
American Economic Review 2024, 114(3): 709–751 
https://doi.org/10.1257/aer.20210890

709

The Comparative Statics of Sorting†

By Axel Anderson and Lones Smith*

We create a general and tractable theory of increasing sorting in 
pairwise matching models with monetary transfers. The positive 
quadrant dependence partial order subsumes Becker (1973) as the 
extreme cases with most and least sorting and implies increasing 
regression coefficients. Our theory turns on synergy—the cross-par-
tial difference or derivative of match production. This reflects basic 
economic forces: diminishing returns, technological convexity, 
insurance, and learning dynamics. We prove sorting increases if 
match synergy globally increases, and is  cross-sectionally monotone 
or  single crossing. We use our results to derive sorting predictions in 
major economics sorting papers and in new applications. (JEL C78, 
D21, D82, D86, J12)

This paper considers optimal pairwise matching, as in Becker’s (1973) “mar-
riage” model. Becker uses this metaphor for the economics of actual marriages and 
allegorical ones like employment, partnerships, optimal assignment, pairwise trade, 
and other matches with monetary transfers. In this reduced-form model, each side 
of the market has a scalar type, and payoffs solely depend on the matched individu-
als’ types. Becker showed that positive assortative matching (PAM) emerges when 
partner types are complementary (or more formally, the match payoff function is 
supermodular): so the highest “man” pairs with the highest “woman,” the next-high-
est man with the next-highest woman, and so on. Also, when match types are substi-
tutes (submodular payoffs), negative assortative matching (NAM) arises—highest 
man with lowest woman, etc.

Little is known about matching models with neither supermodular nor submodu-
lar payoffs. This paper targets this gap with a tractable general theory on how match 
payoff function changes impact equilibrium sorting patterns. To do so, we first iden-
tify a simple economically meaningful partial order that captures increasing sorting: 
positive quadrant dependence (PQD). We ask when the  output-maximizing match-
ing under one production function entails more sorting in the PQD order than under 
another production function with “higher” synergy. We derive this comparative 
static conclusion under many notions of “higher” and assuming a  cross-sectional 
synergy restriction.
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Since agents are described by scalar types, a matching describes which types 
from each side are paired together and thus is a cdf on   ℝ   2  . One matching cdf is 
higher than another in the PQD order if it has more mass weakly below any pair 
of types   (x, y)   (i.e., in every southwest quadrant). For example, consider the PQD 
partial order over the six possible pure matchings among three men   (1, 2, 3)   and 
three women   (1, 2, 3)   in Figure  1. NAM pairs the highest types with the lowest 
types, while PAM pairs the two highest types, the two middle types, and the two 
lowest types. NAM1 also pairs the two lowest types but pairs middle types with 
highest types. PAM is strictly higher than NAM1 in the PQD order since it has more 
matches weakly below any pair   (x, y)   and strictly more matches weakly below   (2, 2)  . 
But notice that NAM1 and NAM3 are not PQD ranked, as NAM1 pairs   (1, 1)   , while 
NAM3 has more matches weakly below   (2, 2)  . The PQD order for all six matchings 
is

(1)  PAM  ≻ PQD    [NAM1, NAM3]   ≻ PQD    [PAM2, PAM4]   ≻ PQD   NAM .

Lemma 1  argues that increases in the PQD order imply all of (i) the average dis-
tance between matched types falls, (ii) the correlation of matched types increases, 
and therefore, (iii) the regression coefficient of women on their partners’ types 
increases. In other words, increases in the PQD order imply that commonly used 
measure of sorting rise. By contrast, we show that no coherent sorting theory can 
emerge premised on increasing covariance, correlation, or falling average distance 
between match partners.

We next introduce a partial order on match production functions that connects 
submodularity and supermodularity. Our building block is a local complementarity 
measure: Synergy is the cross-partial difference of production with finitely many 
types and the cross-partial derivative with continuous types. Synergy is everywhere 
positive for supermodular functions and everywhere negative for submodular func-
tions. To highlight its central role, we show how to express total match output as a 
constant plus an average of all match synergies weighted by the matching distri-
bution. This means that any matching characterization must turn on synergy. For 
instance, Becker (1973) deduces positive sorting with all synergies positive and 
negative sorting with all synergies negative. We subsume intermediate cases, where 
synergy changes sign.

Since globally positive synergy implies assortative matching, is sorting greater 
with more synergistic production? A  three-type example refutes this conjecture—

PAM NAM1 NAM3 PAM2 PAM4 NAM

Figure 1. Pure Matchings with Three Types 

Note: The possibilities are negative and positive assortative matching (NAM and PAM), negative sorting in 
 quadrants 1 and 3 (NAM1 and NAM3), and positive sorting in quadrants 2 and 4 (PAM2 and PAM4).
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the optimal matching oscillates between the two  non-PQD comparable matchings 
NAM1 and NAM3 as synergy rises in Figure 3. While increasing synergy is not 
enough for increasing sorting, Proposition 1 finds that sorting cannot fall in the PQD 
order when synergy globally weakly rises. This exhausts the strength of monotone 
comparative statics logic and allows unranked oscillations, like NAM1 to NAM3, 
as synergy rises.

To secure increasing sorting, we need stronger assumptions. We add in 
 cross-sectional restrictions on synergy. Our easiest to state such result is 
Proposition  2—sorting increases if synergy weakly increases for all pairs and if 
synergy is  cross-sectionally monotone, i.e., monotone across pairs of types before 
and after the shift in production. But these monotonicity assumptions may be too 
demanding since synergy is not monotone in many matching applications.

Our most general sorting result, Proposition 3, replaces monotonicity conditions 
in Proposition 2 with sign change provisos. The new assumption across matching 
markets is that total synergy aggregated on unions of rectangular partner sets changes 
sign only from negative to positive. The new  cross-sectional premise is that the total 
synergy on rectangular sets changes sign just once as it shifts toward higher types.

Next, Proposition 4 replaces the  cross-sectional premise of Proposition 3 with 
an assumption on marginal rectangular synergy. Finally, to subsume continuum 
types matching papers, Proposition 5 formulates an increasing sorting result solely 
in terms of local synergy. It posits that synergy changes sign only from negative to 
positive, with the same sign change  cross-sectionally. But this is not enough, as sin-
gle crossing is not preserved under addition. We therefore also assume that synergy 
is the product of an increasing and  log-supermodular function. This ensures that 
positive synergy rises proportionately more than absolute negative synergy.

Finally, the logical arc of the paper is that Proposition 3 implies Proposition 4 
implies Proposition  5 implies Proposition  2. We prove Proposition  3 for finitely 
many types. The proof in Appendix C.B by induction on the number of types is a 
key contribution of the paper. Notably, it never solves for an optimum. Rather, it 
chases down failures of the comparative static to the possible shift from the  n -type 
version of NAM3 to NAM.

For our final general results, we deduce comparative statics for distributional 
shifts, such as an increase in the mass of high types of women. We show that a dis-
tributional shift can be reinterpreted as a change in the match payoff function and 
then apply our previous results to show that first-order shifts in type distributions 
increase sorting when synergy is  cross-sectionally increasing (Corollary 1).

Economic Applications of Our Theory.—Our theory is targeted at applications. 
We show how our conditions on synergy can be readily derived in many standard 
economic problems, where our theory makes immediate predictions. We show that

 (i) The typical economic force of diminishing returns lowers synergy and so 
sorting.

 (ii) Match synergy is greater for “weakest link” technologies and lesser for 
“strongest link” technologies—where the lesser/higher type matters more, 
respectively.
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 (iii) In the  principal-agent matching model of Serfes (2005), NAM obtains—
more risk-averse agents with safer projects—when the disutility of effort is 
below a lower bound, while PAM obtains when disutility crosses an upper 
threshold. Our theory shows that sorting rises between these two thresholds, 
provided types (risk aversion and project variance) are not too far apart.

 (iv) Our theory also speaks to dynamic matching with evolving types. In a 
model of  mentor-protégé workplace learning, matching with a better men-
tor improves the protégé’s future type. This strongest link technology lowers 
match synergy.1

Our model properly is a transportation problem, whose literature dates back over 
two centuries (see Villani 2008). Notably, it is not solved, except in special cases 
like Becker’s. But we provide comparative statics predictions without ever deriving 
the optimal solution. We also build on a math literature on the PQD order. Lehmann 
(1966) introduced the PQD order and showed that several common correlation mea-
sures are weakly positive for any matching that is PQD higher than uniform random 
matching. Cambanis, Simons, and Stout (1976) found that total output weakly rises 
when the matching shifts up in the PQD order whenever synergy is everywhere 
 nonnegative. Our Proposition 1 is a corollary of this result. Techen (1980) showed 
that  nonnegative synergy is necessary for total output to rise for any upward shift in 
the PQD order.

Longer proofs and new monotone comparative statics results are in  the  
Appendixes.

I. Becker’s Marriage Model and Planner’s Result

Our model is standardly adapted from Becker (1973) and the pairwise matching 
literature with two groups (men and women, firms and workers, buyers and sellers) 
or one (partnership model). To subsume both finite and continuum type models, 
we posit a unit mass of “women” and “men” with respective types  x, y ∈  [0, 1]   and 
cdfs  G  and  H . We assume absolutely continuous type distributions  G  and  H , and for 
the finite type model,  G  and  H  are discrete measures with equal weights on female 
types  0 ≤  x  1   <  x   2   < ⋯ <  x   n   ≤ 1  and male types  0 ≤  y  1   <  y   2   < ⋯ <  
y  n   ≤ 1  for  n ≥ 2 . In the finite types case, we relabel women and men as  i, j ∈  
{1, 2, …, n}  , respectively.

1 Bayesian updating need not inherit supermodularity in Anderson and Smith (2010). Supermodularity is often 
not preserved in our work with evolving human capital (Anderson and Smith 2012).
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We assume a   C   2   production function  ϕ > 0 , so that types  x  and  y  jointly produce  
ϕ (x, y)  . In the finite type model, the output for match   (i, j)   is   f  ij   ≡ ϕ ( x  i  ,  y  j  )  ∈ ℝ  . 
Production is supermodular or submodular (SPM or SBM) if for all  x′ < x″  and  
y′ < y″ ,

(2)  ϕ (x′, y′)  + ϕ (x″, y″)  ≥ (≤)  ϕ (x′, y″)  + ϕ (x″, y′)  .

Strict supermodularity (respectively, strict SBM) asserts globally strict inequality 
in (2).

Since output is positive, everyone matches—even if allowed not to. A matching is 
a bivariate cdf  M ∈  (G, H)   on    [0, 1]    2   with marginals  G  and  H . A finite matching 
is a nonnegative matrix   [ m  ij  ]  , with cdf   M   i   0     j    0     =  ∑ 1≤i≤ i   0  ,1≤ j≤  j    0    

      m  ij    and unit marginals   
∑ i  

 
     m  i j    0     = 1 =  ∑ j        m   i   0    j    for all women   i   0    and men   j    0   . In a pure matching,   [ m  ij  ]   is a 

matrix of 0s and 1s, with everyone matched to a unique partner.
There are two perfect sorting flavors. In positive assortative matching, any 

woman type of  x  at quantile  G (x)   pairs with a man of type  y  at the same quan-
tile  H (y)  , and thus, the match cdf is  M (x, y)  = min {G (x) , H (y) }  . In  negative 
assortative matching, complementary quantiles match, and so  M (x, y)  = 
max {G (x)  + H (y)  − 1, 0}  . Matched types are uncorrelated given uniform 
matching, and so  M (x, y)  = G (x) H (y)  .

The partnership (or unisex) model is a special case where types  x  and  y  share 
a common distribution,  G = H , and the production function  ϕ  is symmetric  
( ϕ (x, y)  = ϕ (y, x)  ). In this case, PAM is simply matching with the same type,  
y = x .

A social planner maximizes total match output, namely,   ∑ i=1  n     ∑ j=1  n      f  ij   (θ)  m  ij    with 
finite types, or more generally,   ∫   [0,1]    2   

 
    ϕ (x, y | θ) M (dx, dy)  , where we index output  

 ϕ (x, y | θ)   by a (often suppressed) state  θ ∈ Θ , a partially ordered set (poset). The 
optimal matchings      ⁎  (θ)   solves

(3)      ⁎  (θ)  ≡   arg max  
M∈ (G,H) 

    ∫   [0,1]    2   
 

    ϕ (x, y | θ) M (dx, dy)  .

Gretsky, Ostroy, and Zame (1992) prove existence and show that      ⁎   is the core of 
the matching game among women  x  and men  y , or workers  x  and capital  y . They 
also show that solutions can be decentralized as a competitive equilibrium.2 So our 
theory applies to equilibrium sorting in such markets.

Problem (3) has been solved in just three general cases: all feasible matchings 
are optimal with additive production, while Becker solved for SBM and SPM 
production.

BECKER’S SORTING RESULT: Given SPM (SBM) production  ϕ , PAM (NAM) is 
an optimal matching. Given strict SPM (SBM), these pairings are uniquely optimal.

2 Villani (2008, p. 61) states that existence “has probably been known from time immemorial,” and his 
Theorem 4.1 provides existence for very general type spaces. Koopmans and Beckmann (1957) decentralize the 
finite type solution as a competitive equilibrium. Legros and Newman (2007) show that some nontransferable utility 
models can be mapped into the transferable utility paradigm.
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For an intuition, assume finitely many types and SPM (2). A maximum of prob-
lem (3) obviously exists. To see uniqueness, note that if ever women  x′ < x″  and 
men  y′ < y″  are negatively sorted into matches   ( x ′  , y″)   and   (x″,  y ′  )  , then total output 
is raised by rematching them as   ( x ′  ,  y ′  )   and   (x″, y″)  . A proof for any number of types 
is in Section II.

Without SBM or SPM, solving the general social planner’s problem (3) is a hard 
open question. We bypass this and ask how the optimal set      ⁎  (θ)   changes in  θ . We 
derive its comparative statics in  θ  when output  ϕ (x, y | θ)   is neither SPM nor SBM. 
Hereafter, a time series property suggestively refers to changes in the state  θ ,3      ,   4 and 
a  cross-sectional property to production changes over the type space. We then apply 
our finding in several matching models across economics, without SPM or SBM 
output.

Throughout the paper, we present finite type and continuum type results together, 
as synergy is a common theme. We draw both intuition and our overall inductive 
proof logic from the finite type case and derive the continuum type results by taking 
limits.

II. Sorting Measurement and Synergy

This section  introduces the building blocks of our theory. First, we define and 
discuss the partial order that we use to measure sorting. We then define a property 
of payoff functions called synergy and show that optimal matching only depends on 
synergy.

A. The Positive Quadrant Dependence Order

The PQD order is a binary partial order on bivariate probability distributions  
M, M′ ∈  (G, H)  . Matching measure  M′  is PQD higher than  M , or  M′  ⪰ PQD   M , 
if  M′ (x, y)  ≥ M (x, y)   for all types  x, y . So  M′  puts more weight than  M  on all lower 
(southwest) orthants. As  M  and  M′  share marginals,  M′  puts more weight than  M  on 
all upper (northeast) orthants too (Figure 2).

As noted in the introduction, PQD only partially orders the six possible pure 
matchings on three types. In terms of Becker’s bounds, match cdf’s are sandwiched 
above NAM and below PAM:

(4)  max {G (x)  + H (y)  − 1, 0}  ≤ M (x, y)  ≤ min {G (x) , H (y) }  .

The second inequality says that the mass of matched men and women in  
  [0, x]  ×  [0, y]   is at most the total mass of men or women. The first inequality— 
rewritten as  1 − M (x, y)  ≤ min {1 − G (x)  + 1 − H (y) , 1}  , says the mass of 
matches not in   [0, x]  ×  [0, y]   is at most the total mass of women above  x  plus the 
mass of men above  y .

3 The term  “time series” is used to distinguish variation across matching markets from changes across types 
within a market. The state could also represent geographic differentiation in matching markets. 

4 Equivalently, our theory compares sorting for two production functions   ϕ 1    and   ϕ 2    (i.e.,   θ 1   <  θ 2   ).
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The PQD sorting measure implies typical economically relevant measures for 
measured traits  u (x)   and  v (y)   of women  x  and men  y , increasing in  x  and  y :

LEMMA 1: Fix  nondecreasing functions  u  and  v . Given a PQD order upward shift,

 (a) the average distance  E [  |u (X)  − v (Y) |    
γ
 ]   for matched types weakly falls, if  

γ ≥ 1 ;

 (b) the covariance   E  M   [u (X) v (Y) ]  − E [u (X) ] E [v (Y) ]   across matched pairs weakly 
rises;

 (c) the linear regression coefficient of  v (y)   on  u (x)   across matched pairs weakly 
rises.

PQD is an ordinal sorting ranking, like PAM—not dependent on type scaling. 
So if educational sorting PQD rises, then this holds regardless of whether it is mea-
sured in highest degree, schooling years, etc. But for  non-PQD comparable match-
ing changes, the sorting conclusion can reverse if the choice of cardinal measure 
changes. This highlights why we use the stronger ordinal PQD sorting order.

To see this, assume three types, and consider a  non-PQD comparable NAM1 to 
NAM3 change. If  x ∈  {1, 2, 3}   and  y ∈  {0.5, 1.8, 3}  , then the covariance between 
matched types and average distance between partners both fall; i.e., sorting falls if 
measured by type correlation but rises if measured by average distance between 
matched types. But if  y ∈  {0.5, 2.5, 5}  , match type correlation rises, and average 
distance between matched types falls. Both sorting measures fall if  y ∈  {0.5, 2.5, 3}  , 
and both rise if  y ∈  {0.5, 2.5, 3}  . So any sign pattern is consistent with a NAM1 to 
NAM3 shift.

If we convert to quantile space, then the covariance and the average distance 
ranking coincide for (NAM1, NAM3) and (PAM2, PAM4). But  equivalence fails 

Figure 2. PQD Order 

Notes: Left panel: PQD increases for cdfs on    [0, 1]    2   raise the probability mass on all lower-left rectangles (corners   
(0, 0)   and   ( x   0  ,  y  0  )  ), and so on all upper-right rectangles (corners   ( x   0  ,  y  0  )   and   (1, 1)  ). Right panel: The best fit regres-
sion line is steeper (thick black line and ● versus thin black line and ○) after a PQD increase (Lemma 1(c)).

y j
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x0 1
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with four types. For example, let  M′  be the four type matching   { (1, 4) ,  (2, 2) ,  (3, 3) , 
 (4, 1) }   and  M″  be the PQD incomparable matching   { (1, 3) ,  (2, 4) ,  (3, 1) ,  (4, 2) }  . 
Then  covariance-based sorting statistics deem  M″  more sorted (e.g., a higher cor-
relation coefficient) than  M′ , while  M′  is more sorted than  M″  by the average dis-
tance between partners.

B. Synergy

We now introduce a local measure of Becker’s supermodularity assumption. 
In finite type models, we suggestively call the cross-partial difference of output 
synergy:

   s  ij   (θ)  ≡  f   i+1j+1   (θ)  +  f   ij   (θ)  −  f   i+1j   (θ)  −  f   ij+1   (θ)  .

Synergy is the net change in output from positively sorting pairs   (i, j)   and   
(i + 1, j + 1)   versus negatively sorting as   (i, j + 1)   and   (i + 1, j)  . Equivalently, it is 
the difference between the gain in output that woman  i + 1  gets when matching with 
the next-higher man,   f   i+1j+1   −  f   i+1j   , and this same change for the next-lower woman  
i ,   f   ij+1   −  f   ij   .

The central importance of synergy is revealed by expressing match output as a 
weighted sum of match synergies. Appendix  A proves the following identity by 
double summation of match output by parts:5

(5)    ∑ 
i=1

  
n

      ∑ 
j=1

  
n

      f   ij    m  ij   =   ∑ 
i=1

  
n

      f   in   −   ∑ 
j=1

  
n−1

    [  f   nj+1   −  f   nj  ]  j +   ∑ 
i=1

  
n−1

     ∑ 
j=1

  
n−1

    s  ij    M  ij   .

In other words, any two production functions with identical synergies share the opti-
mal matching. For instance, if production is linear, then synergy vanishes, and all 
match distributions yield the same output.

Becker’s Result follows immediately from the bounds (4) and the summation by 
parts formula (5). For example, output is SPM when all   s  ij   ≥ 0 , and so by (5), out-
put is highest when the cdf  M (x, y)   is maximal: PAM dominates all other matchings. 
Similarly, if output is SBM, then all   s  ij   ≤ 0 , and thus, output is highest when the 
match cdf  M (x, y)   is minimal, namely, for NAM. More generally, the PQD and SPM 
orders coincide in   ℝ   2  ; i.e., increases in the PQD order increase (reduce) the total 
output for any SPM (SBM) function  ϕ :6

(6)  M′  ⪰ PQD   M ⇔ ∫ ϕ (x, y) M′ (dx, dy)  ≥ ∫ ϕ (x, y) M (dx, dy) , ∀ ϕ SPM .

III. What Happens When Synergy Rises?

Since Becker shows that globally negative synergy leads to NAM, and globally 
positive synergy leads to PAM, one might surmise that sorting increases if synergy 

5 Lemma 3 in online Appendix D.2 derives the analog for types on a continuum.
6 Lehmann (1966) introduces the PQD order, and Cambanis, Simons, and Stout (1976) prove that the SPM order 

implies the PQD ranking in   ℝ   2  . Techen (1980) proves the converse.
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increases everywhere. This natural conjecture fails: in Figure  3, synergy strictly 
increases at each step, and yet the uniquely optimal matching oscillates between the 
non  PQD-comparable NAM1 and NAM3. What goes wrong?

The synergy sign is all that matters for determining whether NAM or PAM is 
optimal for any pair of couples, but the magnitude of synergy impacts global sorting 
patterns. For example, one can verify that NAM1 yields a higher payoff than NAM3 
if and only if synergy is larger in the lower-left rectangle,   s  11   , than in the upper-right 
rectangle,   s   22   . This makes sense of the sorting monotonicity failure in Figure  3: 
synergy strictly increases in  θ , but the difference   s  11   (θ)  −  s   22   (θ)   changes sign for 
every increase in  θ . Consequently, the optimal matching oscillates between NAM1 
and NAM3.

Technically, our objective function is single crossing in   (M, θ)   by (5). But standard 
monotone comparative statics results do not apply because the domain of matching 
cdf’s is not a lattice with the PQD order (Müller and Scarsini 2006). Indeed, NAM1 
and NAM3 in (1) are both pure upper bounds for PAM2 and PAM4, but neither is 
least. More strongly, there is no mixed least upper bound for PAM2 and PAM4.

While the optimal matching oscillates in Figure  3, it never falls in the PQD 
order.We show in online Appendix D that this is the comparative statics conclu-
sion for our case with a single crossing condition but not on a lattice domain.
Specifically, for our matching context, say that sorting is nowhere decreasing in  θ  
if the matching never falls in the PQD order. So for all  θ″ ⪰ θ′ , if  M′ ∈     ⁎  (θ′)    
and  M″ ∈     ⁎  ( θ ′  )   are ranked  M′  ⪰ PQD   M″ , then we have  M″ ∈     ⁎  (θ′)   and  
 M′ ∈     ⁎  (θ″)  .

PROPOSITION 1: Sorting is nowhere decreasing in  θ  if synergy is  nondecreasing 
in  θ .7

7 For completeness, online Appendix D.1 generalizes Proposition 1, deriving a more general theory of compara-
tive statics on posets. We thank a referee for the proof of the following special case of this general theory. He derived 
it as a corollary of Cambanis, Simons, and Stout (1976).

Match payo�s
x1 x2

x2x3

x3 x1 x2 x3 x1 x2 x3 x1 x2 x3

y3

y2

y2y3

y1y2

x1x2x1x2 x2x3

y2y3

y1y2

x1x2 x2x3

y2y3

y1y2

x1x2 x2x3

y2y3

y1y2

y1

y3

y2

y1

y3

y2

y1

y3

y2

y1

9 14 18

5 2 14

1 5 9

9 16 24

5 3 16

1 5 9

9 20 30

5 6 20

1 5 9

9 22 36

5 7 22

1 5 9

Cross-partial di�erences of match payo�s

8 −8

−7 8

9 −5

−6 9

10 −4

−3 10

11 −1

−2 11

→ → →

→ → →

Figure 3. Sorting Need Not Rise in Synergy

Notes: Top: The unique efficient matching (bold) alternates between NAM1 and NAM3. Bottom: Match synergies 
(cross-payoff differences) strictly increase as we move right, but sorting does not PQD rise. Sorting by two com-
mon  cardinal measures can move contrarily. If  x ∈  {1, 2, 3}   and  y ∈  {0.5, 1.8, 3}  , NAM1 to NAM3 shifts reduce 
both covariance and average distance between partners.
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PROOF:
By match payoff formulation (5), the payoff gain moving from matching  M″  to 

matching  M′  is   ∑ i=1  n−1     ∑ j=1  n−1    s  ij   (θ)  ( M  ij  ′   −  M  ij  ′′ )  . Since  M′  ⪰ PQD   M″  (namely,  M′ ≥ M′′ ),  
if  θ″ ⪰ θ′ , then the Planner’s objective function obeys increasing differences in   
(M, θ)  :

    ∑ 
i=1

  
n−1

     ∑ 
j=1

  
n−1

    s  ij   (θ″)  ( M  ij  ′   −  M  ij  ″  )  ≥   ∑ 
i=1

  
n−1

     ∑ 
j=1

  
n−1

    s  ij   (θ′)  ( M  ij  ′   −  M  ij  ″  )  .

Assume that  M′  is optimal at  θ′  and  M″  at  θ″ . Then,

    ∑ 
i=1

  
n−1

     ∑ 
j=1

  
n−1

    s  ij   (θ′)  ( M  ij  ′   −  M  ij  ″  )  ≥ 0 ≥   ∑ 
i=1

  
n−1

     ∑ 
j=1

  
n−1

    s  ij   (θ″)  ( M  ij  ′   −  M  ij  ″  )  .

But then equality holds everywhere: hence,  M′  is optimal at  θ″  and  M″  at  θ′ .∎

IV. Increasing Sorting

We now provide conditions that guarantee that matching is increasing in the PQD 
order. To preclude the increasing sorting failures as in Figure 3, we  cross-sectionally 
restrict how synergy evolves across types.

A. Strictly Monotone Synergy in Types

First consider the simplest case: synergy is (strictly) monotone in types if syn-
ergy is either  nondecreasing (increasing) or  nonincreasing (decreasing) in   (x, y)   ; 
i.e., synergy is monotone to the “north and east” or “south and west” in the type 
space.8

PROPOSITION 2: Let synergy be  nondecreasing in  θ . If  M″  and  M′  are respectively 
optimal for  θ″ ≻ θ′ , then  M″  ⪰ PQD   M′  in   (a)   generic finite type models for synergy 
monotone in types and   (b)   continuum type models for synergy strictly monotone  
in types.

To illustrate this first sorting result, consider the production function  
ϕ = α x  y + β  (x  y)    2  . If  α β < 0 , then Becker’s Sorting Result does not apply. But 
since synergy   ϕ 12   = α + 2 β x  y  strictly increases in   (α, β)  , sorting rises in both 
parameters, by Proposition 2.

Assuming that synergy is monotone in types rules out either NAM1 or NAM3 
in three-type models. But with more types, this  cross-sectional assumption still 
allows for rich matching patterns. For example, assume the synergy function  
  ϕ 12   (x, y)  = α − β min {x, y}   (recall that synergy fully determines the opti-
mal  matching by (5)). Synergy is monotone in types— nondecreasing or 
 nonincreasing as  β ≶ 0 . Synergy is increasing in  α  and decreasing in  β . Thus, by  
Proposition  2, sorting increases in  α  and falls in   β . Figure  4 illustrates this 

8 This  cross-sectional assumption is not so strong that it eliminates the partialness of the PQD order. For 
instance, PAM2 and PAM4 can both emerge as optimal matchings when synergy is strictly monotone in types 
(Figure 5, left panel).
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 comparative static with 100 equally spaced types on each side of the market. Notice 
that the matching alternates between locally positive and locally negative sorting 
for fixed  α  and  β . Furthermore, these finite type plots also suggest that the optimal 
matching will not be pure ( one-to-one) with continuum types. In fact, none of our 
continuum type sorting results require purity.

B. One-Crossing Rectangular Synergy in Types

The conditions in Proposition 2 are quick to check but do not hold in many appli-
cations. We now prove a sorting result with a weaker premise, which we apply to 
several applications in Section VI. Let   (T, ⪰)   be a partially ordered set. A function  
ϒ : T ↦ ℝ  is upcrossing in  t 9if  ϒ (t)  ≥ (>)  0  implies  ϒ (t′)  ≥ (>)  0  for all  t′ ⪰ t  ,  
downcrossing in   t  if  −ϒ  is upcrossing, and  one-crossing in  t  if it is upcrossing 
or downcrossing. Strict versions of these conditions require that weak inequalities 
imply strict inequalities. For example,  ϒ  is strictly upcrossing if  ϒ (t)  ≥ 0  implies  
ϒ (t′)  > 0 , for all  t′ ≻ t .

The rectangle  r ≡  ( i    1  ,  j    1  ,  i   2  ,  j    2  )  ∈  ℕ   4   has diago-
nally opposite corners given by two women   i    1   <  i   2    and men  
  j    1   <  j    2   . Rectangular synergy  S (r | θ)  :  ℕ   4  → ℝ  sums synergies   s  ij   (θ)   inside the 
rectangle  r :

(7)   (r | θ)  ≡   ∑ 
i= i    1  

  
 i   2  −1

     ∑ 
j= j    1  

  
 j   2  −1

    s  ij   (θ)  =  f    i    1     j    1     (θ)  +  f    i   2     j   2     (θ)  −  f    i    1     j   2     (θ)  −  f    i   2     j    1     (θ)  .

This is the gain on rectangle  r  to positively sorting (creating couples   ( i    1  ,  j    1  )  < 
 ( i   2  ,  j    2  )  ) versus negatively sorting (creating couples   ( i    1  ,  j    2  )   and   ( i   2  ,  j    1  )  ).

For a type continuum, rectangular synergy is the integral of synergy over a rectan-
gle; namely,  S (R | θ)  ≡  ∫  y  1    

 y   2      ∫  x  1    
 x   2      ϕ 12   (x, y | θ) dx  dy  for any  R =  ( x  1  ,  y  1  ,  x   2  ,  y   2  )  . Our next 

9 The “single crossing property” usually implies a two-dimensional functional domain. To avoid this confusion, 
and clarify the direction, we instead use the suggestive terms upcrossing and downcrossing.
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Figure 4. Matching Example for Proposition 2

Notes: We numerically depict the matching support for the synergy function  α − β min { x  i  ,  x  j  }  . All match-
ing plots depict optimally matched pairs (dots) for a uniform distribution on a finite  100 × 100  matching array. 
In each graph, synergy is positive (negative) on the shaded (unshaded) regions. Left to right, plots assume  
  (α, β)  =  (0.4, 1.3)  ,   (0.4, 1)  , and   (0.6, 1.3)  .
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result requires summed rectangular synergy—namely, the sum   ∑ k  
 
     ( r  k   | θ)   on a finite 

set of disjoint rectangles   { r  k  }   with finite types, or   ∑ k  
 
     ( R   k   | θ)   on finite disjoint set  

  { R   k  }   with continuum types.10

Since rectangular synergy is the net gain to positively rematching the negatively 
sorted pair of couples   ( i    1  ,  j    2  )   and   ( i   2  ,  j    1  )  , summed rectangular synergy is the net gain 
to a sequence of such positive couple swaps. When summed rectangular synergy 
is upcrossing in  θ , any such sequence of positive swaps increases aggregate output 
at all  θ′ ⪰ θ , whenever this sequence increases aggregate output at  θ . This ordinal 
assumption weakens the  time series assumption in Proposition 2 since summed rect-
angular synergy is upcrossing in  θ  if synergy is  nondecreasing in  θ .

Our first ordinal  cross-sectional assumption uses the northeast partial order on 
rectangles:  r  ⪰ NE   r′ , if diagonally opposite corners of  r  are weakly higher than  r′ . 
Rectangular synergy is  one-crossing in types if   (r | θ)   is upcrossing or downcross-
ing in  r , for all  θ . This assumption demands that the sign of the change in output 
from any positive swap can only change once as we increase types. For example, if 
rectangular synergy is upcrossing in types and positively rematching the negatively 
sorted pair of couples   ( i    1  ,  j    2  )   and   ( i   2  ,  j    1  )   increases output, then any positive swap 
involving couples with higher type indices must also increase output. This is an 
ordinal weakening of the  cross-sectional assumption in Proposition 2 since rectan-
gular synergy is  one-crossing in types when synergy is monotone in types.

PROPOSITION 3 (Increasing Sorting): Assume summed rectangular synergy is 
upcrossing in  θ  and rectangular synergy is  one-crossing in types. If  M″  and  M′  are 
uniquely optimal for respectively  θ″ ≻ θ′ , then  M″  ⪰ PQD   M′ .

Proposition 3 is our most general result. Since its time series premise is weaker 
than monotone synergy, we cannot deduce it from Proposition 1.11 Proposition 3 
applies to output functions with a unique optimal matching, but optimal matchings 
are generically unique in finite type models by Koopmans and Beckmann (1957). 
We prove uniqueness for continuum type models with a stronger  cross-sectional 
proviso in Section IVD.

C. Logic of the Proof of the Increasing Sorting Theorem

To help build intuition, we show how our  cross-sectional and  time series 
assumptions jointly rule out a PAM2 to PAM4 shift as  θ  rises. Toward a contra-
diction, assume PAM2 uniquely optimal at  θ′  and PAM4 uniquely optimal at  
θ″ ≻ θ′  , as illustrated in Figure  5 (right). Local optimality implies the synergy 
signs given in Step A. Then, since synergy is upcrossing in  θ ,   s  12   (θ′)  > 0  implies  
  s  12   (θ″)  > 0  as indicated in Step B. Now notice that PAM4 involves negatively sort-
ing couples   (1, 3)   and   (3, 2)  ; and thus, the synergy sum across the top row obeys  
  s  12   (θ″)  +  s   22   (θ″)  < 0 . But then, since   s  12   (θ″)  > 0  (Step B), we conclude in Step C 
that   s   22   (θ″)  < 0 . Likewise, PAM4 negatively sorts pairs   (1, 3)   and   (2, 1)   , implying 

10 The proof only needs this assumption for sums of rectangles sharing a common northeast corner.
11 In fact, the time series assumption in Proposition  3 is weaker than the robustly necessary condition for 

nowhere decreasing sorting, as seen in Theorem 4 in online Appendix D.2.
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the synergy sum in the first column satisfies   s  11   (θ″)  +  s  12   (θ″)  < 0 . But then, since   
s  12   (θ″)  > 0  (Step B), we can also sign   s  11   (θ″)  < 0 . Notice that the sign pattern in 
Step C violates synergy  one-crossing in types. Altogether, PAM2 optimal at  θ′  and 
PAM4 optimal at  θ″  is impossible. Symmetric logic rules out PAM4 optimal at  θ′  
and PAM2 optimal at  θ″ .

The preceding logic rules out one  non-PQD comparable shift. We now trace the 
logic of our induction proof in Appendix C.B for  three -type models with rectangular 
synergy upcrossing in types. Assume  M′  and  M″  are uniquely optimal for  θ″ ≻ θ′  . 
As shown in Appendix C.B, uniqueness implies purity for finite type models:  M′  and  
M″  are pure.

 •   Step   (i )  : Sorting rises in  θ  in  two- type models if rectangular synergy upcrosses 
in  θ .

 •    Step   (ii )  : If rectangular synergy upcrosses in types, then NAM1 is 
impossible. Indeed, rectangular synergy upcrossing in types precludes  
  s  11   +  s  12   > 0 >  s   22    (Figure  6), as required if NAM1 is uniquely optimal. 
Notice that this step rules out the monotone sorting counterexample in Figure 3. 
We use the fact that this holds for any  3 × 3  subset of  n × n  types throughout 
our proof in the Appendix.

 •   Step   (iii )  : Partners of woman 1 and man 1 each rise by one if the matching does 
not weakly rise. This corresponds to Step 3 in Appendix C.B. Indeed, shifting 
from  θ′  to  θ″ :

Case 1 of Step   (iii)  :  The partner of woman 1 cannot rise by 2. Since there are 
only three types, the only way the partner of woman 1 can rise by 2 is if woman 1 
is matched to man 1 at  θ′  and man 3 at  θ″ , which implies that man 3 is paired with a 
woman  i > 1  at  θ′ , while woman  i  is matched to a man  j < 3  at  θ″ . Now, remove 
matched couples   (i, 3)   at  θ′  and   (i, j)   at  θ″  and consider the induced matching among 
the remaining two women and men. By Fact 2 in Appendix C.B, synergy will be 

sij ↑ in (x, y) sij ↓ in (x, y)

+1 +1+2

+2

+2

−4

−4

−4

−3 −3
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−3 −3
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Step A

+

+

Step B

+

+
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⇒⇒

⇒

−

+

+

−

sij (θ ')

sij (θ")

Figure 5. The Role of Our  Cross-Sectional Synergy Assumption 

Notes: At left, we show that even strictly monotone synergy in types still allows PAM2 and PAM4, and so PQD 
is still a partial order on allowable matchings. At right is a schematic illustrating our logic precluding a PAM2 to 
PAM4 change when synergy is also upcrossing in  θ .
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upcrossing in  θ  in this two-type model since we have removed the same woman and 
a weakly higher man at  θ′ . So the matching in the induced two-type model must be 
PQD higher at  θ″  than  θ′ , by Step   (i)  . But by assumption, woman 1 pairs with man 1 
at  θ′ , and woman 1 pairs with (the new) man 2 at  θ″ ; i.e., the induced two-type model 
is PAM at  θ  and NAM at  θ″ .

Case 2 of Step   (iii)  : The partner of woman 1 strictly rises. Assume instead that 
her partner weakly falls from  k  to  j . As in Case 1, synergy must be upcrossing in  θ  in 
the induced two-type model, if we remove couple   (1, k)   at  θ′  and couple   (1, j)   at  θ″  . 
Thus, the induced  two-type matching is PQD higher at state  θ″  than  θ′  by Step   (i)   . 
But adding couple   (1, k)   and couple   (1, j)   to the optimal two-type matchings under  
θ′  and  θ″  preserves the PQD ordering by  k ≥ j  and Fact 5 in Appendix C.B. So if 
the matching fails to weakly rise in the PQD order, then woman 1’s partner cannot 
weakly fall.

Combining  Cases  1 and  2 of Step    (iii)  , woman  1’s partner increases by 1. 
Symmetric arguments establish that man 1’s partner also increases by 1.

 •   Step   (iv)  : If matching does not weakly PQD rise, then it falls from NAM3 to 
NAM. By Step   (iii)  , woman 1 cannot pair with man 3, nor man 1 with woman 3, 
at   θ′ . E.g., in the first case, by Step    (iii)  , woman 1 matches with nonexistent 
man 4 under  θ″ .

But woman 1 and man 1 cannot match at  θ′ . For if so, there are only two possible 
matchings for  M′ : either types 2 and 3 positively sort, and so  M′ = PAM , or they do 
not, whence  M′ = NAM1 . Since Step   (ii)   precludes NAM1, assume  M′ = PAM  . 
As the lowest two types match at  θ′ , by Step   (iii)  , woman 1 pairs with man 2 and 
man 1 with woman 2 at  θ″ . All told, the lowest two types positively sort at  θ′  and 
negatively sort at  θ″ —violating rectangular synergy upcrossing in  θ .

Now consider the remaining case: woman 1 pairs with man 2, and man 1 with 
woman 2, at  θ′ . Having matched the two lowest men and women, woman 3 must 
match with man 3. Altogether,  M′  is NAM3—namely, couples   { (1, 2) ,  (2, 1) ,  (3, 3) }  .  
By Step    (iii)  , woman  1 matches with man  3, and man  1 with woman  3 at  
θ″  . But then, the remaining man  2 and woman  2 match; i.e.,   M″  is NAM:  
  { (1, 3) ,  (2, 2) ,  (3, 1) }  .

s22

s11 + s21

s12 + s22 s12 + s22

s21 s21

⇒⇒

Step (ii)

NAM1 NAM PAM4

Step (v)

PAM4 NAM3

Figure 6. Illustrations for  Three-Type Version of Proposition 3 Proof 

Notes: Step (ii) shows that NAM1 (left) for any  3 × 3  subset of types is impossible when synergy is upcrossing 
in types. Step (v) uses the fact that mapping from NAM to PAM4 changes the payoff by   s   21   , while mapping from 
PAM4 to NAM3 changes the payoff by   s  12   +  s   22   .
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Step   (iv)   captures Steps 4–7 in the  n -type proof, although the logic is significantly 
more involved with many types. The next item distills Step 8 in the  n -type proof:

 •   Step   (v)  : The matching cannot fall from NAM3 to NAM. As in Figure 6, one can 
switch from NAM to NAM3, by first moving to PAM4, then to NAM3. The first 
shift rematches couples   (2, 2)   and   (3, 1)  , into   (2, 1)   and   (3, 2)  , changing output 
by synergy   s   21   . The second switch to NAM3 rematches couples   (1, 3)   and   (3, 2)   
into   (1, 2)   and   (3, 3)  , changing output by the synergy sum   s   21   +  s   22   . Combining 
these two swaps, we see that the NAM3 payoff exceeds the NAM payoff by 
synergy sum   s  12   +  s   21   +  s   22   . Since NAM3 is uniquely optimal for  θ′  , and NAM 
uniquely optimal for  θ″ , we have

   s  12   (θ″)  +  s   21   (θ″)  +  s   22   (θ″)  < 0 <  s  12   (θ′)  +  s   21   (θ′)  +  s   22   (θ′)  .

This contradicts summed rectangular synergy upcrossing in  θ .

Steps   (iv)   and   (v)   together imply that the matching weakly rises from  θ′  to  θ″ .
Only in Step   (v)   did we use summed rectangular synergy upcrossing in  θ . Absent 

this assumption, sorting can fall in  θ . For example, in Figure 7, rectangular syn-
ergy is upcrossing in types and  θ , and yet the uniquely optimal matching falls from 
NAM3 to NAM as  θ  rises. We generalize Steps   (iv)   and   (v)   in Appendix C.B, with 
an  n -type generalization of NAM3; namely, couple   (n, n)   matched, and lower types 
matched according to NAM.

D. One-Crossing Marginal Rectangular Synergy in Types

We now provide a stronger, but easier to check,  cross-sectional assumption to 
deliver increasing sorting.

Specifically, the  x -marginal rectangular synergy   Δ i   (i |  j    1  ,  j    2  )   is the sum of synergy 
between woman  i  and men in the interval   [  j    1  ,  j   2   − 1]  , and the  y -marginal rectangular 
synergy   Δ j   ( j |  i    1  ,  i   2  )   is the sum of synergy between man  j  and women in the interval  
  [ i    1  ,  i   2   − 1]  ; i.e.,

(8)   Δ i   (i |  j    1  ,  j   2  , θ)  ≡   ∑ 
j= j    1  

  
 j   2  −1

    s  ij   (θ)  and  Δ j   ( j |  i    1  ,  i   2  , θ)  ≡   ∑ 
i= i    1  

  
 i   2  −1

    s  ij   (θ)  .

→ →
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Figure 7. Falling Matching with Rectangular Synergy Upcrossing in Types and  θ  

Notes: The unique efficient matching falls from NAM3 to NAM as  θ′  shifts up to   θ″ . The sorting premium  S  is 
upcrossing in rectangles  r  for each  θ , and the signs of  S (r | θ′)   and  S (r | θ″)   coincide for all  r ; thus,  S  is upcrossing 
from  θ′  to  θ″ . But Proposition 3 does not apply, as total synergy falls from 1 to −1 for the set that only excludes   s  11   .
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Equivalently, the  x -marginal rectangular synergy is the difference between the 
gain in output that woman  i + 1  gets when matching with a higher-index man,  
  f   i+1 j   2     −  f   i+1 j    1     , and this same change for the next lower woman  i ,   f   i j   2     −  f   i j    1     .

Marginal rectangular synergy is upcrossing in the finite types case if 
the left sum in (8) is upcrossing in  i  and the right sum is upcrossing in  
 j . In the continuum types case, we require the integrals   Δ x   (x |  y  1  ,  y  2  , θ)  ≡  
 ∫  y  1    

 y  2      ϕ 12   (x, y | θ) dy  upcrossing in  x  for all   y  2   >  y  1    and   Δ y   (y |  x  1  ,  x  2  , θ)  ≡  
 ∫  x  1    

 x  2      ϕ 12   (x, y | θ) dx  upcrossing in  y  for all   x  2   >  x  1   . Finally, marginal rectangular syn-
ergy is  one-crossing if it is either upcrossing or downcrossing.

Notably,  one-crossing marginal rectangular synergy is an ordinal implication 
of monotone synergy. To see this, notice that synergy   ϕ 12    is  nondecreasing in  x  if 
and only if   ϕ 1   (x,  y  2   | θ)  −  ϕ 1   (x,  y  1   | θ)   is  nondecreasing in  x  for all   y  2   >  y  1   , i.e.,  if  
 x - marginal rectangular synergy   Δ x   (x |  y  1  ,  y  2  , θ)   is  nondecreasing in  x .

PROPOSITION 4: Assume summed rectangular synergy is upcrossing in  θ . If  M″  
and  M′  are optimal for respectively  θ″ ≻ θ′ , then  M″ ⪰ PQDM′  in   (a)   generic finite 
type models if marginal rectangular synergy is  one-crossing and   (b)   continuum type 
models if marginal rectangular synergy is strictly  one-crossing.

The proof in Appendix C.D shows that these conditions imply those of 
Proposition  3. These propositions share the same time series assumption. The 
cross-sectional assumption in Proposition 4 implies Proposition 3’s cross-sectional 
assumption. To verify this, recall that a function  f :  ℝ   k  ↦ ℝ  is log-supermodular 
(LSPM) if  f ≥ 0  and  ∀ a, b ∈  ℝ   k  

(9)  f  (max {a, b} )  f  (min {a, b} )  ≥ f  (a)  f  (b)  .

Now, rewrite rectangular synergy as

(10)   ( x  1  ,  x  2  ,  y  1  ,  y  2   | θ)  =  ∫  x  1    
 x  2  
    Δ x   (x |  y  1  ,  y  2  , θ) dx

 =  ∫ 
0
  
1
    Δ x   (x |  y  1  ,  y  2  , θ) 1 {x ∈  [ x  1  ,  x  2  ] } dx .

We show in Appendix C.D that the indicator function  1 {x ∈  [ x  1  ,  x  2  ] }   is LSPM in   (x,  
x  1  ,  x  2  ) . Thus, by the classic result of Karlin and Rubin (1956) on upcrossing preserva-
tion in integrals,    is upcrossing in   ( x  1  ,  x  2  )   whenever   Δ x    is upcrossing in  x . Likewise,  
  is upcrossing in   ( y  1  ,  y  2  )   whenever  y -marginal rectangular synergy is upcrossing 
in  y . Loosely,  log-supermodularity of a kernel is the key way to ensure that upper 
portions of the domain are proportionately weighted more and thus upcrossing is 
preserved.

To apply Proposition  3, we also need the optimal matching to be 
unique. This is generically true for finite type models. Fortuitously, strictly 
 one-crossing marginal rectangular synergy implies a known sufficient condi-
tion in the optimal transport literature for uniqueness in our continuum types  
model.
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E. Purely Local Assumptions on Synergy

In this section we give a theory of increasing sorting based on synergy alone, 
rather than summed synergy. A possible conjecture is that sorting is increasing in  
θ  whenever synergy is upcrossing in  θ  and  one-crossing in types. But in Figure 7 
sorting falls in  θ , despite the fact that synergy is both upcrossing in  θ  and in types. 
The reason for this failure is that summed rectangular synergy is not upcrossing  
in  θ  since it falls from 1 to −1 for the set that only excludes   s  11   .

This example illustrates the fact that sums of upcrossing functions need not 
be upcrossing. We need additional assumptions to ensure that summed synergy 
inherits the upcrossing assumptions required by our earlier theory. Appendix C.E 
presents our most general increasing sorting result based on synergy assumptions 
alone. Here, we pursue a robust special case that generalizes Proposition 2, which 
we apply to a class of applications in Section VIA. Specifically, assume that syn-
ergy has a product structure,   s  ij   (θ)  = ζ ( x  i  ,  y  j   | θ) κ ( x  i  ,  y  j   | θ)   in the discrete case and  
  ϕ 12   (x, y | θ)  = ζ (x, y | θ) κ (x, y | θ)   for continuum types with  κ   nonnegative. We 
say  ζ  is (strictly) monotone in types if it is either  nondecreasing (increasing) or 
 nonincreasing (decreasing) in   (x, y)  .

PROPOSITION 5: Assume synergy is the product  ζ θ , where  ζ  is monotone in types 
and  nondecreasing in  θ , and  κ  is LSPM. If  M″  and  M′  are optimal for respectively  
θ″ ≻ θ′ , then  M″  ⪰ PQD   M′  in   (a)   generic finite type models and   (b)   continuum type 
models if  ζ  is also strictly monotone in types and  κ > 0 .

By setting  κ ≡ 1 , this result trivially generalizes Proposition 2.
To prove Proposition 5, we show it implies Proposition 4’s premise. For example, 

we show that marginal rectangular synergy is strictly upcrossing when  ζ  is strictly 
increasing in   (x, y)   and  κ > 0  is LSPM. Consider  y -marginal rectangular synergy   
Δ y   (y)  =  ∫  x  1    

 x  2     ζ (x, y | θ) κ (x, y | θ) dx , suppressing arguments   ( x  1  ,  x   2  , θ)  . Intuitively,  κ  
LSPM ensures that the integral weights the positive parts of the increasing function  
ζ  proportionately more than the negative parts, as  θ  increases. The general theory in 
Appendix C.E dispenses with the product structure but retains this key implication 
of LSPM.

V. Increasing Sorting and Type Distribution Shifts

Our analysis thus far focused on differences in production functions. We now 
ask, what if we fix the production function and vary the type distributions? It turns 
out that our results readily apply because changes in the distribution can be reinter-
preted as changes in the production function. In particular, we can deduce sorting 
predictions for changes in the type distributions  G ( ⋅  | θ)   and  H ( ⋅  | θ)   by analyzing 
sorting by quantiles (rather than types). We say that  X  types shift up (down) in  θ  if  G 
( ⋅  | θ)   stochastically increases (decreases) in  θ ; i.e.,  G ( ⋅  | θ′)  ≤ G ( ⋅  | θ)   if  θ′ ⪰ θ . 
Similarly,  Y  types shift up (down) in  θ  if  H ( ⋅  | θ)   stochastically increases (decreases) 
in  θ .

We need to adapt our notion of sorting since PQD in Section II only ranks 
 matching distributions with the same marginals  G  and  H . Instead, we consider 
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 sorting in quantile space. First, label every type by its quantile in the distribution, so  
 p ≡ G ( G   −1  (p | θ)  | θ)   and  q ≡ H ( H   −1  (q | θ)  | θ)  . The bivariate copula defines the 
sorting by quantiles  C (p, q)  = M ( G   −1  (p | θ) ,  H   −1  (q | θ) )  . Say that quantile sort-
ing is higher at  M″  than  M′  when the associated copulas are ranked  C″  ⪰ PQD   C′ ; 
i.e.,  C″  has more mass than  C′  in all lower and upper orthants in   (p, q)   space. This 
order generalizes the PQD order. For if  M″  and  M′  share the same marginals, then 
 C″  ⪰ PQD   C′  if and only if  M″  ⪰ PQD   M′ . And since all copulas have uniform mar-
ginals by definition, we can compare two copulas in the PQD order even if the asso-
ciated matching distributions do not share marginals.

By Lemma  1, greater quantile sorting reduces the average geometric distance 
between matched quantiles and raises the covariance across matched quantile 
pairs, and the coefficient in linear regression of male on female match partner  
quantiles.

COROLLARY 1: Assume types shift up (down) in  θ . If  C″  and  C′  are optimal copu-
las, respectively for  θ″ ≻ θ′ , then  C″  ⪰ PQD   C′ 

   (a)   generically with finite types, if synergy is  nondecreasing ( nonincreasing) in 
types;

   (b)   given  G  and  H  absolutely continuous, if synergy is increasing (decreasing) in 
types.

For some insight into the proof in Appendix C.F, consider the quantile production 
function  φ (p, q | θ)  ≡ ϕ ( G   −1  (p | θ) ,  H   −1  (q | θ) )   with quantile synergy:

(11)   φ 12   (p, q | θ)  ≡   
 ϕ 12   ( G   −1  (p | θ) ,  H   −1  (q | θ) ) 

   __________________   
g ( G   −1  (p | θ) ) h ( H   −1  (q | θ) ) 

   .

For concreteness, assume synergy  ϕ  is increasing in types and that  θ  stochasti-
cally shifts up types. Then   ϕ 12   ( G   −1  (p | θ) ,  H   −1  (q | θ) )   is increasing in quantiles  
p, q  and  θ  . But we cannot conclude that quantile synergy is increasing in  q  and  θ   
since (11) includes  g  and  h , which need not be monotone in  q  or  θ . Nonetheless, 
quantile synergy is upcrossing in types and  θ . We verify in Appendix C.F that the 
premise of Corollary 1 implies that of Proposition 4. Figure 8 depicts this result for 
quadratic production.

VI. Economic Applications

A. Diminishing Returns

Assume that matched pairs produce an intermediate output within a firm. In this 
case, the overall match synergy will depend on synergies in intermediate output 
production, and the returns to intermediate outputs. In this section we fix the inter-
mediate output production function and focus on the returns to intermediate outputs. 
As we will see, diminishing returns reduces match synergies, and increasing returns 
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amplifies them. We then explore how sorting changes as the returns to intermediate 
outputs change.

Specifically, assume that a type  x  worker on a type  y  machine has an increasing 
intermediate output  q (x, y)  . Assume the monetary value of  q  is given by the increas-
ing revenue function   ψ . The match payoff is then  ϕ (x, y | θ)  = ψ (q (x, y)  | θ)   , and 
synergy

(12)   ϕ 12   = ψ′ (q | θ)  q  1    q  2   [   q  12   _  q  1    q  2     +   
ψ″ (q | θ) 
 ______ 

ψ′ (q | θ)   ]  

rises in complementarity   q  12    and falls in the  Arrow-Pratt risk aversion measure  
 −ψ″/ψ′ .

By Becker’s Sorting Theorem, if  ψ  is convex and  q  is SPM, then perfect sorting 
arises, whereas if  ψ  is concave and  q  is SBM, then perfect negative sorting arises. 
But perhaps the most natural case is  ψ  concave (diminishing returns to  q ) and  q  
SPM (complementarity in intermediate output production). For concreteness, con-
sider the special case  q (x, y)  = x  y . Then by (12), synergy is negative if the “relative 
risk aversion”  −q ψ″ (q | θ) /ψ′ (q | θ)   exceeds one. If relative risk aversion is falling 
in   q , then we have negative synergies at low types and positive synergies at high 
types, and so sorting failures occur for low types. The opposite synergy signs arise 
for rising risk aversion.

Figure 9 depicts the first result. Online Appendix E shows that if relative risk 
aversion falls in  q , but rises in a parameter  θ , then synergy is the product of a func-
tion that is increasing in  x, y,  and  t = 1 − θ  and a positive function that is LSPM 
in   (x, y, t)  . Thus, by Proposition 5, sorting falls as the risk aversion parameter  θ   
rises.

As a quick application, we compare sorting in the manufacturing and service sec-
tors of the economy. Assume  q (x, y)  = x  y  is the effective labor of matched workers   
(x, y)   and  ψ (q | κ)  =   ( q   η  +  κ   η )    1/η  , where  κ  is the exogenous capital requirement of 
the tasks performed by workers in the industry. When  η < 1 , effective labor and 

Figure 8. Distribution Shift Example 

Notes: We plot optimally matched quantile pairs (dots) for quadratic production  x  y −   (x  y)    2   and exponential distri-
butions on types  G (x | θ)  = 1 −  e   −x/θ   and  H (y | θ)  = 1 −  e   −y/θ  , for  θ = 1, 2/3, 1/3  at left, middle, and right. By 
Corollary 1, quantile sorting increases as  θ  falls since synergy falls in types.
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capital are complements, and also  ψ  is concave. In this case, relative risk aversion  
−q ψ″ (q | κ) /ψ′ (q | κ)  =  (1 − η)  κ   η / ( κ   η  +  q   η )   falls in  q  and rises in  κ ; and so sort-
ing falls in capital intensity  κ . Hence, sorting is higher in the service than manufac-
turing sector.

B. From Weakest to Strongest Link Technologies

We now consider a complementary thought experiment: fixing the revenue func-
tion  ψ(q)  and varying the intermediate output function  q (x, y)  . The CES technology  q 
(x, y)  =   ( x   −ρ  +  y   −ρ )    −1/ρ   is a helpful tractable class for this exercise. It is SPM when  
ρ ≥ −1 , and otherwise SBM. Thus, by Becker’s Sorting Result, the optimal sorting 
is PAM for  ρ ≥ −1  and NAM for  ρ ≤ −1 , when  ψ  is linear. To avoid this  knife-edge 
result and explore how sorting varies in the CES parameter  ρ , we again assume 
diminishing returns to output  q . To keep things simple, assume increasing quadratic 
payoffs  ψ (q)  = α  q − β  q   2  , so that  α, β > 0  and  α > 2 β  q (1, 1)  , where all types   
(x, y)  ∈   [0, 1]    2  . Then output is  ϕ (x, y)  = α  q (x, y)  − β  q  (x, y)    2  , and its synergy is 
continuous in  ρ , and synergy tends to  −2 β < 0  as   ρ  ↓   −1  . By online Appendix E, 
its synergy is also upcrossing in  ρ  and strictly positive for  ρ  sufficiently large; also, 
there exist   ρ –   >  ρ 

¯
   > −1  such that production is SBM (yielding NAM) for all  

 ρ <  ρ 
¯
    and SPM (giving PAM) for  ρ >  ρ –   . We then use Proposition 4 to prove that 

sorting is increasing in  ρ , for all  ρ ∈  [0,  ρ –  ]  .
For additional economic insight, notice that whenever  ψ  is increasing, the  

ρ → ∞  limit yields an SPM function  ψ (min {x, y} )   and  ρ → −∞  yields the 
SBM function  ψ (max {x, y} )  . Intuitively, for any increasing  ψ(q) , we get PAM for  
high  ρ  , i.e., when  q  is close to the “weakest link” technology,  min {x, y}  . Equally 
shared tasks, like jointly lifting a couch, have this flavor: output is more responsive 
to the lower type. But when  q (x,y) is close to the “strongest link” technology  max 

{x, y}  , we get NAM. Here, output is more responsive to the higher type, such as for 
mutually insured matched pairs. Altogether, match synergies are higher with weak 
link technologies and lower with strong link technologies.
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Figure 9. Increasing Sorting with Diminishing Returns 

Notes: These graphs depict optimally matched pairs (dots) with  ϕ (x, y)  = ψ (q (x, y)  | θ)   for  q (x, y)  = x  y  and  
 ψ (q | θ)  =   (x  y − 1)    1−θ  . In all cases synergy is upcrossing in types, which follows from relative risk aversion  
−q ψ″/ψ′  falling in  q . Sorting rises from left to right as the risk aversion parameter  θ  falls from  θ = 0.58, 0.5, 0.25 . 
In order to ensure that  ϕ  increases in types, we assume types are uniform on   [1, 2]   and depict matches by quantiles.
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Kremer and Maskin (1996) explore a famous strong link technology that arises 
with role assignment. Agents can be assigned either to the manager or deputy roles. 
Fixing  θ ∈  [0, 1/2)  , their output is   x   θ   y   1−θ   if  x  is the manager and  y  the deputy. 
As a unisex model, match output is then the maximum of two SPM functions  
 max { x   θ   y   1−θ ,  x   1−θ   y   θ }  , which is neither SPM nor SBM (noting that maximization 
preserves SBM but not SPM).

To apply our theory, we introduce a smooth production function

(13)  ϕ (x, y | θ, ρ)  =  x   θ   y   θ   ( x   −ρ  +  y   −ρ )      2θ−1 _ ρ    

that converges to the  Kremer-Maskin production function as  ϱ → −∞ . The  x, y  
cross partial of the smooth function  ϕ (x, y | θ, ρ)   in (13) is +, −, + as types increase 
(Figure 10). Thus, the essential assumption of Proposition 3 that rectangular syn-
ergy is  one-crossing in types fails, nor is sorting monotone in either  θ  or  ρ  (Figure 10 
illustrates the  nonmonotonicity in  θ ).

Furthermore, synergy is not monotone in  θ  or  ρ  for the “smooth” pro-
duction function  (13), nor is finite synergy monotone in  θ  for the limit case  
 ϕ (x, y | θ)  = max { x   θ   y   1−θ ,  x   1−θ   y   θ }  . So Proposition  1 does not imply nowhere 
decreasing sorting. But we show in online Appendix E that synergy (13) obeys a 
weaker  one-crossing assumption in Theorem 4 (which generalizes Proposition 1) 
and that sorting cannot fall in   (θ, ρ)  .

C. Moral Hazard with Endogenous Contracts

Serfes (2005) explores pairwise matching among principals and agents. He 
assumes project output is the sum of the agent’s unobservable effort  e  and a mean 
zero Gaussian error. The risk-neutral principal’s project variance   y  is their type; 
this varies in   [  y 

¯
  ,  y – ]  . Agents have constant absolute risk aversion utility function  1 −  

e   x (w−θ e   2 )   , given wage   w , effort   e , and a monetary cost of effort   θe   2  . Agents share 
the same disutility of effort parameter  θ > 0  but differ in their types—namely, the 
risk aversion coefficient  x  in   [  x 

¯
  ,  x – ]  . After a principal and agent match, the principal 

Figure 10. Kremer-Maskin Synergies and Matching 

Notes: These graphs depict optimal matchings for production (13) with  ϱ = −20  and a uniform distribution on 
100 types. In the left graph  θ = 0.4  and rises to  θ = 0.45  in the middle. Synergy is positive on the shaded 
region and is not  one-crossing in types. So our sorting monotonicity theory is silent here. Indeed, the matching for  
θ = 0.45  has more (circle) couples in the dark rectangle in the right graph, while the matching for  θ = 0.4  has 
more (triangle) couples in the light rectangle. Online Appendix E proves sorting is nowhere decreasing in  θ .
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makes a  take-it-or-leave-it contract offer, specifying the agent’s wage as a func-
tion of realized output. Serfes (2005) derives (in his equation (2)) the equilibrium 
expected output of an   (x, y)   match:

(14)  ϕ (x, y | θ)  =   1 _ 
2 θ (1 + θ  x  y)    ⇒  ϕ 12   (x, y | θ)  =   θ  x  y − 1

 _ 
2  (1 + θ  x  y)    3 

   .

Serfes observes that synergy is globally negative for  θ   x –    y –  < 1  and globally posi-
tive for  θ    x 

¯
      y 
¯
   > 1 . Thus, by Becker’s Sorting Result, NAM obtains for  θ <   ( x –    y – )    −1   

and PAM obtains for  θ >   (  x 
¯
      y 
¯
  )    −1  . This result reflects two countervailing forces 

for sorting. First, if all contracts were the same, then efficient insurance across 
 principal-agent pairs favors NAM: less risk-averse agents work on higher variance 
projects. But the slope of the equilibrium wage contract is    (1 + θ  x  y)    −1  ; and thus, 
the incentives to provide effort are SPM for high types. The sign of synergy (14) 
implies that the insurance effect dominates for low types and the incentive effect 
dominates for high types.12

Serfes (2005) is silent when  θ   x –    y –  > 1 ≥ θ    x 
¯
      y 
¯
   : our theory partly fills this gap. 

We claim that Sorting is increasing in the disutility of effort parameter  θ  when  
types are not too far apart, namely, when   x –    y –  ≤ 2   x 

¯
      y 
¯
      (‡)  . To see this, assume  

θ′ > θ . If  θ   x –    y –  < 1  , then synergy (14) is globally negative at  θ , and so NAM is 
uniquely optimal. If  θ′   x 

¯
      y 
¯
   > 1 ,then synergy is globally positive at  θ′ , and so PAM 

is uniquely optimal. In both cases, sorting is weakly higher at  θ′  than  θ . Now 
assume  θ′   x 

¯
      y 
¯
   ≤ 1 < θ   x –    y –  . Then  θ′  x –    y –  ≤ 2 θ′   x 

¯
      y 
¯
   ≤ 2  by   (‡)   and  θ′   x 

¯
      y 
¯
   ≤ 1 . Thus,  

θ  x  y < θ′ x  y ≤ 2  for all   (x, y)   , and so synergy in  (14) is increasing in  θ  x  y —for   
(t − 1) /  (1 + t)    3   is increasing for  t ∈  (0, 2]  . Altogether, sorting increases in  θ  by 
Proposition 2, as in Figure 11. Since synergy increases in types when PAM is sub-
optimal, quantile sorting increases when types shift up (i.e., when projects become 
more variable or agents become more risk averse), by Corollary 1.

D. Mentor-Protégé Learning Dynamics

Dynamic matching with evolving types can be understood through the lens of 
match synergies. Let’s assume a two-period model with pairwise matching in peri-
ods one and two. Let   ϕ   0  (x, y)   be the increasing and SPM match output of types  x  
and  y .

We capture learning dynamics by the increasing transition function  τ . 
Specifically, after producing output in period one, types  x  and  y  evolve to new types  
 x′ = τ (x, y)   and  y′ = τ (y, x)   in period two. For matching between workers within 
a firm,  τ  describes learning from  coworkers. In a neighborhood sorting applica-
tion,  τ  may reflect peer influences on children. Or in a procreation context, couple   
(x, y)   produces offspring of type  τ (x, y)  . In this latter case,  τ (x, y)  = max {x, y}   and 
 τ(x, y) = min {x, y}   formalize the respective extremes of dominant and  recessive 

12 Ackerberg and Botticini (2002) investigate matching between landowners (principals) and tenants (agents) in 
fifteenth-century Tuscany. Matched  crop-tenant pairs exhibit positive covariance in crop types (project variance  y )  
and tenant wealth (risk aversion  x ). But since match sorting is imperfect (not PAM), our theory provides a frame-
work for analyzing changes in  crop-tenant matching across markets.
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type transmission—namely, one or both high-achieving parents suffice for 
high-achieving children.

Matching must be statically optimal in period two, and thus, PAM occurs.13 For 
instance, in the partnership model, the social planner has period one payoff:

  ϕ (x, y)  =  (1 − δ)  ϕ   0  (x, y)  +   δ _ 2   [ ϕ   0  (τ (x, y) , τ (x, y) )  +  ϕ   0  (τ (y, x) , τ (y, x) ) ]  

given discount factor   δ . So synergy   ϕ 12    is a   (1 − δ, δ)   weighted average of static 
synergy   ϕ  12  0   > 0  and dynamic synergy—namely, if  τ  is twice differentiable, the 
first term is

(15)    [ ϕ   0  (τ (x, y) , τ (x, y) ) ]  12
   =  ( ϕ  11  0   + 2  ϕ  12  0   +  ϕ  22  0  )  τ 1    τ 2   +  ( ϕ  1  0  +  ϕ  2  0 )  τ 12   .

Since  τ  is increasing, the first term in (15) is positive when   ϕ   0  (x, x)   is convex but 
negative when   ϕ   0  (x, x)   is concave. That is, convexity pushes toward positive synergy 
and concavity toward negative synergy, as in Section VIA.

But in this evolving type world, negative synergy may also reflect a submodular 
transition function  τ . This arises in learning environments, where the lower type 
learns from the higher, as a protégé from a mentor. In particular, given the normal-
ization  τ (x, x)  = x , strictly SBM  τ  implies

  τ (x, y)  + τ (y, x)  > τ (x, x)  + τ (y, y)  ⇔ τ (x, y)  − x > y − τ (y, x)  .

So when unequal types match, the higher partner pulls up the lower more than the 
latter pulls him down—as in a workplace when skilled  coworkers pass on insights.

13 Anderson and Smith (2010) consider an infinite horizon with stochastic type transitions. In a special case 
of the model where types are the common knowledge chance that an agent is high (versus low) productivity, they 
show that synergy is negative for   (x, y)   close to   (0, 0)   or   (1, 1)   with sufficient patience. Thus, PAM cannot be optimal 
given sufficient patience.

Figure 11. Increasing Sorting in the Principal-Agent Model 

Notes: These graphs depict optimal matched pairs (dots) for a uniform distribution on 100 types of principals and 
agents. Sorting rises from left to right as  θ  rises on   {0.65, 0.72, 0.82}  .
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In particular, Herkenhoff et al. (forthcoming) find negative dynamic synergy in 
a learning  setting.14 Our model affords comparative statics in the discount factor. 
Since  synergy is increasing in  1 − δ , the  time series premise of each of our increasing 
sorting results is met. But stronger assumptions are required for the  cross-sectional 
assumptions. The most transparent case is when static synergy and dynamic syn-
ergy (15) are both monotone in types in the same direction. Then sorting falls in  δ , 
by Proposition 2. Figure 12 shows this comparative static in a parametric example.

VII. Conclusion

Becker’s finding that complementarity (or supermodularity) yields positive sort-
ing launched the immense literature on pairwise matching. While perfect sorting 
does not emerge in many economic settings, an impassable wall of mathematical 
complexity has stopped any general predictive matching theory. This paper develops 
a theory linking changes in the pairwise production function to changes in the PQD 
stochastic sorting order, without solving for an optimal matching.

Showing that total match output is a weighted average of synergy, we center 
our theory on this local complementarity notion. Our easiest result is that sorting 
increases when synergy increases, provided that synergy is monotone in types. We 
then weaken the assumptions on how synergy rises and prove more general com-
parative statics.

We apply our theory to several applications in the matching literature, deriving 
new predictions. We hope this offers a tractable foundation for future theoretical and 
empirical analysis of matching. A subtle and valuable direction for future work is a 
multidimensional extension of our theory (Lindenlaub 2017).

We assumed an equal mass of men and women, like Becker. If types are imagined 
as quality, this is without loss of generality: lowest men are queued out if men are 

14 They estimate a matching model with search frictions and find SPM static production but negative dynamic 
synergy. Synergy is positive for low types and negative for high types.

Figure 12. Increasing Sorting with Peer Learning 

Notes: These graphs depict optimally matched pairs with static output   ϕ   0  (x, y)  =  √ _ x  y    and transitions  τ = x + 
0.7 (y − x)  + 0.5 ( x   2  − x  y)   and a uniform distribution on 100 types. Sorting falls as the discount factor rises from  
δ = 0.4  (left) to  δ = 0.45  (middle) to  δ = 0.5  (right).
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in surplus. Extending our increasing sorting results to a horizontal model of types is 
an open question.

We considered the planner’s sorting exercise and are silent on transfers. Future 
research could characterize the behavior of wage changes as sorting increases.

Appendix A. Match Output Reformulation: Derivation of (5)

PROOF: 
Summing   ∑ i=1  n     ∑ j=1  n       f   ij    m  ij    by parts in  j  and then  i  yields an expression for total 

match output in terms of synergy:

    ∑ 
i=1

  
n

    (   ∑ 
j=1

  
n

      f   ij    m  ij  )  =   ∑ 
i=1

  
n

    [  f   in     ∑ 
j=1

  
n

     m  ij   −   ∑ 
j=1

  
n−1

    (  f   i, j+1   −  f   ij  )    ∑ 
k=1

  
j

     m  ik  ] 

 =   ∑ 
i=1

  
n

      f   in   −   ∑ 
j=1

  
n−1

     ∑ 
i=1

  
n

     (  f   i, j+1   −  f   ij  )    ∑ 
k=1

  
j

     m  ik  

 =   ∑ 
i=1
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      f   in   −   ∑ 
j=1

  
n−1

   [ (  f   n, j+1   −  f   n, j  )    ∑ 
ℓ=1

  
n

      ∑ 
k=1
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     m  ℓk   −   ∑ 
i=1

  
n−1

    s  ij     ∑ 
ℓ=1

  
i

      ∑ 
k=1

  
j

     m  ℓk  ] 

 =   ∑ 
i=1

  
n

      f   in   −   ∑ 
j=1

  
n−1

   [ (  f   n, j+1   −  f   nj  )  j −   ∑ 
i=1

  
n−1

    s  ij    M  ij  ]  . ∎

Appendix B. Integral Preservation of Upcrossing Properties

A. Integral Preservation of Upcrossing Functions on Lattices

Given a real or integer lattice  Z ⊆  ℝ   N   and poset   ( , ⪰)  , the function  
σ : Z ×  → ℝ  is proportionately upcrossing15 if  ∀ z, z′ ∈ Z  and  t′ ⪰ t .

(B1)   σ   −  (z ∧ z′, t)  σ   +  (z ∨ z′, t′)  ≥  σ   −  (z, t′)  σ   +  (z′, t)  .

THEOREM 1: Let  σ (z, t)   be proportionately upcrossing. Then  Σ (t)  ≡  ∫ Z  
 
    σ (z, t) dλ (z)   

is weakly upcrossing in  t  and upcrossing in  t  if  σ (z, t)   is also upcrossing in  t .

This result is stronger than needed,16 as it applies to general lattices; we 
just need it for   ℝ   2  . It generalizes an information economics result by Karlin 
and Rubin (1956): If   σ 0   (z)   is upcrossing in  z ∈ ℝ , and  log ( σ 1  )   is SPM, then  
 ∫  σ 0   (z)  σ 1   (z, t) dλ (z)   is upcrossing. Our result subsumes theirs when  n = 1  and  
 σ =  σ 0    σ 1    is proportional upcrossing.

15 Proportionately upcrossing implies weakly upcrossing; namely,  σ (z, t)  > 0  implies  σ (z′, t′)  ≥ 0  for 
all   (z′, t′)  ⪰  (z, t)  . To see this, fix  t = t′  and suppress  t . If  z′ ⪰ z , inequality  (B1) is an identity. If  z ≻ z′ , 
 inequality (B1) becomes   σ   −  (z′)  σ   +  (z)  ≥  σ   −  (z)  σ   +  (z′)  , which precludes  σ (z)  < 0 < σ (z′)  .

16 This result is related to Theorem 2 in Quah and Strulovici (2012). They do not assume (B1). Rather, they 
assume  σ  is upcrossing in   (z, θ)  , and a time series condition: signed ratio monotonicity. Our results are independent 
but overlap more closely for our smoothly LSPM condition in Appendix B.B. 
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PROOF:
Karlin and Rinott (1980) prove the following: If functions   ξ 1  ,  ξ 2  ,  ξ 3  ,  ξ 4   ≥ 0   

obey   ξ 3   (z ∨ z′)  ξ 4   (z ∧ z′)  ≥  ξ 1   (z)  ξ 2   (z′)   for  z ∈ Z ⊆  ℝ   N  , then for all positive mea-
sures  λ ,17

(B2)  ∫  ξ 3   (z) dλ (z)  ∫  ξ 4   (z) dλ (z)  ≥ ∫  ξ 1   (z) dλ (z)  ∫  ξ 2   (z) dλ (z)  .

Now, if  t′ ⪰ t , then  (B1) reduces to   ξ 3   (z ∨ z′)  ξ 4   (z ∧ z′)  ≥  ξ 1   (z)  ξ 2   (z′)   for the 
functions

   ξ 1   (z)  ≡  σ   +  (z, t) ,  ξ 2   (z)  ≡  σ   −  (z, t′) ,  ξ 3   (z)  ≡  σ   +  (z, t′) ,  ξ 4   (z)  ≡  σ   −  (z, t)  .

Thus, by (B2),

(B3)  ∫  σ   +  (z, t′) dλ (z)  ∫  σ   −  (z, t) dλ (z)  ≥ ∫  σ   +  (z, t) dλ (z)  ∫  σ   −  (z, t′) dλ (z)  .

This precludes  ∫  σ   +  (z, t) dλ (z)  > ∫  σ   −  (z, t) dλ (z)   and  ∫  σ   +  (z, t′) dλ (z)  <  
∫  σ   −  (z, t′) dλ (z)  , simultaneously. And thus,  Σ (t)  > 0  implies  Σ (t′)  ≥ 0 , proving 
weakly upcrossing.

We now argue  Σ  upcrossing. First, assume  Σ (t)  >  0 . Then,  ∫  σ   +  (z, t) dλ (z)  >  
∫  σ   −  (z, t) dλ (z)  . By (B3), either  ∫  σ   +  (z, t′) dλ (z)  > ∫  σ   −  (z, t′) dλ (z)   or  ∫  σ   +  (z, t′) dλ (z)  
= ∫  σ   −  (z, t′) dλ (z)  = 0 . But the latter is impossible since  ∫  σ   +  (z, t′) dλ (z)  = 0  
implies  ∫  σ   +  (z, t) dλ (z)  = 0 , as  σ (z, t)   is upcrossing in  t —contradicting  Σ (t)  > 0 . 
So  Σ (t′)  > 0 .

Next, posit  Σ (t)  = 0 , then  ∫  σ   +  (z, t) dλ (z)  = ∫  σ   −  (z, t) dλ (z)  . By  (B3), either  
 ∫  σ   +  (z, t′) dλ (z)  ≥ ∫  σ   −  (z, t′) dλ (z)  , and so  Σ (t′)  ≥ 0 , or we have  ∫  σ   +  (z, t) dλ (z)   
= ∫  σ   −  (z, t) dλ (z)  = 0 , whereupon  ∫  σ   −  (z, t′) dλ (z)  = 0 — as  σ (z, t)   is upcrossing 
in  t , and so   σ   −  (z, t)   is downcrossing. Thus,  ∫  σ   +  (z, t′) dλ (z)  ≥ ∫  σ   −  (z, t′) dλ (z)  , or 
 Σ (t′)  ≥ 0 . ∎

B. Proportionately Upcrossing and log-Supermodularity

Let  θ ∈ ℝ ,  z ∈  ℝ   N  , and abbreviate  w =  (z, θ)  ∈  ℝ   N+1  . The function  
 σ :  ℝ   N+1  ↦ ℝ  is smoothly  log-supermodular (LSPM) if all of its pairwise deriva-
tives obey   σ ij   σ ≥  σ i    σ j   .

THEOREM 2: If  σ (z, θ)   is upcrossing and smoothly LSPM, then  σ  obeys (B1).

PROOF:
Assume   w ˆ   ≥ w , sharing the  i  coordinate   w  i   =   w ˆ   i    , with  σ ( x – ,  w  −i  )  < 0 < σ ( w ˆ  )   

for some   x –  >  w  i   . Then we claim that

(B4)   σ i   (x,  w  −i  ) σ (x,   w ˆ   −i  )  ≥  σ i   (x,   w ˆ   −i  ) σ (x,  w  −i  ) , ∀ x ∈  [ w  i  ,  x – ]  .

17 The proof for the integer lattice requires that  λ  be a counting measure. Also true: if  λ  does not place all mass 
on zeros of  σ , then  Σ (t)  ≡  ∫ Z  

 
    σ (z, t) dλ (z)   is upcrossing in  t .



735ANDERSON AND SMITH: THE COMPARATIVE STATICS OF SORTINGVOL. 114 NO. 3

Since  σ  is upcrossing,  σ (x,  w  −i  )  < 0 < σ (x,   w ˆ   −i  )   for all  x ∈  [ w  i  ,  x – ]  . If (B4) 
fails, then for some  x′ ∈  [ w  i  ,  x –  ]  ,

    
 σ i   (x′,  w  −i  )  ________ 
σ (x′,  w  −i  ) 

   >   
 σ i   (x′,   w ˆ   −i  )  ________ 
σ (x′,   w ˆ   −i  ) 

   .

This contradicts smoothly LSPM, as    ( σ i  /σ)  j   ≥ 0  for all  σ ≠ 0  and  i ≠ j  . So 
(B4) holds. Given  σ (x,   w ˆ   −i  )  ≠ 0 , the ratio  σ (x,  w  −i  ) /σ (x,   w ˆ   −i  )   is  nondecreasing in  
x  on   [ w  i  ,  x – ]  , so that

(B5)    
σ (w) 

 _ 
σ ( w ˆ  )    ≤   

σ ( x – ,  w  −i  )  _______ 
σ ( x – ,   w ˆ   −i  ) 

   .

By assumption,  θ′ ≥ θ  (now a real). So if   (z, θ′)  ≤  (z ∧ z′, θ)  , we have  z ≤ z′  
and  θ′ = θ , in which case (B1) is an identity. If not   (z, θ′)  ≤  (z ∧ z′, θ)  , then let   
i    1   < ⋯ <  i    K    be the indices with    (z, θ′)   i    k     >   (z ∧ z′, θ)   i    k      for  k = 1, …, K . Let’s 
change   w   0  ≡  (z ∧ z′, θ)   into   w   K  ≡  (z, θ′)   in  K  steps,   w   0 , …,  w   K  , one coordinate 
at a time, and likewise    w ˆ     0  ≡  (z′, θ)   into    w ˆ     K  ≡  (z ∨ z′, θ′)  , changing coordinates in 
the same order. Notice that   w   i    k    

k−1  =   w ˆ     i    k    
k−1  =   (z′, θ)   i    k     <   (z, θ′)   i    k      and    w ˆ     k  ≥  w   k   for 

all  k .
Now, inequality  (B1) holds if its RHS vanishes. Assume instead the RHS 

of  (B1) is positive for some  θ′ ≥ θ , so that  σ (z, θ′)  < 0 < σ (z′, θ)  ; and so, 
replacing    w ˆ     0  =  (z′, θ)   and   w   K  =  (z, θ′)  , we get  σ ( w   K )  < 0 < σ (  w ˆ     0 )  . But then 
since the sequences   { w   k }   and   {  w ˆ     k }   are increasing and  σ  is upcrossing, we have  
 σ ( w   k )  < 0 < σ (  w ˆ     k−1 )   for all  k . Altogether, we may repeatedly apply inequal-
ity (B5) to get

    
σ (z ∧ z′, θ) 
 ________ 

σ (z′, θ)    ≡   
σ ( w   0 ) 

 _ 
σ (  w ˆ     0 )    ≤   

σ ( w   k ) 
 _ 

σ (  w ˆ     k )    ≤ ⋯ ≤   
σ ( w   K ) 

 _ 
σ (  w ˆ     K )    ≡   

σ (z, θ′) 
 _________ 

σ (z ∨ z′, θ′)    .

So given  σ (z ∧ z′, θ) , σ (z, θ′)  < 0 < σ (z′, θ) , σ (z ∨ z′, θ′)  , inequality (B1) follows 
from

    
 σ   −  (z ∧ z′, θ) 

  _________ 
 σ   +  (z′, θ)    ≥   

 σ   −  (z, θ′) 
 __________  

 σ   +  (z ∨ z′, θ′)   .  ∎

Appendix C. Omitted Proofs

A. Proof of Lemma 1

Part  (a) : By inequality (6), it suffices that   |u (x)  − v (y) |   γ   is SBM for all  γ ≥ 1  . 
Since  −ψ (u − v)   is SPM for all convex  ψ , by Lemma 2.6.2-  (b)   in Topkis (1998), 
we have  − |u − v|   γ   SPM for all  γ ≥ 1 . So   |u (x)  − v (y) |   γ   is SBM for all increasing  
u  and  v .
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Part  (b) : Since the marginal distributions on  X  and  Y  are the same for all  
 M ∈  (G, H)  , and  u (x) v (y)   is supermodular for all increasing  u  and  v , the covari-
ance   E  M   [X  Y]  − E [X] E [Y]   between matched types increases in the PQD order, by (6).

Part  (c) : The coefficient   c  1   = cov (u (X) v (Y) ) /var (v (X) )   in the univariate match 
partner regression  v (y)  =  c   0   +  c  1    u (x)   increases in the PQD order, by part   (b)  . ∎

B. Proof of Proposition 3: Increasing Sorting for Finite Types

LEMMA 2: An optimal matching is generically unique and pure for finite types.

PROOF: 
The optimal matching is generically unique, by Koopmans and Beckmann 

(1957). A  nonpure matching  M  is a mixture  M =  ∑ ℓ=1  L      λ ℓ    M  k    over  L ≤ n + 1  
pure matchings   M  1  , …,  M  n   , with   λ ℓ   > 0  and   ∑ ℓ  

 
     λ ℓ   = 1 .18 As the objective func-

tion (3) is linear, if the  nonpure matching  M  is optimal, so is each pure matching   M  ℓ   , 
contradicting uniqueness. ∎

For a big picture, we show that matching models in some domain     ˆ   n    obey our 
sorting conclusion for all  n . Our induction argues the stronger claim that it holds on 
a larger recursively convenient domain     n  ⁎  ⊃    ˆ   n   . Our proof building blocks are

 (a) Consider the generic case with unique optimal pure matchings  μ  , 
described by men partners   ( μ 1  , …,  μ n  )   of women or women partners  
 ω =  ( ω 1  , …,  ω n  )   of men.

 (b) To emphasize the dependence on the number of types  n , write rectangu-
lar synergy as   S    n  (r | θ)   and the summed rectangular synergy as   핊   n  (K | θ)  ≡ 
 ∑ k  

 
     S    n  ( r  k   | θ)   for any finite set of  nonoverlapping rectangles  K ≡  { r  k  }  .

 (c) We consider the summed rectangular synergy dyad   ( 핊   n  (K | θ′) ,  핊   n  (K | θ″) )   for 
generic  θ″ ⪰ θ′ . Let domain    n    be the space of summed rectangular syn-
ergy dyads   ( 핊   n  (K | θ′) ,  핊   n  (K | θ″) )   that are each upcrossing in  K  on rectangles  
  and upcrossing in  θ  on   {θ′, θ″}   for any  K ∈  . The domain     ˆ   n   ⊆   n    
further insists that they be upcrossing in  θ  for finite sets of  nonoverlapping 
rectangles  K . Proposition 3 assumes that summed rectangular synergy dyads 
are in     ˆ   n    for all  n .

 (d) Removing couple   (i, j)   from an  n -type market induces rectangular synergy  
S  ij  n−1   among the remaining  n − 1  types, satisfying the natural formula

   (C1)   S  ij  n−1  (r | θ)  ≡  S   n  (r +   ij   (r)  | θ) ,

 for   ij   (r)  ≡  (1 { r  1   ≥ i} , 1 { r   2   ≥ j} , 1 { r   3   ≥ i} , 1 { r   4   ≥ j} )  ,

18 This follows from Carathéodory’s Theorem. It says that a  nonempty convex compact subset   ⊂  ℝ   n   is a 
weighted average of extreme points of   . The extreme points here are the pure matchings.
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  where    ij   (r)   increments by one the index of the women  i′ ≥ i  and men  
j′ ≥ j  , where the type indices refer to the original model whenever removing 
types henceforth.

 (e) To avoid ambiguity when changing the number  n  of types, we denote by  
  ( i   n  ,  j   n  )   the  i -th highest woman and the  j -th highest man. Now, consider the 
sequence of models with  κ = n + k, n + k − 1, …, n  types induced by 
removing couple   ( i  κ  ′  ,  j  κ  ′  )   at  θ′  and   ( i  κ  ″  ,  j  κ  ″  )   at  θ″  from the  κ  type model. We say 
the sequence of couples has higher partners at  θ′  than  θ″  if   ( i  κ  ′  ,  j  κ  ′  )  ≥  ( i  κ  ″ ,  j  κ  ″  )    
and   i  κ  ′   =  i  κ  ″    or   j  κ  ′   =  j  κ  ″   .

 (f) Domain     n  ⁎   is the set of summed rectangular synergy dyads   ( 핊   n  (K | θ′) , 
 핊   n  (K | θ″) )   induced by sequentially removing  k   optimally matched couples 
with higher partners at  θ′  than  θ″  from dyads   ( 핊   n+k  (K | θ′) ,  핊   n+k  (K | θ″) )  
∈    ˆ   n+k   , for some  k ∈  {0, 1, …}  .

Key Properties of Our Domains and Pure Matchings.—

Fact 1: Fix a summed rectangular synergy dyad in     n+1  ⁎   . Removing couple   (i′, j′)   
at  θ′  and   (i″, j″)   at  θ″  induces such a dyad in     n  ⁎   if   (i′, j′)  ≥  (i″, j″)   and  i′ = i″  or  
j′ = j″ .

Fact 2: Given a summed rectangular synergy dyad in    n+1   , removing couple   

(i′, j′)   at  θ′  and    (i″, j″)   at  θ″  induces a summed rectangular synergy dyad in    n    if  
⟨i′ = i″ and j′ ≥ j″⟩  or  ⟨ j′ = j″ and i′ ≥ i″⟩ .

PROOF: 
We prove this for  i′ = i″  and  j′ ≥ j″ . For any  θ , rectangular synergy   S  ij  n  (r | θ)   is 

upcrossing in  r , needing fewer inequalities. To see that summed rectangular syn-
ergy is upcrossing in  θ  on rectangular sets in   ℤ  n−1  2   , assume   S  i j ′    n   (r | θ′)  ≥ (>)  0  for  
some  r  . Then

   S    n+1  (r +   ij′   (r)  | θ′)  ≥ (>)  0 ⇒  S    n+1  (r +   ij″   (r)  | θ′)  ≥ (>)  0

 ⇒  S    n+1  (r +   ij″   (r)  | θ″)  ≥ (>)  0

 ⇒  S  i j ′     n   (r | θ″)  ≥ (>)  0 ,

respectively, as   (i)     S    n+1  (r | θ)   is upcrossing for rectangles  r ,  nonincreasing    ij    
in   j , and  j″ ≤ j′ , and   (ii)     S    n+1  (r | θ)   is upcrossing in  θ  for rectangles   r , and   (iii)    
by (C1). ∎

Fact 3: The domains are nested:     ˆ   n   ⊆    n  ⁎  ⊆   n   .

PROOF: 
Trivially,     ˆ   n   ⊆    n  ⁎   since we may set  k = 0  in the definition of     n  ⁎  .
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To get     n  ⁎  ⊆   n   , pick   ( 핊   n  (K | θ′) ,  핊   n  (K | θ″) )  ∈    n  ⁎  . This dyad is induced by 
removing  k  optimally matched couples with higher partners at  θ′  than  θ″  from a 

dyad   ( 핊   n+k  (K | θ′) ,  핊   n+k  (K | θ″) )  ∈    ˆ   n+k   ⊆   n+k   , where  k ≥ 0 . For  ℓ = 1, …, k , 
induce dyads   ( 핊   n+k−ℓ  (K | θ′) ,  핊   n+k−ℓ  (K | θ″) )  , sequentially removing optimally 
matched couples. So   ( 핊   n+k−ℓ  (K | θ′) ,  핊   n+k−ℓ  (K | θ″) )  ∈   n+k−ℓ    for  ℓ = 1, …, k , as 
removed couples are ordered, as Fact 2 needs. So   ( 핊   n  (K | θ′) ,  핊   n  (K | θ″) )  ∈   n   . ∎

Fact 4: If  M ≠  M ˆ    are pure  n -type matchings,    μ ˆ   i   >  μ i    at some  i  and    ω ˆ   j   >  ω j    at 
some  j .

PROOF: 
Since  M ≠  M ˆ   , there is a highest-type man  j  matched with woman    ω ˆ   j   >  ω j   .  

Logically then, woman  i =   ω ˆ   j    is matched to a lower man under  M ; i.e.,  
 j =   μ ˆ   i   >  μ i   . ∎

Adding a couple   ( i   0  ,  j    0  )   to a matching  μ  creates a new matching   μ ˆ    with indi-
ces of women  i ≥  i   0    and men  j ≥  j    0    renamed  i + 1  and  j + 1 , respectively. 
Equivalently, this means inserting a row  i  and column  j  into the matching matrix   
m —with all 0s except 1 at position    (i, j)  —and shifting later rows and columns  
up one.

Fact 5: Adding respective couples   (1,  m ˆ  )  ≤  (1, m)  , or   ( w ˆ  , 1)  ≤  (w, 1)  , to the  
 n -type matchings   μ ˆ    ⪰ PQD   μ  preserves the PQD order for the resulting  n + 1  type 
matchings.

PROOF: 
We just consider adding couples   (1,  m ˆ  )  ≤  (1, m)  , as the analysis for   ( w ˆ  , 1)  ≤  

(w, 1)   is similar. For pure matchings  μ , let   C   μ  ( i   0  ,  j    0  )   count matches by women  i ≤  
i   0    with men  j ≤  j    0   , and so call   C   μ  (0, j)  =  C   μ  (i, 0)  = 0 . So   μ ˆ    ⪰ PQD   μ  if and only 
if   C    μ ˆ    ≥  C   μ  .

By adding a couple   (1, m)  , the new count is

     m  μ   (i, j)  ≡  C   μ  (i − 1, j − 1 { j ≥ m} )  + 1 { j ≥ m} ,

 for all i, j ∈  {1, 2, …, n + 1}  .

To prove the fact, we must show that if   μ ˆ    ⪰ PQD   μ , then      m ˆ     μ ˆ     ≥    m  μ    for all   m ˆ   ≤ m .
By assumption,   μ ˆ    ⪰ PQD   μ , and thus,   C    μ ˆ    ≥  C   μ  . So since   m ˆ   ≤ m ,

      m ˆ     μ ˆ     (i, j)  −    m  μ   (i, j)   

   =  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

 C    μ ˆ    (i − 1, j)  −  C   μ  (i − 1, j)  ≥ 0,

  

if j <  m ˆ  ;
       C    μ ˆ    (i − 1, j − 1)  + 1 −  C   μ  (i − 1, j)  ≥ 0,  if  m ˆ   ≤ j < m;      

 C    μ ˆ    (i − 1, j − 1)  −  C   μ  (i − 1, j − 1)  ≥ 0,

  

if j ≥ m.
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To understand the middle line, note that this match count can be written as

   C    μ ˆ    (i − 1, j − 1)  −  C   μ  (i − 1, j − 1)  −  [ C   μ  (i − 1, j)  −  C   μ  (i − 1, j − 1)  − 1]  .

As   C   μ  (i − 1, j)  −  C   μ  (i − 1, j − 1)  ≤ 1 , this is at least   C    μ ˆ    (i − 1, j − 1)  − 
 C   μ  (i − 1, j − 1)  ≥ 0 . ∎

The Induction Proof: Detailed Steps: Let   M  n  ′    and   M  n  ″   be uniquely optimal  
 n- type matchings at  θ′  and  θ″ . Proposition 3 assumes summed rectangular synergy 
dyads in     ˆ   n   . Until Step 8, we work on the larger domain     n  ⁎  .

PREMISE    n   : Summed rectangular synergy dyad is in     n  ⁎  ⇒  M  n  ″   ⪰ PQD    M  n  ′   .

Step 1: Base Case    2   : Summed rectangular synergy dyad is in     2  ⁎  ⇒  
 M  2  ″   ⪰ PQD    M  2  ′   .

PROOF: 
If not, then NAM is uniquely optimal at  θ"  and PAM at  θ′ . Since     2  ⁎  ⊆   2    by 

Fact 3, rectangular synergy is upcrossing in  θ . This precludes negative rectangular 
synergy at  θ"  (NAM) and positive rectangular synergy at  θ′  (PAM). ∎

 • A pair refers to two couples, such as   ( i    1  ,  j    1  )   and   ( i   2  ,  j    2  )  .
 • A pair is a PAM pair if   ( i    1  ,  j    1  )  <  ( i   2  ,  j    2  )  , and a NAM pair if   i    1   <  i   2    and   j    1   >  j    2   .

Step 2: If the summed rectangular synergy dyad is in     n+1  ⁎   , then neither   M  n+1  ′    nor  
  M  n+1  "    includes a subset of types that match according to NAM1.

PROOF: 
We prove the stronger conclusion that neither   M  n+1  ′    nor   M  n+1  ′′    includes a 

matched NAM pair above a matched PAM pair. Indeed, by Fact 3,     n+1  ⁎   ⊆   n+1   .  
So   S    n+1  (r | θ)   is upcrossing in rectangles  r  for  θ′  and  θ″ . Also, PAM (NAM) is opti-
mal for a pair if and only if   S    n+1  (r | θ)  ≥ (≤)  0  on rectangle  r . As the optimal match-
ing is unique,   S    n+1  (r | θ)  ≠ 0  for all optimally matched pairs. ∎

Steps 3–8 impose premises    2  , …,   n   . We then supposed by contradiction that   
 n+1    is not satisfied. Equivalently, we suppose by contradiction,

( ‡‡ ).—In a model with summed rectangular synergy dyads in     n+1  ⁎   , the generically 
uniquely optimal matchings at  θ″ ≻ θ′  are not ranked  μ″  ⪰ PQD   μ′  ( ω″  ⪰ PQD   ω′ ).19

Our  cross-sectional assumption rules out NAM1 for any three-type subset of 
agents. Steps  3–7 show this restriction along with the inductive hypothesis, and   
(‡‡)   implies that the optimal matching for  θ″  must be NAM for some subset of 
types   {1, 2, …, m}   and a  multitype generalization of NAM3 under  θ′  for this same 

19 We cannot apply Theorem 4 to rule out  μ′  ⪰ PQD   μ″  since the  time series premise of Theorem 4 is stronger 
than the  time series assumption in Proposition 3.
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subset of types that we call   NAM    ⁎  ; namely,   (m, m)   matched and the remaining types  
  {1, 2, …, m − 1}   matched according to NAM. Step  8 then applies the cross-sec-
tional and time series properties of the space     n+1  ⁎    to rule out such NAM to   NAM    ⁎   
transitions as  θ  rises.

Step 3: At states  θ′  and  θ″ , the matchings obey   μ  1  ″  =  μ  1  ′   + 1 ≥ 2  and   ω  1  ″  =  
ω  1  ′   + 1 ≥ 2 .

We establish the first relationship. Symmetric steps would prove the second.

PROOF OF   μ  1  ″  >  μ  1  ′   : 
If not, then   μ  1  ″  ≤  μ  1  ′   . In this case, remove couple   (1,  μ  1  ′  )   at  θ′  and couple  

  (1,  μ  1  ″ )   at  θ″ . The remaining matching is PQD higher at  θ″ , by Induction 
Premise    n    and Fact  1. By Fact  5, if we add back the optimally matched 
pairs   (1,  μ  1  ′  )   and   (1,  μ  1  ″ )  , then the PQD ranking still holds with  n + 1  types, 
given   μ  1  ″  ≤  μ  1  ′   , namely  μ″  ⪰ PQD   μ′ . This contradiction to   (‡‡)   proves that  
  μ  1  ″  >  μ  1  ′   . ∎

PROOF OF   μ  1  ″  <  μ  1  ′   + 2 : 
If not, then   μ  1  ″  ≥  μ  1  ′   + 2 . By Fact 4, choose a woman   i > 1  with   μ  i  ″  <  μ  i  ′    . 

Remove couples   (i,  μ  i  ′  )   at  θ′  and   (i,  μ  i  ″ )   at  θ″ . Since   μ  i  ″  <  μ  i  ′   , the resulting match-
ing is PQD higher at  θ″  than  θ′ , by Fact 1 and Premise    n   . In the resulting model, 
woman  1 is not matched to a higher man at  θ″  than  θ′ . This is impossible if  
  μ  1  ″  ≥  μ  1  ′   + 2 , as   μ  1  ″  −  μ  1  ′    falls by at most 1 when removing man   μ i    at  θ′  and   μ  i  ″    
at  θ″ . ∎

Step 4: The couple   ( ω  1  ″ ,  μ  1  ″ )   is matched at  θ′ , namely,   μ   ω  1  ″   ′   =  μ  1  ″   and   ω   μ  1  ″   ′   =  ω  1  ″  .

In words: the man matched to the lowest woman under  θ″  and the woman matched 
to the lowest man under  θ″  must match together under  θ′ .

PROOF OF   μ   ω  1  ″   ′   ≥  μ  1  ″   AND   ω   μ  1  ″   ′   ≥  ω  1  ″  : 
We prove the first inequality. If not, then   μ   ω  1  ″   ′   <  μ  1  ″  . As man   μ  1  ′   =  μ  1  ″  − 1  is 

matched at  θ′  by Step 3,   μ   ω  1  ″   ′   <  μ  1  ″  − 1 =  μ  1  ′   . Removing couple   ( ω  1  ″ ,  μ   ω  1  ″   ′  )   at  θ′  and   
( ω  1  ″ , 1)   at  θ ″   induces an  n -type matching that is PQD higher at  θ ″ by    n    and Fact 1. 
Since man   μ   ω  1  ″   ′    removed at  θ′  and man 1 removed at  θ″  are below   μ  1  ′   =  μ  1  ″  − 1 , the 
match count at   (1,  μ  1  ′   − 1)   is unchanged at  θ″  and  θ′ . By Step 3, this count is higher 
at  θ′  than  θ″ , contradicting the  n -type matching PQD higher at  θ″ . ∎

PROOF OF   μ   ω  1  ″   ′   =  μ  1  ″   AND   ω   μ  1  ″   ′   =  ω  1  ″  : 
Just one strict inequality is impossible, as it overmatches some type:   ω   μ  1  ″   ′   >  ω  1  ″   

and   μ   ω  1  ″   ′   =  μ  1  ″   or   ω   μ  1  ″   ′   =  ω  1  ″   and   μ   ω  1  ″   ′   >  μ  1  ″  . Next, assume two strict inequalities. 
As   μ   ω  1  ″   ′   >  μ  1  ″  , the   θ ′    matching includes the PAM pair   (1,  μ  1  ′  )  <  ( ω  1  ″ ,  μ   ω  1  ″   ′  )  —by 
Step 3—and the higher NAM pair   ( ω  1  ″ ,  μ   ω  1  ″   ′  )   and   ( ω   μ  1  ″   ′  ,  μ  1  ″ )  . NAM pairs above PAM 
pairs violate Step 2 (left panel of Figure A1). ∎
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The middle panel of Figure A1 depicts the takeout of Steps 3–4. We iteratively 
use this matching pattern to show how   (‡‡)   greatly restricts the matching at  θ′   
and  θ″ .

Step 5:   μ  1  ′   ≥  μ  i  ′   =  μ  i  ″  − 1  for  i = 1, …,  ω  1  ′    and   ω  1  ′   ≥  ω  j  ′   =  ω  j  ″  − 1  for  
j = 1, …,  μ  1  ′   .

PROOF: 
We proved this for  i = 1  and  j = 1  and now prove the claimed ordering  

  μ  1  ′   ≥  μ  i  ′   =  μ  i  ″  − 1  for  i = 2, …,  ω  1  ′   . By symmetry,   ω  1  ′   ≥  ω  j  ′   =  ω  j  ″  − 1  for  
j = 2, …,  ω  1  ′   .

Part  (a):   μ  i  ′   <  μ  1  ′    for  i = 2, …,  ω  1  ′   . If not, then   μ  i  ′   ≥  μ  1  ′    for some  
 2 ≤ i ≤  ω  1  ′   . And since   μ  i  ′   =  μ  1  ′    entails overmatching, we have   μ  i  ′   >  μ  1  ′    for  
i = 2, …,  ω  1  ′   . Thus,  μ′  involves a PAM pair   (1,  μ  1  ′  )  <  (i,  μ  i  ′  )  . We claim that  
  (i,  μ  i  ′  )   and   ( ω  1  ″ ,  μ  1  ″ )   constitutes a higher NAM pair, violating Step  2. 
Indeed,  i ≤  ω  1  ′   <  ω  1  ″   (by the premise above and Step  3, respec-
tively). Also,   μ  i  ′   >  μ  1  ″   since we have assumed   μ  i  ′   >  μ  1  ′    and deduced  
  μ  1  ′   =  μ  1  ″  − 1  in Step 3 and, in Step 4, that   μ  1  ″   is matched to   ω  1  ″   at  θ′ , and we just 
showed   ω  1  ″  > i . (See the right panel of Figure A1.) ∎

Part  (b):   μ  i  ′   <  μ  i  ″   for  i = 2, …,  ω  1  ′   . If not, then   μ  i  ′   ≥  μ  i  ″   for some  
 2 ≤ i ≤  ω  1  ′   . Since   μ  i  ′   ≥  μ  i  ″  , if we remove couple   (i,  μ  i  ′  )   at  θ′  and couple   (i,  μ  i  ″ )    
at  θ″ , then the resulting matching is PQD higher at  θ″ , by Fact 1 and    n   . In the result-
ing matching, woman 1’s partner is thus not higher at  θ″  than  θ′ . But   μ  1  ″  =  μ  1  ′   + 1  
by Step 3, and   μ  1  ′   >  μ  i  ′   ≥  μ  i  ″  , by part (a) and the premise of (b). Both removed 
men   μ  i  ′    and   μ  i  ″   are then strictly below   μ  1  ′   . So woman 1’s partner is still 1 higher at  θ″  
than  θ′ . Contradiction. ∎

i

�"1
�'1

�'i

�"1
�'1

�"1
�'1

ω"1

�'ω"1

ω'�"1ω'1 ω"1ω'1 ω"1ω'1

Figure A1. Steps 3–5 in the Induction Proof

Notes: In the counterfactual logic in Steps 3–5, stars and circles denote respective proposed matched pairs at   θ′  
and  θ″ , respectively. Step 3 establishes that the index of the partner for the lowest man (woman) under  θ″  must be 
exactly one higher than the index for the lowest man (woman) under  θ′ . The left panel depicts the NAM pair (dark 
gray) above the PAM pair (light gray) in Step 4. The middle panel depicts the conclusion of Step 4: man   μ  i  ″   and  
woman   ω  i  ″   must match under  θ′ . The right panel depicts the NAM pair above the PAM pair in Step 5-(a).
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Part (c):   μ  i  ′   ≥  μ  i  ″  − 1  for  i = 2, …,  ω  1  ′   . If not, then   μ   i   ⁎   ′   <  μ   i   ⁎   ″   − 1  for some  
2 ≤  i   ⁎  ≤  ω  1  ′   . Remove couple   ( ω  1  ″ ,  μ  1  ″ )   at  θ′  (matched, by Step 4) and the couple  
  ( ω  1  ″ , 1)   at  θ″ . By Fact 1 and Assumption    n   , the resulting matching is PQD higher 
at  θ″ .

But since   ω  1  ″  >  ω  1  ′    by Step  3, all women  i = 1, …,  ω  1  ′    remain. Each has a 
weakly lower partner at  θ′  than  θ″  since we started with   μ  i  ′   <  μ  i  ″   for  i = 1, …,  ω  1  ′    
by Step 3 for  i = 1 , and part (b) for  i > 1 . Also, woman   i   ⁎  ≤  ω  1  ′    has a strictly 
lower partner, as   μ   i   ⁎   ′   <  μ   i   ⁎   ″   − 1 . The resulting matching  cannot be PQD higher at  
θ″ . Contradiction. ∎

Step 6:  The matching μ″ is NAM among men and women at most   ω  1  ″  =  μ  1  ″  ≥ 2 .

PROOF OF   ω  1  ″  =  μ  1  ″  : 
By Steps 3 and 5, we get   μ  1  ″  =  μ  1  ′   + 1 ≥  μ  i  ″   for  i = 1, …,  w  1  ′   =  ω  1  ″  − 1  and  

  μ  1  ″  ≥ 2 > 1 =  μ   ω  1  ″   ″   . So in matching μ″, women  i ≤  ω  1  ″   match with men  
 j ≤  μ  1  ″  . Hence,   μ  1  ″  ≥  ω  1  ″  . Ditto, by Steps 3 and 5,   ω  1  ″  ≥  ω  j  ″   for  j = 1, …,  μ  1  ″   , and 
in matching ω″, men  j ≤  μ  1  ″   match with women  i ≤  ω  1  ″  . Hence,   μ  1  ″  ≤  ω  1  ″  . Thus,   
μ  1  ″  =  ω  1  ″  ≥ 2 . ∎

PROOF OF   μ  i  ″  =  μ  1  ″  − i + 1  FOR  1, …,  ω  1  ″  : 
This is an identity at  i = 1  and true at  i =  ω  1  ″  , by   ω  1  ″  =  μ  1  ″   (just proven) and   

μ   ω  1  ″   ″   = 1 . So, henceforth, assume  i ∈  {2, …,  ω  1  ″  − 1}  . We claim that for all such  i ,  
  μ  1  ′   ≥  μ  i  ″  . Indeed, by Steps  3 and  5,   μ  1  ″  =  μ  1  ′   + 1 ≥  μ  i  ″  ; and since we do 
not overmatch,   μ  1  ″  ≠  μ  i  ″   for  i ≠ 1 . Since   μ  1  ′   ≥  μ  i  ″  , Step  5 yields equality  
  ω  j  ′   =  ω  j  ″  − 1  at  j =  μ  i  ″  , and so   ω   μ  i  ″   ′   =  ω   μ  i  ″   ″   − 1 = i − 1 . But then since   
ω   μ  i−1  ′    ′   = i − 1  and each woman has a unique partner,   ω   μ  i  ″   ′   = i − 1  implies  
  μ  i  ″  =  μ  i−1  ′   . As   μ  i−1  ′   =  μ  i−1  ″   − 1  by Step 5 and  i ≤  ω  1  ″  − 1 =  ω  1  ′    (by our premise 
and Step 3), we have   μ  i  ″  =  μ  i−1  ″   − 1 . ∎

An  n -type pure matching  μ  is   NAM    ⁎   if   μ n   = n  and   μ i   = n − i  for  
i = 1, …, n − 1 , i.e., NAM among types  1, …, n − 1 , so that   NAM   ⁎  = NAM3  
when  n = 3 .

Step 7: The matching  μ′  is   NAM    ⁎   among men and women at most   ω  1  ″  =  μ  1  ″  ≥ 2 .

PROOF: 
Steps 3, 5, and 6 imply   μ  i  ′   =  μ  i  ″  − 1 =  μ  1  ″  − i  for  i = 1, …,  ω  1  ′   =  ω  1  ″  − 1  . 

Couple   ( ω  1  ″ ,  μ  1  ″ )   matches under   μ ′   , by Step  4. So   μ ′    is   NAM    ⁎  for types  1, …,  
 μ  1  ″  =  ω  1  ″  . ∎

By Steps 6–7,  μ″  is NAM and  μ′  is   NAM    ⁎   on types  1, …,  ω  1  ″  =  μ  1  ″  ≡ k ≥ 2  . 
Since   NAM    ⁎   ≻ PQD   NAM , if  k < n + 1 , then Premise    k    fails. Step 8 finishes the 
proof by showing that NAM at  θ″  and   NAM    ⁎   at  θ′  is also impossible for  k = n + 1  
types.
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Figure A2. Step 8 of Induction Proof

Notes: Left panel: NAM for  θ″  (circles) and   NAM    ⁎   for  θ′  (stars) with  n + 1  types. Adding  k − 1  couples weakly 
higher at  θ′  than  θ″  produces the matches in the middle panel. Let   K     G ,  K    L ,  K    T ,  K    R   be the gray, light gray, top 
 crosshatched, and right  crosshatched regions. By (C2), the   NAM    ⁎   minus NAM difference is   핊   n+k  ( K     G  ∪  K    L  | θ′)  > 0 
, as   NAM   ⁎   is optimal for  θ′ . But   핊   n+k  ( K    L  | θ′)  < 0 , as   K    L   is the union of rectangles, each below a NAM pair for  θ″ .  
So   핊   n+k  ( K     G  | θ′)  > 0 . By (C2), the   NAM    ⁎   minus NAM difference is   핊   n+k  ( K     G  ∪  K    R  ∪  K    T  | θ″)  < 0 , negative by 
NAM optimal for  θ″ . Finally,   핊   n+k  ( K    T  | θ′) ,  핊   n+k  ( K    R  | θ′ )  > 0 , as each  crosshatched region lies above a PAM pair 
for  θ′ . So   핊   n+k  ( K     G  | θ″)  < 0 . But as   핊   n+k  ( K     G  | θ′)  > 0 , this contradicts summed rectangular synergy upcrossing  
in  θ . Right panel: Illustration for Step 8(c).

NAM for men   { i    1  , …,  i    ℓ  }   and women   {  j    1  , …,  i    ℓ  }   is   { ( i    1  ,  j   ℓ  ) ,  ( i   2  ,  j   ℓ−1  ) , …,  ( i    ℓ  ,  j    1  ) }  . 
Rematching to   NAM    ⁎  ,   { ( i    1  ,  j   ℓ−1  ) ,  ( i   2  ,  j   ℓ−2  ) , …,  ( i    ℓ  ,  j   ℓ  ) }   changes payoffs by

    ∑ 
u=1

  
ℓ−1

     (  f    i   u  ,  j   ℓ−u     −  f    i   u  ,  j   ℓ+1−u    )  +  f    i    ℓ  ,  j   ℓ     −  f    i    ℓ  ,1   =   ∑ 
u=1

  
ℓ−1

    [ (  f    i    ℓ  ,  j   ℓ+1−u     −  f    i    ℓ  ,  j   ℓ−u    )  −  (  f    i   u  ,  j   ℓ+1−u     −  f    i   u  ,  j   ℓ−u    ) ]  .

So the payoff of   NAM    ⁎   less that of NAM on any subset of  ℓ  types equals (suppressing 
the superscript on  S )

(C2)    ∑ 
u=1

  
ℓ−1

    S ( i   u  ,  j   ℓ−u  ,  i    ℓ  ,  j   ℓ+1−u  )  .

Step 8: NAM at  θ″ ⇒ ∼ NAM    ⁎   at  θ′  for summed rectangular synergy dyads in   
  n+1  ⁎   .

Part (a): Contradiction Assumption. For  n + 1  types, posit   NAM    ⁎   and NAM 
uniquely optimal at  θ′  and  θ″  (Figure A2, left panel). Induce summed rectangular 
synergy dyads in     n+1  ⁎    by removing  k − 1 ≥ 0  optimally matched couples with 
higher partners at  θ′  than  θ″  (our earlier building block   ( f )  ) from a summed rect-
angular synergy dyad   ( 핊   n+k  (K | θ′) ,  핊   n+k  (K | θ″) )  ∈    ˆ   n+k   . The  θ′  matching here is   
NAM    ⁎   for men  i′ =  ( i  1  ′  , …,  i  n+1  ′  )   and women  j′ =  (  j  1  ′  , …,  j  n+1  ′  )  , while the  θ″  
matching with these  n + k  types is NAM for men  i″ =  ( i  1  ″ , …,  i  n+1  ″  )   and women  
j″ =  (  j  1  ″ , …,  j  n+1  ″  )  , with   (i′, j′)  ≤  (i″, j″)   (Figure A2, middle panel).
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Part (b): Couple sets  U′, U″  with   핊   n+k  (U″ | θ″)  < 0 <  핊   n+k  (U′ | θ′)  . For rectan-
gles   r  u  ′   ≡  ( i  u  ′  ,  j  n+1−u  ′  ,  i  n+1  ′  ,  j  n+2−u  ′  )   and   r  u  ″  ≡  ( i  u  ″ ,  j  n+1−u  ″  ,  i  n+1  ″  ,  j  n+2−u  ″  )  , define “upper 
sets”:

 •   U′ ≡  ∪  u=1  n    r  u  ′   , the union of the gray and light gray rectangles in the middle 
panel of Figure A2.

 •   U″ ≡  ∪  u=1  n    r  u  ″  , the union of the gray and the two crosshatched regions.

As   NAM    ⁎   is uniquely optimal for the subsets of men  i′  and women  j′  at  θ′  , it 
 payoff-dominates NAM. Given linearity of summed rectangular synergy at  
ℓ = n + 1  in (C2),

   핊   n+k  (U′ | θ′)  =   ∑ 
u=1

  
n+1

    S    n+k  ( r  u  ′   | θ′)  =   ∑ 
u=1

  
n+1

    S    n+k  ( i  u  ′  ,  j  n+1−u  ′  ,  i  n+1  ′  ,  j  n+2−u  ′   | θ′)  > 0 .

Likewise, NAM uniquely optimal for subsets  i″  and  j″  at  θ″  implies  
  핊   n+k  (U″ | θ″)  < 0 .

Part (c):   핊   n+k  ( K     G  | θ′)  > 0  for   K     G  ≡ U′ ∩ U″ . First,  U′ =   ∪  u=1  n    ( i  u  ′  ,  j  n+1−u  ′  ,  
 i  n+1  ′  ,  j  n+1  ′  )  , i.e., a union of rectangles with fixed northeast corner (Figure  A2, 
right panel). Likewise, we have  U″ ≡  ∪  u=1  n    r  u  ″  . Since   (i′, j′)  ≤  (i″, j″)   (part 
(a)), if   (i, j)  ∈ U′ \U″ = U′ \   K     G   (light gray in Figure  A2, middle panel), then  
  ( i   u   ⁎   ′  ,  j  n+1− u   ⁎   ′  )  ≤  (i, j)  , and  i ≤  i   u   ⁎   ″    or  j ≤  j  n+1− u   ⁎   ″   , with at least one strict, at  
some   u   ⁎   . So couple   (i, j)   is below the meet of the  θ″  matched NAM pair  
  ( i   u   ⁎   ″  ,  j  n+2− u   ⁎   ″  )   and   ( i   u   ⁎ +1  ″  ,  j  n+1− u   ⁎   ″  )  . As rectangular synergy is upcrossing in types,  
  s  ij   (θ″)  < 0 . Then   s  ij   (θ′)  < 0 , as synergy is upcrossing in  θ . Then  
  핊   n+k  (U′ \   K     G  | θ′)  < 0 , as this holds for all   (i, j)  ∈ U′ \   K     G  . As summed rect-
angular synergy is additive and   핊   n+k  (U′ | θ′)  > 0  (part  (b)),   핊   n+k  ( K     G  | θ′)  =  
 핊   n+k  (U′ | θ′)  −  핊   n+k  (U′ \   K     G  | θ′)  > 0 .

Part (d):   핊   n+k  ( K     G  | θ″)  < 0 . Since   (i′, j′)  ≤  (i″, j″)   (part (a)), define rectangles   
K    T  ≡  ( i  1  ″ ,  j  n+1  ′  ,  i  n+1  ′  ,  j  n+1  ″  )   and   K    R  ≡  ( i  n+1  ′  ,  j  1  ″ ,  i  n+1  ″  ,  j  n+1  ′  )   (respectively, top and right 
crosshatched regions, Figure  A2, middle panel). Then  U″ \   K     G  =  K    T  ∪  K    R  . As 
summed rectangular synergy is linear,

(C3)   핊   n+k  ( K     G  | θ)  =  핊   n+k  (U″ | θ)  −  핊   n+k  ( K    T  | θ)  −  핊   n+k  ( K    R  | θ)  .

Rectangle   K    T   is above the rectangle defined by the  θ′  PAM pair   ( i  1  ′  ,  j  n  ′  )   and  
  ( i  n+1  ′  ,  j  n+1  ′  )   . So   핊   n+k  ( K    T  | θ″)  > 0 , as summed rectangular synergy is upcross-
ing on rectangles and   θ . Likewise,   K    R   is above the rectangle defined by the θ′ 
PAM pair   ( i  n  ′  ,  j  1  ′  )   and   ( i  n+1  ′  ,  j  n+1  ′  )  . So   핊   n+k  ( K    R  | θ″)  > 0 . Then   핊   n+k  ( K     G  | θ″)  < 0 ,  
as   핊   n+k  (U″ | θ″)  < 0  by part (b) and (C3).
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Since   핊   n+k  ( K     G  | θ′)  > 0  (part (c)), we cannot have   ( 핊   n+k  (K | θ′) ,  핊   n+k  (K | θ″) )  ∈ 
   ˆ   n+k   ; thus, by part (a), we have contradicted dyads   ( 핊   n+1  (K | θ′) ,  핊   n+1  (K | θ″) )  ∈  
  n+1  ⁎    and thus conclude that NAM at  θ″  and   NAM    ⁎   at  θ′  is impossible.20 ∎

C. Proof of Proposition 3 for a Continuum of Types

Step 1: Uniquely optimal finite type matchings exist for a payoff perturbation 
with summed rectangular synergy upcrossing in  θ .

PROOF: 
Let       n  =  { x  1  n , …,  x  n  n }   and       n  =  { y  1  n , …,  y  n  n }   be equal quantile incre-

ments, with  G ( x  1  n )  = H ( y  1  n )  = 1/n  and  G ( x  i  n )  = G ( x  i−1  n  )  + 1/n  and  H ( y  j  n )  = 
H ( y  j−1  n  )  + 1/n . Let   G    n   and   H    n   be cdfs on   [0, 1]  , stepping by  1/n  at       n   and       n   
(respectively). Put   f   ij   n   (θ)  = ϕ ( x  i  n ,  y  j  n  | θ)  . The set      n  (θ)   of pure optimal matchings 
is  nonempty, by Lemma 2.

Since unique optimal matchings are pure, we restrict to pure matchings. These 
are uniquely defined by the male partner vector  μ =  ( μ 1  , …,  μ n  )  . Call the pure 
matching   M ˆ    lexicographically higher than  M  if and only if its male partner vector   μ ˆ    
lexicographically dominates  μ . Let    M 

–
      n  (θ)   (respectively,    μ –     n  (θ)  ) be the optimal pure 

 matching highest in the lexicographic order and     M 
¯

      n  (θ)   (respectively,    μ 
¯
     n  (θ)  ) the low-

est. Easily, each is  well defined.
Fix  θ″ ≻ θ′ . Let  ι ( j)  =   μ –    j  n  (θ′)  − 1  and pick  ε > 0 . Perturb synergy down at  θ′ :

(C4)   s  ij  n ε  (θ′)  ≡  s  ij   (θ′)  −  ε    j  1 { (i, j)  =  (ι ( j) , j) } . 

We prove that    M 
–
      n  (θ′)   is uniquely optimal at  θ′  for any production function with  

 ε -perturbed synergy (C4), for all small  ε > 0 . Similar logic will prove that     M 
¯

      n  (θ″)   
is uniquely optimal at  θ″  with   s  ij  n ε  (θ″)  ≡  s  ij   (θ″)  +  ε    j  1 { (i, j)  =  (  μ 

¯
    j  
n  (θ″) , j) }   

for all small  ε > 0 .
Pick a matching  M  that is not optimal at  ε = 0 . Since    M 

–
      n  (θ′)   is optimal at  

 ε = 0 ,    M 
–
      n  (θ′)   yields a higher payoff than  M  for all small  ε > 0 .

As    μ –     n  (θ′)   is the lexicographically highest optimal matching at  θ′ , another optimal  
μ  obeys   (  μ –    1  n  (θ′) , …,   μ –    ℓ−1  n   (θ′) )  =  ( μ 1  , …,  μ ℓ−1  )  , and first diverges at    μ ¯    ℓ  n  (θ′)  >  μ ℓ    , 
for some woman  ℓ < n . Using   M  ij   =  ∑ k=1  j     1 { μ k   ≤ i}  , equation (5), and (C4), the 
payoff    M 

–
      n  (θ′)   exceeds that of  M ∈     n  (θ′)   by   ∑ i=1  n−1     ∑ j=1  n−1     s  ij  n ε  (θ′)  [  M 

–
    ij   n   (θ′)  −  M  ij  ]  . 

This expands to

    ∑ 
j=1

  
n−1

    ε    j  [ M  ι ( j)   j   −   M 
–
    ι ( j)   j   n   (θ′) ]  =  ε   ℓ  +   ∑ 

j=ℓ+1
  

n−1

     ε    j    ∑ 
k=ℓ+1

  
j

    [1 { μ k   ≤ ι ( j) }  − 1 {  μ –    k  n  ≤ ι ( j) } ]  .

Altogether,   lim  ε→0    ε   −ℓ   ∑ i=1  n−1     ∑ j=1  n−1     s  ij  n ε  (θ′)  [  M 
–
    ij   n   (θ′)  −  M  ij  ]  = 1 > 0 . ∎

20 This last step assumes upcrossing synergy sums on connected join  semi-lattices (sets that contain the join of 
any pair of elements). All of our results only require this weaker time series assumption.
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Step 2: If  θ′ ≻ θ′ , then    M 
–
      n  (θ″)   ⪰ PQD      M 

¯
      n  (θ′)   for all  n .

PROOF: 
Since   S    n ε  (r | θ)   is continuous in  ε , there exists    ε ˆ   n   > 0  such that, for all  

 r =  ( i    1  ,  j    1  ,  i   2  ,  j    2  )   and  0 ≤ ε <   ε ˆ   n   , if   S    n 0  (r | θ)  ≶ 0 , then   S    n ε  (r | θ)  ≶ 0 . By the 
contrapositives,

(C5)   S   n ε  (r | θ)  ≥ 0 ⇒  S   n 0  (r | θ)  ≥ 0 and  S   n ε  (r | θ)  ≤ 0 ⇒  S   n 0  (r | θ)  ≤ 0. 

We claim that   S    n ε  (r | θ)   is strictly upcrossing in  r  for all  0 < ε <   ε ˆ   n   . For if not, 
then   S    n ε  (r″| θ)  ≤ 0 ≤  S   n ε  (r′ | θ)   for some  r″  ≻ NE   r′ . But then   S   n 0  (r″ | θ)  ≤ 0 ≤  
 S   n 0  (r′ | θ)   by  (C5), contradicting   S   n 0  (r | θ)   strictly upcrossing in  r , as follows 
from Step 1.

Continuum summed rectangular synergy is upcrossing in  θ  by assumption; and 
thus, finite summed rectangular synergy   ∑ k=1  

 
      S   n 0  ( r  k   | θ)   for all finite approxima-

tions. Then, perturbed summed rectangular synergy   ∑ k=1  
 
      S   n ε  ( r  k   | θ)   is upcrossing in  

θ  since synergy   s  ij  n ε  (θ″)   is  nonincreasing in  ε  and   s  ij  n ε  (θ″)   is  nondecreasing in  ε  by 
construction (C4).

So for  ε ∈  (0,   ε ˆ   n  )  , rectangular synergy   S   n ε  (r | θ)   is strictly upcrossing in   r  
and summed rectangular synergy   ∑ k=1  

 
     S   n ε  ( r  k   | θ)   upcrossing in   θ , for couple sets  

 K ⊆  ℤ  n  2  . Given    M 
–
      n  (θ″) ,    M 

¯
      n  (θ′)   uniquely optimal,     M 

¯
      n  (θ″)   ⪰ PQD     M 

–
      n  (θ′) , ∀ n , by 

Proposition 3. ∎

Step 3: There exists a subsequence of matchings   { M     n  k    (θ) }   that converges to an 
optimal matching in the continuum model.

PROOF: 
Define step function   ϕ   n  (x, y | θ)  =  f   ij   n  ε n    (θ)   for   (x, y)  ∈  [ x  i−1  n  ,  x  i  n )  ×  [ y  j−1  n  ,  y  j  n )  , 

where   ε n   =   ε ˆ   n  /n . Then   { G    n }   and   { H    n }   weakly converge to  G  and  H  as  n → ∞ , 
while   ϕ   n   uniformly converges to  ϕ . By Theorem 5.20 in Villani (2008), their optimal 
matching cdfs have a limit point   M    ∞  (θ)   optimal in the continuum model.21 ∎

Step 4:   M    ∞  (θ″)   ⪰ PQD    M    ∞  (θ′)   for all  θ″ ⪰ θ′ .

PROOF: 
Fix  θ″ ⪰ θ′ , and let   { n  k  }   be a subsequence along which the sequence of finite type 

matchings   { M     n  k    (θ′) }   converges to   M    ∞  (θ′)  , as defined in Step 3. Now, since cdfs  
  { G     n  k   }   and   { H     n  k   }   weakly converge to  G  and  H , and   ϕ    n  k    (x, y | θ″)   converges uniformly 
to  ϕ (x, y | θ″)  , there exists a subsequence   { n   k   ℓ    }   of   { n  k  }  , along which the sequence of 
finite type matchings   { M     n   k   ℓ      (θ″) }   converges to   M    ∞  (θ″)   by Theorem 5.20 in Villani 
(2008). Further, by Step  2,   M     n   k   ℓ      (θ″)   ⪰ PQD    M     n   k   ℓ      (θ′)  . But then, the limits must be 

21 Namely, fix a sequence   { ϕ k  }   of continuous and uniformly bounded production functions converging uni-
formly to  ϕ . Let   { G   k  }   and   { H   k  }   be cdf sequences and   M   k    an optimal matching for  ϕ , given   G   k    and   H   k   . If   G   k    and   H   k    
weakly converge to  G  and  H , then some subsequence of   { M  k  }   weakly converges to a matching   M   ⁎   optimal for  ϕ ,  G , 
and  H .



747ANDERSON AND SMITH: THE COMPARATIVE STATICS OF SORTINGVOL. 114 NO. 3

ordered   M    ∞  (θ″)   ⪰ PQD    M    ∞  (θ′)   by Theorem 9.A.2.a in Shaked and Shanthikumar 
(2007). ∎

D. Marginal Rectangular Synergy: Proof of Proposition 4

A  nonnegative function  σ : Z ↦  ℝ +    on lattice  Z  is  log-supermodular (LSPM) if

(C6)  σ (z ∧ z′) σ (z ∨ z′)  ≥ σ (z) σ (z′) , ∀ z, z′ ∈ Z .

CLAIM 1: The indicator function  1 {x ∈  [u ( x  1  ) , u ( x  2  ) ] }   is  log-supermodular in   
(x,  x  1  ,  x  2  )   for all  nondecreasing functions  u .

PROOF: 
Define   ( u  i  ,  u  i  ′ )  ≡  (u ( x  i  ) , u ( x  i  ′  ) )   for  i ∈  {1, 2}  . If both  x ∈  [ u  1  ,  u  2  ]   and  x′ ∈ 

 [ u  1  ′  ,  u  2  ′  ]  , then  x ∨ x′ ∈  [ u  1   ∨  u  1  ′  ,  u  2   ∨  u  2  ′  ]   and  x ∧ x′ ∈  [ u  1   ∧  u  1  ′  ,  u  2   ∧  u  2  ′  ]  ; and thus,  
1 {x ∨ x′ ∈  [ u  1   ∨  u  1  ′  ,  u  2   ∨  u  2  ′  ] } 1 {x ∧ x′ ∈  [ u  1   ∧  u  1  ′  ,  u  2   ∧  u  2  ′  ] }  = 1 . ∎

Now, assume marginal rectangular synergy is upcrossing in types. The steps for 
downcrossing marginal rectangular synergy are symmetric.

Step 1: If marginal rectangular synergy is strictly upcrossing, then rectangular 
synergy is strictly upcrossing.

PROOF: 
We prove the continuum case, which implies the finite type result. By Claim 1, 

the function  1 {x ∈  [ x  1  ,  x  2  ] }   is  log-supermodular function in   (x,  x  1  ,  x  2  )  . By Karlin 
and Rubin’s classic 1956 result, if   Δ x   (x |  y  1  ,  y  2  , θ)   is upcrossing in   x , then the last 
integral in (10) is upcrossing in   x  1    and   x  2   , and so in   ( x  1  ,  x  2  )  . Symmetrically, rect-
angular synergy is upcrossing in   ( y  1  ,  y  2  )   when the  y -marginal rectangular synergy 
is upcrossing in  y . Altogether, rectangular synergy    is upcrossing in types if both 
MPIs are upcrossing.

Now assume   Δ x   (x |  y  1  ,  y  2  )   is strictly upcrossing; and so, if  S ( x  1  ′  ,  y  1  ,  x  2  ′  ,  y  2  )  = 0,  
then   Δ x   ( x  1  ′   |  y  1  ,  y  2  )  < 0 <  Δ x   ( x  2  ′   |  y  1  ,  y  2  )  . So     x  1     ( x  1  ′  ,  y  1  ,  x  2  ′  ,  y  2  )  = − Δ x   ( x  1  ′   |  y  1  ,  y  2  )  > 
0 , and     x  2     ( x  1  ′  ,  y  1  ,  x  2  ′  ,  y  2  )  =  Δ x   ( x  2  ′   |  y  1  ,  y  2  )  > 0 . Then   ( x  1  ″ ,  y  1  ,  x  2  ″ ,  y  2  )  > 0  for all  
  ( x  1  ″ ,  x  2  ″ )  >  ( x  1  ′  ,  x  2  ′  )  . By symmetric reasoning,    strictly upcrosses in   ( y  1  ,  y  2  )  . ∎

Step 2: The optimal matching is unique in the continuum type model.

PROOF: 
By Theorem 5.1 in Ahmad, Kim, and McCann (2011), there is a unique optimal 

matching when (i)  G  is absolutely continuous, (ii)  ϕ  is   C   2  , and (iii) the critical points 
of (what they call a “twist difference”)  ϕ (x,  y  2  )  − ϕ (x,  y  1  )   include at most one local 
max and one local min, for all   y  1  ,  y  2   . Our continuum types model imposes (i) and 
(ii). We claim that (iii) follows from marginal rectangular synergy   Δ x   (x |  y  1  ,  y  2  )  ≡  
 ϕ 1   (x,  y  2  )  −  ϕ 1   (x,  y  1  )   strictly upcrossing in  x , for   y  2   >  y  1   . In particular, if   y  2   >  y  1    , 
then   Δ x   (x |  y  1  ,  y  2  )   is upcrossing in  x , and any critical point of the twist difference 
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is a global minimum. Similarly, then any critical point is a global maximum if  
  y  2   <  y  1    . ∎

Step 3: Sorting increases in  θ .

PROOF: 
Propositions  3 and  4 share the time series assumption. By Step  1,  

the  cross-sectional premise of Proposition 4 implies the  cross-sectional premise of 
Proposition 3. Finally, the optimal matching is generically unique for any finite type 
model and is unique for continuum type models by Step 2. By Proposition 3, sorting 
rises in  θ . ∎

E. A Generalization of Proposition 5

With a continuum of types, synergy is proportionately upcrossing if

(C7)   ϕ  12  −   (z ∧ z′, θ)  ϕ  12  +   (z ∨ z′,  θ ′  )  ≥  ϕ  12  −   (z, θ′)  ϕ  12  +   (z′, θ)  

for  z =  (x, y)  ,  z′ =  (x′, y′)  , and  θ′ ⪰ θ , where meet  ∧  and join  ∨  assume the 
vector order. For a finite number of types, synergy is proportionately upcrossing if  
  s  ij   (θ)   obeys an inequality analogous to  (C7) for arguments  z =  (i, j)   and  z′ =  

(i′, j′)   , and for  θ′ ⪰ θ .
Synergy is proportionately upcrossing if it is increasing in  θ  and mono-

tone in types. Indeed,   (z ∨ z′, θ′)  ⪰  (z′, θ)  ⇒  ϕ  12  +   (z ∨ z′, θ′)  ≥  ϕ  12  +   (z′, θ)  , and  
  (z, θ′)  ⪰  (z ∧ z′, θ)  ⇒  ϕ  12  −   (z ∧ z′, θ)  ≥  ϕ  12  −   (z, θ′)  . And, easily, the product of a 
proportionately upcrossing and LSPM function is proportionately upcrossing. All 
told, we generalize Proposition 5:

PROPOSITION 6: Assume synergy is upcrossing in   θ , synergy is  one-crossing in 
types, and proportionately upcrossing synergy. Sorting increases in   θ  in generic 
finite type models, or with continuum types if synergy strictly  one-crosses in types.

FINITE TYPES PROOF: 
We verify the premise of Proposition  3. By Theorem  1, total synergy  

  ∑ i=1  n−1     ∑ j=1  n−1     s  ij   (θ) 1 { (i, j)  ∈ Z}   on any set of couples  Z ⊆  ℤ  n  2   is upcross-
ing in  t = θ . So summed rectangular synergy   ∑ k  

 
    S ( r  k   | θ)   is upcrossing in  θ  for 

any  nonoverlapping set of rectangles   { r  k  }  . Next, rectangular synergy  S (r | θ)  = 
 ∑ i=1  n−1     ∑ j=1  n−1     s  ij   (θ) 1 { (i, j)  ∈ r}   is upcrossing in  r  by Theorem 1 with  t = r ∈  ℝ   4  . 
By Claim  1, the indicator function  1 { (i, j)  ∈ r}  = 1 {i ∈  [ i    1  ,  i   2  ] } 1 { j ∈ 
 [  j    1  ,  j    2  ] }   is LSPM in   (i, j, r)   since LSPM is preserved by multiplication.22 Then 
  s  ij   (θ) 1 { (i, j)  ∈ r}   obeys inequality (C7) in  z =  (i, j)   and  r  since   s  ij   (θ)   obeys (C7) 
for fixed  θ . Rectangular synergy upcrosses in  r , by Theorem 1. ∎

22 Theorem 1 assumes  t ∈  , a poset. Here, we exploit the fact that the space of rectangular sets of couples is a 
sublattice of   ℤ   2  , even though the PQD order on distributions over couples is not a lattice.
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CONTINUUM OF TYPES PROOF: 
We apply Proposition  4. By Theorem  1, total synergy   ∫ Z  

 
     ϕ 12   (x, y | θ) dx  dy  is 

 upcrossing in  t = θ  for any measurable set  Z ⊆   [0, 1]    2  . Thus, summed rectangular 
synergy   ∑ k  

 
    S ( R   k   | θ)   is upcrossing in  θ  for any  nonoverlapping set of rectangles   { R   k  }  . 

Next, the  x -marginal rectangular synergy  ∫  ϕ 12   (x, y) 1 {y ∈  [ y  1  ,  y  2  ] } dy  is strictly 
upcrossing in  x . Let  x″ > x′ . Posit for a contradiction:

(C8)  ∫  ϕ 12   (x″, y) 1 {y ∈  [ y  1  ,  y  2  ] } dy ≤ 0 ≤ ∫  ϕ 12   (x′, y) 1 {y ∈  [ y  1  ,  y  2  ] } dy .

As synergy   ϕ 12   (x, y)   is strictly upcrossing in  x  and  y , by  (C8), there exist zeros  
 y′, y″ ∈  ( y  1  ,  y  2  )   such that   ϕ 12   (x′, y)  ⋚ 0  for  y ⋚ y′  and   ϕ 12   (x″, y)  ⋚ 0  for  
 y ⋚ y″ . Easily, these zeros are ordered  y″ < y′ . But then inequalities in (C8) are 
simultaneously impossible, for

   0 ≤ ∫  ϕ 12   (x′, y) 1 {y ∈  [ y  1  ,  y  2  ] } dy < ∫  ϕ 12   (x′, y) 1 {y ∈  [ y  1  , y″] } 1 {y ∈  [y′,  y  2  ] } dy

 ⇒ 0 < ∫  ϕ 12   (x″, y) 1 {y ∈  [ y  1  , y″] } 1 {y ∈  [y′,  y  2  ] } dy

 < ∫  ϕ 12   (x″, y) 1 {y ∈  [ y  1  ,  y  2  ] } dy 

by Theorem 1 since  ∫  ϕ 12   (x, y) λ (y) dy  is upcrossing in  t = x  for any  nonnegative  
 λ (y)  —because   ϕ 12   (x, y)   is proportionately upcrossing in types and upcrossing in  y . ∎

F. Type Distribution Shifts: Proof of Corollary 1

Throughout, we without loss of generality assume types shift up in the parameter  
θ .

Step 1: Summed Rectangular Quantile Synergy is Upcrossing in  θ .

For any finite disjoint set of rectangles   { R   k  }   in    [0, 1]    2  , let  Z ≡  ∪ k    R   k    and define 
the pdf

  λ (x, y | θ)  ≡   
1 { (G (x | θ) , H (y | θ) )  ∈ Z} 

   ______________________   
 ∫    

 
   ∫    

 
  1 { (G (s | θ) , H (t | θ) )  ∈ Z} ds  dt

  . 

We claim that the associated cdf  Λ (x, y | θ)  ≡  ∫    
y   ∫    

x   λ (s, t | θ) ds  dt  is  nonincreasing in  
θ . Indeed, the indicator function  1 { (s, t)  ≤  (x, y) }   is  log-supermodular in   (s, t, x, y)   
by Claim 1. Recalling that rectangles   R   k    are defined by quantiles   [ p  1  ,  p  2  ]  ×  [ q  1  ,  q  2  ]  , 
we rewrite

  1 { (G (s | θ) , H (t | θ) )  ∈  R   k  }  = 1 { (s, t)  ∈  [ G   −1  ( p  1   | θ) ,  G   −1  ( p  2   | θ) ] 

 ×  [ H   −1  ( q  1   | θ) ,  H   −1  ( q  2   | θ) ] }  ,

which is  log-supermodular in   (s, t, θ)   by   G   −1  (p | θ) ,  H   −1  (q | θ)    nondecreasing in  θ  and 
Claim 1. Thus, since  log-supermodularity is preserved by multiplication,  integration 



750 THE AMERICAN ECONOMIC REVIEW MARCH 2024

(Karlin and Rinott 1980), and summation (over   R   k   ),  ∫∫ 1 { (G (s | θ) , H (t |θ ) )  
∈ Z} 1 { (s,t)  ≤  (x,y) } ds  dt  is  log-supermodular in   (x, y, θ)  . Consequently,   (x, y)  ≤  

(x′, y′)   implies that the ratio

    
 ∫    

 
   ∫    

 
  1 { (G (s | θ) , H (t | θ) )  ∈ Z} 1 { (s,t)  ≤  (x,y) } ds  dt

    ___________________________________     
 ∫    

 
   ∫    

 
  1 { (G (s | θ) , H (t | θ) )  ∈ Z} 1 { (s,t)  ≤  (x′,y′) } ds  dt

   is  nonincreasing in θ .

Finally, since  Λ (x, y | θ)   is this ratio evaluated at   (x′, y′)   equal to the highest types on 
each side of the market,  Λ  is  nonincreasing in  θ .

Now, define total quantile synergy (11) on the set  Z  in the continuum model

  ϒ (θ)  ≡ ∫∫  φ 12   (p, q | θ) 1 { (p, q)  ∈ Z} dp  dq

 = ∫∫  ϕ 12   (x, y) 1 { (G (x | θ) , H (y | θ) )  ∈ Z} dx  dy 

by the change of variables  x =  G   −1  (p | θ)   and  y =  H   −1  (q | θ)  ; and thus,  dx = 
dp/g ( G   −1  (p | θ) )   and  dy = dq/h ( H   −1  (q | θ) )  . Then using the fact that the cdf 
 Λ (x, y | θ)   is first-order increasing in  θ  and   ϕ 12   (x, y)   is  nondecreasing, we find

  0 ≤ ϒ (θ)  ⇒ 0 ≤ ∫∫  ϕ 12   (x, y) λ (x, y | θ) dx  dy

 ≤ ∫∫  ϕ 12   (x, y) λ (x, y | θ′) dx  dy ⇒ 0 ≤ ϒ (θ′)  .

Identical steps prove the result for models with finite types.

Step 2:  Quantile marginal rectangular synergy (strictly) upcrosses in quantiles. 

We prove case (b) (continuum types). Case (a) follows from symmetric logic.
 Nondecreasing synergy is proportionately upcrossing; and thus,   Δ x   (x |  y  1  ,  y  2  )   

strictly upcrosses in  x  as shown in Appendix C.E. Given  G (x | θ)   absolutely contin-
uous,  g > 0  ; and so,

   Δ p   (p |  q  1  ,  q  2  , θ)  =  Δ x   ( G   −1  (p | θ)  |  H   −1  ( q  1   | θ) ,  H   −1  ( q  2   | θ) ) /g ( G   −1  (p | θ) )  

is strictly upcrossing in  p . Similarly,   Δ q   (q |  p  1  ,  p  2  , θ)   is strictly upcrossing in  q . All 
told, we’ve seen that quantile sorting increases in  θ , by Step 1 and Proposition 4. ∎
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