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Abstract

Given the dramatic age variation in COVID death rates, we create a heteroge-

neous agent version of the Behavioral SI* contagion model of Keppo et al. (2020).

Individuals randomly meet each others pairwise, unaware of their types. Inspired

by auction theory, we compute the Bayes Nash equilibrium of the pairwise incom-

plete information games transpiring over time and across the population. This

yields a simple new log-linear relationship between the case fatality rate (CFR)

and COVID incidence: Everyone knows that everyone optimizes vigilance both

for both the prevalence and their CFR.

We explain 2020 CDC incidence data for the USA north-east in terms of

the CFR to age-specific COVID death data for Massachusetts. Our model is

statistically significant: A 10% higher CFR reduces incidence by about 1%.
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1 Introduction

A widely discussed feature of the deadly COVID-19 pandemic has been the steep age-

fatality profile: the youth rarely die, and the case fatality rate rises sharply with age.

In fact,1 adults over 85 have a death rate over 527 times that of adults age 18–29. This

has led to immense differences in risk-taking behavior by age. This paper explains the

falling infection rate in age as a strategically optimal “value-of-life” tradeoff between

the risk of death from the pandemic and the costs of avoidance.

We build on Keppo et al. (2020), who produce a new and solvable game that

captures a strategic pairwise version of the classic Swiss Cheese Model of accident

causation in random encounter settings — where accidents only arise from multiple

aligned failures. In a contagion setting, this corresponds to someone passing along a

virus, and another failing to guard against it: it passes though both players’ filters. In

their optimizing twist on the classic SI* model2, the infection passing rate reflects costs

and benefits. The costs are an additive cost of vigilance, while the benefits come from

the lower passing rate. People are fully rational, and minimize the sum of vigilance costs

and expected disease losses. By assuming a constant elasticity of avoidance in vigilance

costs, this game was fully solvable. In the unique Nash equilibrium, everyone knows

everyone else is optimizing too, and understands their vigilance choice. It implied a

log-linear map from prevalence to incidence with slope less than one. They statistically

reject the nested SIR model for both the 2009 Swine Flu pandemic and COVID-19,

finding an elasticity of incidence in prevalence significantly below one.

Our model starts with the observation that if vigilance is motivated by the fear

of death, then doubling the death rate conditional on infection yields the same risky

tradeoffs as doubling the prevalence rate. As a result, the same equilibrium substitu-

tion effect in the representative agent analysis in Keppo et al. (2020) should intuitively

emerge when people vary by conditional death rate. We therefore enrich their Be-

havioral SI* model allowing for heterogeneous infection losses agents — such as from

varying ages. We derive a unique Bayesian Nash equilibrium of the multitype game —

which reduces to the unique Nash equilibrium with only one type. Incidence is now

not only log-linear in prevalence with slope less than one, but also log-linear in the

infection loss, with negative slope.

1See the CDC summary web page “COVID-19 Hospitalization and Death by Age”.
2Here SI stands for “susceptible-infected”. applies to any infection model with a random transi-

tion from susceptible to infected, such as SIS (susceptible-infected-susceptible) and SI (susceptible-
infected). So SIR stands for “susceptible-infected-recovered” (Kermack and McKendrick, 1927).
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We estimate our model using COVID-19 infection data from the CDC for the north-

east USA, and case fatality rates (CFR) from deaths in Massachusetts. We find that a

10% increase in the CFR increases mortality by around 8.9%, after vigilance optimally

adjusts. By contrast, the same 10% prevalence increase raises mortality only 8.4%. In

other words, optimization shaves about a tenth off marginal mortality changes.

By explicitly accounting for heterogeneous losses, we offer different evidence for

the model in Keppo et al. (2020). For the cross-sectional data allows us to identify

three of its key strategic features: First, did the youth behaving irrationally in the

COVID pandemic? Not in the economic sense: Different age cohorts have maximized

the identical objective functions, just with different losses. Their greater infection levels

are rationally thus, reflecting their lower losses in the quasilinear optimization.

Second, infection transmission reflects avoidance efforts by two parties. Thus, a 10%

higher prevalence increases one’s mortality risk that period less than a 10% increase in

one’s CFR. For prevalence impacts both parties’ vigilance in any meeting, but a higher

CFR of some type only impacts that type’s vigilance. This explains why the fantastic

escalation in death rates with age is not reflected by the same percentage reduction in

infection rates as a similar rise in COVID prevalence.

Third, our random encounter game exhibits strategic substitutes. For since one’s

filter also protects others if one is infected, greater vigilance by others depresses the

marginal benefit of vigilance — reducing its optimal level. Since everyone is more

vigilant when prevalence rises 10%, vigilance should not increase as much as when

one’s own CFR rises 10%. Notably, the last two properties can now be identified in

this heterogenous agent model, and we in fact confirm them in the data.

The above findings crucially rely on individuals not sorting by age in their random

encounters, If that happened, then the changes in CFR by age would be reflected

in one’s partner’s actions changing likewise, and we would not see these latter two

findings. This highlights a new theoretical reason why the pandemic was spread by

mixing across ages.

Consistent with individuals re-optimizing in response to advertised death rates, the

average age of COVID infection fell over a decade just from May to August of 2020

(Boehmer et al., 2020). Figure 1 plots COVID-19 infections specifically for the USA

North-East. The infection rates for our three age cohorts cross. While peak daily new

COVID cases in July was more than twice that of April, the daily deaths after the July
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Figure 1: The Infection Rate by Age Crossover (USA, North East). COVID-
19 infection rates in the northeast of the United States raged out of control in April
and then fell. Focusing the magnifying glass on age groups, the rates were initially
highest for the elderly, and lowest for the youth, and then switched.

peak were only about two thirds of those in April3— reflecting the lower infection age.

McAdams (2020) summarizes the economic COVID literature, e.g. social distancing

(Toxvaerd, 2020).4 Philipson and Posner (1995) first suggested the prevalence elasticity

(of incidence); our context is a population game that yields a log-linear modification

of the SIR model, and also yields an infection loss elasticity. Brotherhood et al. (2020)

explore a macroeconomic model, with old and young individuals. Finally, with a dire

future (not true here), forward-looking behavior can lead to fatalism (Auld, 2003).

Compared to Keppo et al. (2020), our solution method is new. We take inspiration

from the differential equation approach to revelation principle that is used to solve for

the bidding strategy in the unique Bayesian Nash equilibrium of first price auction.

Here, instead of asset values differ, the infection loss varies.

Our theory in §2, 3, and A is self-contained. The empirical analysis is in §4.

3See worldometers.info/coronavirus.
4Examples of continuous vigilance for epidemics include the fraction of time one wears a mask, or

the share of face-to-face meetings one skips.
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2 The Model

In a large population modeled as a unit mass continuum [0, 1], everyone makes choices in

a sequence of time periods (e.g. days). Each period, some mass σ ∈ (0, 1) is susceptible

to a disease, while the prevalence is the contagious mass π ∈ (0, 1). Both π and σ

are commonly known. In the SIR model, the incidence of new infections is I = βσπ

when susceptible and infected persons meet. Here, β > 0 is a fixed passing rate. This

product structure follows from random encounters, independent of infection status.

In the behavioral twist on the SIR model by Keppo et al. (2020), infection passing

reflects costs and benefits in each period. They assume that costly real-valued vigilance

action — like time spent wearing a mask — can reduce the passing rate below its

baseline β. Label the vigilance action by its cost v ≥ 0. If a contagious person meets

someone susceptible, while exerting vigilances v, w ≥ 0, then the passing rate falls to

βf(v)f(w). Keppo et al. (2020) posit f(v) = (v + 1)−γ ∈ (0, 1], for which f ′ < 0 < f ′′

and f(0) = 1 > 0 = f(∞). This yields a constant elasticity of the passing rate in

“total vigilance” v + 1. So 1% more total vigilance lowers the passing rate by γ%.

To capture how older people died from COVID-19 far more often, we modify the

representative agent model of Keppo et al. (2020) so that people one meets vary in

their infection loss ` > 0. We show how behavior varies in equilibrium.

Let L denote the random loss for people one meets. Let q ≈ 1 be the chance that

any individual is susceptible who has not yet been symptomatically infected. Someone

uninfected of loss ` minimizes the sum of vigilance costs and expected infection losses,

solving

min
v

[v + βf(v)E[f(W )]qπ`] (1)

given others’ random vigilance W one meets. In a Bayes Nash equilibrium, one solves

optimization (1), and the random vigilance W is a best reply to the random loss L.

Since we will see that it suffices to make sense of the data, we assume that types

mix uniformly and randomly in encounters. The opposite extreme when people sort by

age formally reduces to Keppo et al. (2020), since matched individuals’ losses coincide.

Static Analysis Suffices. Analyzing isolated periods is justified if (i) no one

impacts future infection levels, as individuals are negligible (with a large population),

and (ii) no one impacts their own future infection levels (re-infection happens). This

logic ensures that no one solves a nontrivial dynamic optimization. So with falling

re-infection chances, we would need to carry into a period a record of past infections.
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3 Equilibrium Analysis

We consider everyone for whom the disease is dire enough — given its prevalence π

and passing rate β: (F) the support of losses L is in (`0,∞), where γπ`0βq = 1. For

when ` > `0, the marginal benefit of vigilance exceeds its marginal cost at v = 0.5

Let V(`) be the vigilance function, namely, the best reply for someone with loss `

to others’ vigilance W ≡ V (L). Inspired by the derivation of the standard first price

auction bidding function, when V (`) > 0 (and so the loss is ` > `0), the equilibrium

FOC holds:

1 + f ′(V (`))E[f(V (L))]π`βq = 0 (2)

A solution of (2) is an optimum because f ′′ > 0, guaranteeing the SOC and a unique

interior minimum (1). In other words, the vigilance function V is a best response to

itself — namely, when facing the induced random vigilance V (L). As every loss type `

optimizes, the vigilance function V (·) is a Bayes Nash equilibrium.

Let constant C = γπβqE[L−γ/(γ+1)] reflect the passing rate, prevalence, and filter.

We derive in §A the precise way that passing falls in equilibrium as π or ` or β rises:6

Theorem 1 (Equilibrium Passing) The filter is f(V (`)) = C−
γ

2γ+1 `−γ/(γ+1) if ` ≥ `0,

while f(V (`)) = 1 if ` ≤ `0, where `0 = C−
1+γ
2γ+1 .

So greater losses above a threshold, namely, ` ≥ `0, lead people to filter out more

infections. While optimal vigilance V (`) rises, increased losses are not fully displaced

by vigilance. In other words, expected infection loss rises in `, since `f(V (`)) ∝ `1/(γ+1).

Hence, the vigilance game has the intuitive strategic substitutes property: If others’

vigilance W = V (L) increases (in the sense of first order stochastic dominance), then

the marginal benefit of own vigilance is lower in (2). So the best reply V (`) is lower.7

This effort displacement is an essential characteristic of the Swiss Cheese Model.

Theorem 1 gives a log-linear formula for equilibrium incidence I(`, π) = f(V (`))2βσπ.

Theorem 2 (Incidence) In the unique Bayes Nash equilibrium, given (F), the log

incidence rate is

log I(`, π) = B + ψ log `+ ϕ log π (3)

for a constant B that depends on σ, β, L, γ, and q, and ψ = −γ
1+γ

< 0 < ϕ = 1
2γ+1

< 1.

5In (2), we have 1 + f ′(0)Ef(Ṽ )π`0βq > 1− γπ`0βq = 0.
6So f(V (`)) = (γπβq`)

− γ
2γ+1 as in Keppo et al. (2020) with one type L≡`, as C=γπβq`−γ/(γ+1).

7Proof: For the expectation E[f(V (L))] in the FOC (2) falls, since |f ′| is a decreasing function.
To compensate, f(V (`)) must increase, and thus vigilance V (`) must fall, since f is also decreasing.
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This log-linear formula owes to the constant elasticity vigilance function.

Theorem 2 applies to a mythical elegant continuum agent model. In §4, we estimate

a significant result ̂log I = B − 0.123(log `) + 0.846 log π

Slopes in equation (3) are standard economic elasticities. As in the homogeneous

agent BSI* model of Keppo et al. (2020), the incidence - prevalence elasticity is ϕ < 1,

rejecting the SIR model’s assertion that ϕ = 1. Notably, this emerges in a panel

regression here, rather than the time series analysis in Keppo et al. (2020). So unlike the

SIR model, incidence is not directly proportional to prevalence in the BSIR model. For

vigilance adjusts to prevalence, shaving a constant fraction off infection rate changes.

The heterogeneity in losses yields our novelty relative to Keppo et al. (2020): ψ,

the incidence - infection loss elasticity. Theorem 2 has three separately identifiable

testable takeout messages, highlighting different aspects of the modeling:

1. Optimizing Behavior: ψ < 0 means that vigilance rises in the potential losses,

while ϕ < 1 means that vigilance rises in prevalence, and thus infections rise less than

the same percentage that prevalence rises. For a 1% higher disease loss makes one more

vigilant, lowering infection rates by |ψ|%.

2. Matching externality: −ψ < 1 − ϕ, or avoidance effect of one’s own losses is

less than that of prevalence, since the latter impacts both meeting parties. So |ψ| > 0

because of one’s own vigilance efforts, but the gap |1−ϕ| > 0 reflects greater vigilance

by two parties. For a 1% higher loss or a 1% prevalence rise each raise the expected

infection loss 1%, given our optimization (1). But the latter commonly elicits more

vigilance from all matched parties, and so depresses infections more.

This logic assumes everyone meets randomly-drawn types from the distribution. At

the opposite extreme, we could venture that people sort by age. In this case, a greater

loss always impacts two matched parties equally. We will next in §4 see that this is not

the case, so that infections are best understood as spread in random meetings rather

than age-segregated encounters.

3. Strategic substitutes property: 1−ϕ < −2ψ, or people react less to greater

prevalence than twice one person reacts to the same percent loss increase. In other

words, greater vigilance by one person displaces his partner’s vigilance. This highlights

how individuals understand that the strategic aspect of the pandemic, that others

vigilance actions impact their own optimizations.
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4 Data and Empirical Analysis

To apply our strategic model theory, we posit that people are rational, and minimize

vigilance costs plus the expected loss of life. Let λ > 0 be the value of life, and ∆

the probability of death, conditional on a COVID diagnosis.8 In other words, the loss

in optimization (1) is ` = ∆λ. So given expected utility and ignoring vigilance, our

expected life loss in Theorem 2 equals βq times π` = π∆λ. Altogether, people are

equally harmed by an increase in the prevalence π and the same percentage rise in the

death rate ∆ — for either lifts expected losses π` by the same percentage. This explains

why Keppo et al. (2020) can be repurposed for individual heterogeneity in losses λ.

4.1 Probability of Death

To measure the probability of death ∆, we use the case fatality rate (CFR), or the

share of COVID positives that end in death. We have found this data for one state,

Massachusetts,9 which has so far had the third highest deaths per capita in the United

States. This data includes hospital and nursing home deaths, which is important given

what has transpired from late March to early August 2020, in age cohorts 0–19, 20–29,

20–39, 40–49, 50–59, 50–69, 70–79, 80+. To match with CDC data below, our paper

will use the coarser partition of 0–19, 20–49, 50–69, 70+, the deaths were respectively 0,

146, 1210, and 7390, resulting in CFRs for these groups 0.00, 0.29, 3.71, 29.64 percent.10

We ignore the youngest age group, since it is not clear the extent to which they have

rational independent agency, which our optimizing model requires. The death rates

in this group are also too low to be accurately measured from our data — indeed, no

deaths happen in our data.

We do not assume a constant CFR over time, as this is debated (Ledford, 2020).

We instead create a piecewise linear time series of CFR’s, one for each age cohort i. We

do so, using the time series of deaths in any week, divided by the new cases from three

weeks earlier.11 This reflects the variable time to die, centered about three weeks.

In other words, we posit a constant rate of change bi in each age group CFRi, for

8The value of life is the willingness to pay for a small increment in the survival rate (Rosen, 1988).
9We use their COVID dashboard: www.mass.gov/info-details/covid-19-response-reporting

10Computations are based on positive COVID tests the week of March 22 through the week of July
19, and deaths through the week of Aug 9. Very few people died the first two weeks.

11We ignore death underestimates, inferred from excess deaths, since this ratio does not vary greatly
by age cohort, from 14.4% to 24.1% for all age cohorts over age 25 (Rossen et al., 2020).
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Figure 2: The Estimated Log CFR with a Linear Time Trend. We assume
that individuals optimize on vigilance in response to their CFR. The age groups are
20-49 (solid) 50–69 (dot-dash), and 70+ (dash). The reported unlogged intercepts are
roughly consistent with earlier noted CFRs. The slope estimates are not significant.

i = 1, 2, 3, corresponding to youngest, middle aged, and elderly.

log(CFRit) = ai + bit+ εt

Using daily data for 21 weeks for each age group, we separately estimate the regressions

depicted in Figure 2. This regression reflects how older individuals are more at risk

from COVID, and medical treatments are evolving.

The CFR suffers from self-selection issues, as it conditions on a positive COVID test.

This is known to be an undercount. The most reasonable interpretation of probability

of death is the infection fatality rate (IFR). The IFR does not rely on testing, and thus

can only be inferred from seroprevalence studies. But these studies only determine

infections to date, and not the week by week infections. Using the CFR in lieu of the

IFR is not unreasonable if the ratio of IFR to CFR does not vary greatly by age cohort.
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By weighting the year by year interpolated IFR’s in Levin et al. (2020),12 we compute

the respective IFR’s for these groups in Britain to be 0.060, 0.867, and 10.402.13

4.2 Infection Rates

Finally, we turn to the COVID infection rates. To compute the infection rates by age,

we use CDC data14 for HHS 1 region 1 (specifically, the states of CT, ME, MA, NH,

RI, and VT). This contains the state of Massachusetts.

The CDC positive test rates were based on 6,419,892 specimens tested for SARS-

CoV-2 using a molecular assay for the time span March 1–Dec 19, 2020. The percentage

of specimens testing positive for SARS-CoV-2 each week, based on week of specimen

collection, are summarized below. Unlike Massachusetts age groups, the CDC reports

positive tests for 0-4, 5–17, 18–49, 50–64, and 65+. Merging the first two groups,

the positive tests for 0-17, 18-49, 50-64, and 65+ are respectively, 6662, 50161, 32613,

and 24931. We matched the CDC age groups to the amalgamated MA age groups,

20–49, 50–69, and 70+ respectively. This small mismatch is inescapable given the data

coarseness limitations. Its impact is hopefully not major: It slightly increases the CFR

of the middle age group, and slightly reduces the CFR of the oldest age group.15

In Table 1, we summarize two panel regressions with age and time fixed effects —

one that ignores the first six weeks.16 This is the period when the vast majority of

nursing home deaths occurred, before policy changes were enacted.

For COVID-19, people are maximally contagious from days 2–7. So inspired, it

is reasonable to proxy the prevalence by the percent infected last week IRt−1, and

incidence by the rate this week. Then Theorem 2 is proxied by the panel regression

IRi,t = α + ϕIRi,t−1 + γCFRi,t + δi + τt + εi,t

for group effects δi and time effects τi. The time fixed effects capture the driving

12Lacking such data for Massachusetts, we use France’s age pyramid.
13The earlier noted raw CFRs 0.33, 4.12, 45.67 are resp. 5.5, 4.75, and 4.39 times bigger. This

consistency argues for the CFRs, since the testing does not appear to be too age-biased. Notably, this
also suggests that Massachusetts testing has undercounted COVID-19 by about a factor of five.

14www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/01042021/specimens-tested.html.
15Using Levin et al. (2020), the interpolated infection fatality rates (IFR) per 100 for the MA cohorts

is 0.0023, 0.06, 0.867, and 10.4, whereas the CDC cohorts has IFRs 0.019, 0.0567, 0.5895, and 7.93.
16We use a lag of three weeks, to match published estimates of time to due. To highlight the

robustness of our findings, an online appendix shows that the estimated parameters are not too
sensitive to how the CFR is computed, or whether we run this regression with daily data.
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CFR proxy −→ Entire sample Excluding first 6 weeks

infection-loss elasticity γ −0.123 −0.110
P (H0 : γ ≥ 0) 0.081 0.148

incidence-prevalence elasticity ϕ 0.846 0.837
P (H0 : −γ ≥ 1− ϕ) 0.310 0.210

P (H0 : −γ ≤ 1
2
(1− ϕ)) 0.254 0.357

Number of Observations 111 96
Adjusted R2 0.987 0.986

Table 1: How Case Fatality Rates and Prevalence Impact Infection Rates.
The middle column documents the panel regression for all weeks CDC infection data,
and the linearly projected CFR. The last column ignores the first six weeks when the
nursing home deaths occurred.

effect of prevalence on incidence that appears in the SIR and BSIR models; this panel

approach avoids explicitly estimating the time series. This sidesteps any analysis of the

time series aspects of the paper, which is the focus of Keppo et al. (2020). Age effects

capture heterogeneity in the age groups not summarized in the CFR. For instance, the

youth may party more than other groups. Any undercounting of true infections, as

long as it is same percent across ages, simply appears in the vertical intercept α.

Finally, let’s consider our three predicted corollaries of Theorem 2 in §3. Consider

first the optimizing behavior by agents solving the objective function (1). This involves

two predictions, one old and one new. We estimate that incidence increases in preva-

lence with an elasticity ϕ̂ < 1, and this gap is significant. Specifically, a 10% increase

in the prevalence leads to a 8.4% rise in incidence (not the 10% predicted by the SIR

model). This is consistent with the estimate found by Keppo et al. (2020). And for our

novel optimization as the case fatality rate changes, we estimate γ̂ < 0. In particular,

we conclude that a 10% increase in a group’s CFR results depresses its incidence by

1.2%. In Figure 3, we give the scatter plots of IRt − ϕIRt−1 to illustrate the impact

of CFR on infection rates not explained by the prevalence, but captured by the CFR.

Consider finally the pairwise matching prediction −ψ̂ < 1 − ϕ̂, namely, that two

parties jointly respond more strongly to increased prevalence than does one to greater

CFR, and the strategic substitutes prediction 1− ϕ̂ < −2ψ̂, that efforts displace each

other. These more nuanced predictions hold for our estimated parameters, but we

cannot statistically reject the opposite inequalities. Both predictions await better data.
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Figure 3: The CFR Predicts the Infection Rate. This is the scatter plot for the
residuals of the regression of log infection rate on the CFR that are not explained by
the last period infection rate, or by the age or time fixed effects.

5 Conclusion

Three events must happen a COVID death: exposure to the virus (prevalence), in-

fection from it (passing), and death (or major adverse health outcome) conditional

on infection. Keppo et al. (2020) introduce a strategic twist on the SIR model with

endogenous vigilance. Their Nash equilibrium yields a simple log-linear map from

prevalence to incidence that nests the SIR model as a special case. This paper reworks

their avoidance game for a non-representative agent model, with a varying case fatality

rate (CFR). Our unique (now) Bayesian Nash equilibrium yields a log-linear map from

the CFR to incidence. In other words, this paper offers a unified theory of how passing

rates in contagions should respond to changes in the prevalence and in the death rate.

We show that this new model is predictive of cross-sectional behavior of different

individuals in the pandemic. We deduce that avoidance behavior by each party shaves

about 10% off the increased CFR by age: a 10% more deadly infection reduces the

incidence by about 1%. Our parametric estimates are consistent with two other pre-

dictions of the model — the pairwise matching transmission or its strategic substitutes

property. More refined data is needed to secure statistically significant tests of these.
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Our paper and Keppo et al. (2020) derive and test novel models of risk compensation

with deadly consequences that apply matching theory and game theory. We could also

compute willingness to pay, and so offer value of life analysis. Hopefully the COVID-19

pandemic soon ends, but our heterogeneous agent twist applies to any epidemic where

people have divergent mortality risks, and equally well, divergent infection risks.17

As we emphasized earlier, this paper applies far afield from enriching contagion

models with optimizing behavior. The Swiss Cheese model reflects any setting where

accidents or failures reflect a systematic mistake by all people, such as auto accidents

In these settings, more efforts by some parties can atone for less by others, and thus

efforts are strategic substitutes. This is a fully solved Bayes Nash equilibrium of such

settings, to capture heterogeneity in losses or mistake proclivities. For auto accidents,

the variation among individuals will be in the cost of vigilance rather than loss. For

worse drivers formally have higher vigilance costs. Young and very old drivers formally

have a higher cost of vigilance. That is formally equivalent in our optimization to a

lower accident loss, and our equilibrium will apply.

A Appendix: Omitted Proofs

A.1 The Equilibrium Filtering Formula: Proof of Theorem 1

We now solve the differential equation (2) by further differentiating it. Since f ′(V (`))`

is constant in ` by (2), its ` derivative is zero — and so V (`) is differentiable. Hence:

f ′(V (`)) + f ′′((V (`))V ′(`)` = 0 (4)

As f(v) = (v + 1)−γ implies f ′(v)/f ′′(v)=−(v + 1)/(γ + 1), the equilibrium vigilance

function solving (4) is

V (`) = c`1/(1+γ) − 1 (5)

All that remains is to solve for the constant c > 0. Vigilance vanishes at the loss `0 > 0

where V (`0) = c`
1/(γ+1)
0 − 1 = 0 implies `0 = c−(1+γ). In equilibrium, the filter function

is then f(V (`)) = (1 + V (`))−γ = c−γ`−γ/(γ+1) if ` ≥ `0, while f(V (`)) = 1 if ` ≤ `0.

Since `0 = c−1−γ by V (`0) = 0 and equation (5), substituting f ′(V (t0)) = f ′(0) =

17The latter holds for instance for HIV infections, with male to female transmission almost twice as
likely as female to male transmission (ESGFHT-HIV, 1992).
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−γ into the FOC (2) yields:

0 = 1 + f ′(V (`0))E[f(V (L))]π`0βq = 1− γc−γE[L−γ/(γ+1)]π`0βq

So the constant c obeys c2γ+1 = γπβqE[L−γ/(γ+1)]. Finally, put C = c2γ+1. �

A.2 The Equilibrium Incidence Formula: Proof of Theorem 2

All told, if ` ≥ `0, the equilibrium filter function is

f(V (`)) = c−γ`−γ/(γ+1) =
`−γ/(γ+1)

(γπκE[L−γ/(γ+1)])γ/(1+2γ)

Type `’s incidence events (others to him, and him to others) f(V (`))E[f(V (L))]κπσ

is:

Î(`, π, σ) = `−γ/(γ+1)π1/(1+2γ) · E[L−γ/(γ+1)]1/(1+2γ)γ−2γ/(1+2γ)κ1/(1+2γ)σ (6)

Then (6) yields (3) for interactions involving loss type `. Finally, while these involve

infection by ` of others, and vice versa, in a steady-state, the incidence density I(`, π) of

loss type ` is a constant fraction of the incidence events density Î(`, π). The unknown

fraction is absorbed in the constant B, along with the log of the last three factors (6).
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