3] > 0

From (16), Q(J) falls in J , and explodes at small inherited jackpots: Q(J) ↑ ∞
as J ↓ 0. Now, (19) vanishes at Q(J). When 2p(1 − τ)Q/J ≤ α, we have
Q(J) > Q(J). For L′(Q|J) ≤ 0 implies L′′(Q|J) > 0 when Q ≤ Q(J), by (3)
and (17):

L′′(Q|J) = −2LQ/Q + (Je−αQ/Q2)
(
2α + 2/Q + α2[Q + p(1 − τ)Q2/J ]

)
≈ −2L′(Q|J)/Q − (αJe−αQ/Q) (2p(1 − τ)Q/J − α)

Finally, L′′(Q|J) < 0 since 2L′(Q|J)/Q < 0 and we assumed 2p(1−τ)Q/J < α.
2

B.3 Unique Equilibrium: Proof of Theorem 3

Existence owes to continuity, and the Intermediate Value Theorem: demand
exceeds supply at Q = 0, and supply exceeds demand at ∞, as L(∞, J) = p−w.

Next, we claim that Λ(Q) − L(Q|J) is downcrossing through zero, and so
the equilibrium is unique and stable. For once inverse supply increases, it

42



does so forever, by Theorem 2. So multiple equilibria can only happen when
supply slopes down. But inverse supply is convex when it is decreasing (by
Theorem 2), and so it steepens in Q. A second crossing with a falling demand
curve is impossible: After one crossing, Λ(Q) − L(Q|J) falls in Q. 2

Appendix C U.S. Lotteries: Details and Data Construc-
tion

C.1 Lottery Rules: the Fine Print

Both Mega Millions and Powerball introduce significant modifications to the
basic rollover lottery mechanism.32 First, they advertise an annuity value for
the jackpot, as opposed to cash amounts. The jackpot amounts that are com-
monly advertised on billboards refer thus to the sum of 30 increasing yearly
payments, which grow at a 5% rate every year. As an alternative, winners of
the jackpot can choose to receive the full cash amount of the prize; the annuity
rates are set by competitive auction. In our analysis, we assume that consumers
take into account the cash value of the prize in computing the expected loss
from playing. In addition, the advertised jackpot is an estimate of the actual
jackpot for the current draw.

Notably, the lottery authority does not commit to paying out the adver-
tised (cash) value of the prize: rather, it will pay out the cash amount of the
underlying jackpot prize pool. Exceptions to this are two instances in which
advertised jackpots are guaranteed: (i) in the first draw after the jackpot is
won, the lottery will start from a set minimum amount (e.g., $40 million in
annuity value for Powerball after 2015), and (ii) typically for the first few rolls,
a minimum increase of the jackpot is guaranteed (e.g., $10 million in annuity
value for Powerball after 2015), to speed up the increase of the jackpot. There-
fore, the lottery authority may have to pay jackpots that exceed the value of
the jackpot pool during one of the guaranteed draws.

Lastly, lottery authorities seem to actively manage additional reserve ac-
counts, perhaps because in the guaranteed period the jackpot prize pool would

32Detailed lottery rules can be obtained from state law. See, e.g., the Texas Administrative Code
on Powerball rules: https://texreg.sos.state.tx.us/public/readtac$ext.TacPage?sl=R&app=
9&p_dir=&p_rloc=&p_tloc=&p_ploc=&pg=1&p_tac=&ti=16&pt=9&ch=401&rl=317 (accessed Novem-
ber 2023).
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otherwise be insufficient to pay out jackpot wins. The laws and regulations
are somewhat unclear as to how this is done; for instance, in the Powerball
regulations we find the following language: “An amount up to 5% shall be
deducted from a Party Lottery’s Grand Prize Pool contribution and placed in
trust in one or more Powerball prize pool accounts [. . . ] is below the amounts
designated by the Product Group.”

C.2 Data Construction

We construct our data from different sources. We obtain information about
lottery rules from official documents,33 and collect data on ticket price, odds,
rollover rules (including take rate), and minor prizes. Using odds and amounts
for minor prizes, we can immediately compute the expected value for those—
since they do not involve a rollover mechanism and are paid out to all winners
irrespective of how many, this step is straightforward. Second, we scrape official
lottery worksheets34 to obtain data on lottery-draw-level advertised jackpots,
and actual annuity values of the jackpot prize pool. For each draw, we record
the number of winners. We also collect data on annuity rates to convert annuity
values into cash values. Although worksheets contain total sales information,
they do not contain state-level information. This is available from each state
lottery agency; we scrape the data from Lottoreport.com, and validate them
by consulting different state lottery agencies, finding no discrepancies.

Finally, we use our data to construct expected losses λj,t for each lottery j

and draw t according to Equation (1):

λj,t = pj − wj,t − [Jj,t/Qj,t + pj,t(1 − τj,t)][1 − e−αj,tQj,t ],

where pj,t, wj,t, Qj,t, τj,t and αj,t are in our data. We compute the (cash value)
jackpot Jj,t recursively by applying the rollover mechanism, or Jj,t = Jj,t−1 +

33See for instance https://hoosierlottery.com/getmedia/8870e03d-8346-427f-8033-261a1beadd06/
Powerball-Group-Rules-8-23-21.pdf (accessed November 2023) for the latest Powerball rules.
Previous versions can be recovered with WaybackMachine at various state lotteries’ websites.

34The worksheets for Powerball are available at https://www.texaslottery.com/export/sites/
lottery/Games/Powerball/Estimated_Jackpot.html (accessed in November 2023). Similar docu-
ments for Mega Millions are available at https://www.texaslottery.com/export/sites/lottery/
Games/Mega_Millions/Estimated_Jackpot.html (accessed in November 2023).
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pj,tQj,t(1 − τj,t), where we set Jj,t−1 = 0 if someone won the jackpot in the
previous draw.

C.3 First Stage Results

In Table 4 below, we report the results of OLS regressions of the endogenous
variables in our model on exogenous variables, including the instruments. The
values of the F -statistic suggest a strong association between the exogenous
variables and endogenous outcomes. In line with economic intuition, the lagged
residual instrument has a strong positive correlation with the lottery’s expected
loss and a negative correlation with its sales. In line with our findings that
there is limited substitution across lotteries, the correlation between the lagged
residual for a given lottery and the expected loss and sales of the competing
lottery is much smaller in magnitude, indicating a limited economic effect.
Because we include state and week fixed effects, the correlation between the
number of years since introduction of a lottery in a state and the endogenous
outcomes is overall quite weak.

Table 4: Lottery Rules and Main Summary Statistics

(1) (2) (3) (4)
Variables Expected loss Sales

Mega Millions Powerball Mega Millions Powerball

Lagged residual - own lottery 0.208*** 0.297*** -654,612*** -285,488***
(0.00306) (0.00446) (46,615) (20,002)

Lagged residual - other lottery 0.0180*** 0.0337*** 64,830* -9,405
(0.00257) (0.00521) (39,082) (23,372)

Years since introduced - own lottery -0.0376*** -0.00306 -20,352 -98,285
(0.00914) (0.0291) (141,014) (130,345)

Years since introduced - other lottery -0.00185 -0.0733*** 54,090 81,719
(0.00602) (0.0208) (101,650) (93,148)

Constant 0.998*** 1.749*** -280,418 489,817
(0.0308) (0.0854) (479,988) (382,918)

R-squared 0.887 0.875 0.538 0.552
F-statistic 471.8 413.9 69.30 72.99

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table reports results of a regression of exp losses and sales for each lottery on instruments,
exogenous variables, and fixed effects for week, week part, and state.
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