
Hidden Passing Games∗

Elena Quercioli†

Tulane University
Lones Smith‡.

University of Michigan

December 27, 2023

Abstract

We introduce random encounter matching games, where a hidden trait is
sometimes unwittingly passed — either private and bad (like counterfeit money),
or collective and bad (a disease), or hidden and good (rare coin), or collective and
good (information). One optimally expends effort to avoid acquiring bad traits
or trying to acquire good ones. The game shifts from strategic complements to
substitutes changing from private to collective, or good to bad traits.

A unique equilibrium exists in all cases, and coincides for collective bad and
private good traits, and collective good and private bad traits. Equilibrium inci-
dence can be a misleading signal of prevalence for bad traits at high prevalence:
One cannot infer that counterfeiting is less severe when there is less passed
counterfeit money, or prevalence is higher with more infections.
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1 Introduction

What do counterfeit money and AIDS have in common? The answer is that both
“traits” change hands when people meet, and are unwittingly acquired through lack of
care. By contrast, hidden desired traits like rare valuable stamps are caught more often
by paying more attention. We introduce and explore a tractable new class of pairwise
games with random pairwise meetings and costly vigilance impacting the chance that
a positive or negative attribute trait is secretly passed along. It may be a private bad,
like counterfeit money, stolen goods, forged art — or mortgage backed securities with
overstated safety in the 2008 financial crisis. Or, it may be a collective bad, like a
disease or computer virus. On the other hand, it night be a good trait, and private,
like a 1943 copper cent, or collective, like prized information scoops.

In this new class of 2× 2 random matching games, people optimally expend costly
effort to acquire a good trait, or avoid a bad trait, that invisibly passes in meetings.
We assume additive utility over vigilance costs and the trait’s expected harm or gain.
With collective bad traits, vigilance efforts are strategic substitutes — people try
harder when they expect others try less. Conversely, with private bad traits, vigilance
efforts are strategic complements — vigilance rises in others’ vigilance. The opposite
taxonomy emerges for private and collective good traits.

Optimal behavior reflects prevalence while incidence reflects both behavior and
prevalence. By assuming geometric vigilance costs, we can fully solve all four games,
finding a unique Nash equilibrium in each case. We compute trait dynamics and steady
state stocks. We ask if higher passing flows correspond to higher hidden stocks. For
instance, does more passed counterfeit money signal a higher counterfeit rate? Or
is disease incidence higher when prevalence is higher? The intuitive link is unclear
because people strive harder not to acquire a disease or fake money when it’s more
prevalent. At low stocks, stocks and flows comove. But at higher levels, a flow moves
opposite to the stock. For instance, at greatly inflated counterfeiting rates, larger
passed money rates signify less counterfeit money. For a lower counterfeit chance
reduces vigilance so much that more counterfeits pass by the first person screening;
this can swamp the fall in the screening chance by the next. In the games with a private
or collective bad trait, this substitution effect can reverse the incidence-prevalence link.
With a private or collective good trait, behavior is identical, respectively, to a collective
or private bad trait, but the incidence is increasing in prevalence.

This paper introduces the class of hidden passing games with costly vigilance and
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equilibrium passing rates. It arose from thinking of our counterfeiting paper Quercioli
and Smith (2015) as a private bads case in this 2×2 matching games taxonomy with
a costly vigilance choice.1 We know of one prior paper that relates to our collective
bad contagion game: Kremer (1996) introduces choice of number of partners into an
AIDS contagion model. Rather than restrict to partner choice, we are agnostic about
contagion details, and posit costly avoidance actions limiting infection risk. Seeing our
presentation, Greenwood et al. (2019) explored the AIDS contagion in Africa, but with
forward-looking individuals (updating their AIDS status); their ambitious calibrated
analysis is focused on policy analyses. This manuscript inspired Keppo et al. (2023),
which instead finds that a constant elasticity cost function yields a tractable log-linear
modification of the SIR dynamics that incorporate equilibrium avoidance.

To highlight the similarity across cases, we eschew generality, and assume geometric
costs and homogenous agents. Our strategic analysis of these matching games will
exploit how vigilance impacts payoffs and the evolution of the latent unobserved hidden
trait, which feeds back to impact optimal vigilance. We shall focus on bad traits, and
then deduce good traits by corollary in §5. All proofs are so simple they are in text.

2 The Model

People in a unit continuum [0, 1] randomly meet pairwise in continuous time at a
flow rate one. Consider some trait, either bad like counterfeit money or a disease of
cost v if acquired, or valuable, a rare stamp or information scoop worth v. Assume
it is currently held by an assumed known fraction γ ∈ (0, 1) of the population — the
prevalence. If not known with certainty, assume γ is its expectation. The trait might
change hands unnoticed in an encounter. Everyone exerts costly (vigilance) effort
e ∈ [0, 1], which will be the trait discovery probability, conditional on a meeting.

We give a unified treatment of four economic settings in a 2 × 2 taxonomy with
a representative agent: The trait may be bad or good, and private or collective (i.e.
retained when passed on). Counterfeit money is a private bad: undesired, and lost
when passed on. A disease is a collective bad: No one desires it, and retained when
passed on. A rare coin is a private good: desirable, and lost if passed on. Finally,
information scoops are collective good traits: desirable, and retained if passed on.

For the private bad traits examples, our game payoff below merges consecutive
1For our laser focus on four games, we ignore costly counterfeit quality, and general cost functions.
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transactions involving the same possibly fake note with face value v > 0. Since passing
a note leads to immediate seizure if discovered, any seller has an incentive to examine
notes she expects might be examined. Assume seller i expends effort ei scrutinizing
each note she is handed. Then the buyer takes a loss v if he misses that it is fake, and
then the next buyer j discovers it — with independent discovery events. If a fraction
γ ∈ (0, 1) of notes are counterfeit (namely, the counterfeiting rate), then seller i’s
expected loss is

γ(1− ei)ejv (1)

Effort e = 1 chokes off all passing here and in all cases below.
Ponder the case of a hidden private good of bonus value v > 0 — for instance, a

rare coin purchased. Our game merges consecutive transactions for the same possibly
valuable good. To simplify analysis, and preserve a parallel thought experiment for
private bad traits, we assume traders only examine goods before selling, so as not
to lose any hidden gems.2 Vigilance effort ei reduces the chance of trading it away.
Assume a fraction γ ∈ (0, 1) of all stamps or coins are highly valuable. If trader j

misses it and trades it to i who finds it when he sells, then trader i wins a prize v.
This has chance (1 − ej)ei, by independence of the discovery events. Then buyer i’s
expected gain is

γ(1− ej)eiv (2)

Next, consider a hidden collective bad with loss v > 0, like a contagious disease.
Person i may catch the disease from another infected person j when j sneezes, and
neither individual covers his mouth. We assume interactions in ignorance of one’s in-
fection status, with no one purposely infecting others.3 In this way, roles in encounters
are symmetric, and one expends the same effort in any encounter. Assume a preva-
lence γ ∈ (0, 1). Then one catches the disease in the triple event that one is infected
and neither player’s vigilance inhibits its passing — namely, chance (1− ei)(1− ej) in
an encounter of i and j, by independence. Individual i’s expected loss is4

γ(1− ei)(1− ej)v (3)
2Realistically, buying incentives are not to acquire lemons, rather than seeing if one is perchance

buying a gem. Think of the mortgage backed security trading game that led to the Financial Crisis.
3This simplifying assumption is realistic for many diseases when latent and only revealed by tests

until symptoms emerge (and for some diseases, knowingly passing it has been deemed a criminal act).
4If infection confers immunity (SIR), the simple model must assume the infected status is known,

and we ignore meetings with the immune. If past infection does not confer permanent immunity (as
with COVID), then this parable assumes the extreme SIS case where re-infections can occur.
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collective consumption private consumption
“bad” −γ(1− ei)(1− ej)v − C(ei) −γ(1− ei)ejv − C(ei)

(submodular game) (supermodular game)
“good” γeiejv − C(ei) γei(1− ej)v − C(ei)

(supermodular game) (submodular game)

Table 1: Four Quasilinear Vigilance Matching Games. Payoffs of individual i
choosing effort ei in a meeting with another individual j choosing effort ej, where the
stakes of a mistake are v. For private traits, i is a seller for a bad trait, and a buyer
for a good trait. For In the collective trait case, i and j have symmetric roles.

Finally, consider a collective good, like a stock tip, worth v. As with collective
bad traits, the game is symmetric, with people choosing how hard and revealingly to
interact — namely, effort e. An effusive person will pass on and absorb information
more often. In this case, if the prevalence of valuable stock tips is γ, then each acquires
the information scoop from the other with chance γeiej. Individual i’s expected gain
is, by independence:

γeiejv (4)

Toggling between good and bad, or private and collective, the matching game
switches between strategic complements and substitutes — namely, supermodular and
submodular games in Table 1. So optimal vigilance increases in the partner’s effort
for collective good and private bad traits, and falls for collective bad and private
good traits. This strategic distinction has economic importance. For in supermodular
games, the comparative statics impact of a rise in fundamentals v are amplified relative
to an individual optimization. For if v rises, then everyone’s effort rises, and then rises
more given others’ higher efforts (ad infinitum, until it equilibrates). This describes
collective good and private bad traits. Likewise, in submodular games, the compara-
tive statics impact of a rise in fundamentals v is attenuated relative to an individual
optimization. For if v rises, then each individual responds with more effort, and then
responds negatively to the other’s increased effort (ad infinitum, until it equilibrates).
This is the story of collective bad and private good traits.

Assume effort e ∈ [0, 1] costs C(e), a smoothly increasing convex cost function,
with C(0) = 0. In this paper, we seek sharp results on flows and stocks. To this end,
we posit C(e) = cer/r, where r > 2 and c > 0 is the marginal cost of effort at e = 1.
We assume geometric costs for simplicity in our parable, as it allows easy closed form
derivation focused on the economics of this new class of quasilinear games.
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3 Private Bad Traits

3.1 Equilibrium

Everyone acts myopically, as they only cannot impact the future prevalence or other
players’ behavior given the continuum assumption, or impact their future payoffs,
recalling footnote (4). Thus, everyone myopically best responds, and Nash equilibrium
at each moment in time is the appropriate equilibrium concept. In the collective bad
traits case, the simplicity assumes people do not are equally harmed by subsequent
infections. The simplicity of the analysis owes to using static Nash equilibrium at each
time, and ignoring dynamics. We also rule out asymmetric and mixed equilibria.

First consider private bad traits, like counterfeit money. At a meeting, each indi-
vidual i minimizes the losses (1) plus expected infection costs C(ei). Crucially, players
are only impacted by the average population efforts ē of others he meets. So let’s
define the payoff function5

π(e, ē) = −γē(1− e)v − cer/r (5)

The equation πē(e, ē) = 0 defines the best response individual effort e to average
effort ē. Since πēe(e, ē) = γv > 0, higher efforts by others raises the marginal product
of own efforts, so that game is supermodular (see Table 1). For instance, the more
carefully others examine the currency you pass to them, the more scrutiny one wishes
to apply the money one is handed. Further, this supermodularity is greater at higher
prevalence γ. As in Diamond (1982) this can lead to multiple equilibria.

Using the first order condition, γēv = C ′(e) = cer−1 is solved by the same effort e

for all players, and so is the mean e = ē. So there are no mixed strategy equilibria.
The second order condition holds in our paper, when r > 1, for then costs are strictly
convex and benefits are linear in effort e. The equilibrium first order condition becomes

γē(γ)v = cē(γ)r−1 ⇔ γv = cē(γ)r−2 ⇔ ē(γ) = (γv/c)
1

r−2 (6)

A final possibility is a corner solution at e = 0 or e = 1. Such does not exist when
r > 2 and γv ≤ c, for then γēv = cer−1 is solvable with ēr−2 = γ/c ≤ 1. On the other
hand, with not too convex costs, 1 < r < 2, there is a corner solution e = 1 for small

5This is a flow payoff. To be precise, imagine a time interval [t, t + dt) where efforts (e, ē) are
fixed. Then the payoffs in that interval are π(e, ē)dt. The mathematics only makes sense if efforts lie
in [0, 1], but we only γ > 0 because the assumed unit meeting flow cannot be identified in this model.
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γ > 0. Assuming strictly convex marginal costs with r > 2 precludes this possibility,
and allows us to simply consider the interior solution: ē(γ) < 1 when γv < c.

Altogether, there is a unique optimum of π(e, ē) in e, and thus everyone chooses
effort e = ē. This means our representative agent model yields a unique prediction:

Proposition 1 Assume a private bad and strictly convex marginal costs (r > 2).
There exists a unique Nash equilibrium, and it is symmetric and in pure strategies.
The common vigilance effort ē(γ) rises in the counterfeiting rate γ.

Proof: Of course, we have an explicit formula for vigilance effort, but we can log-
differentiate the equilibrium FOC (6) to deduce that effort rises in prevalence:

ē′(γ) =
ē(γ)

(r − 2)γ
> 0 (7)

Intuitively, people individually wish to increase effort with greater prevalence, and
is amplified — due to the strategic complements — by the greater effort by others.

We next link the flow of passed money rates to the stock of counterfeit money. We
consider in §3.2 and §3.3 two scenarios — with fixed and endogenous prevalence.

3.2 The Market Response to Infections

For our prevalence analogue, assume a fixed counterfeiting rate γ ∈ (0, 1). Dividing (1)
by the note value v, the equilibrium flow of passed money (newly discovered counterfeit
notes or “incidence) is:

I(γ) = γē(γ)[1− ē(γ)] (8)

This is the chance γ that a note is counterfeit, and this is missed by the last holder, and
then it is noticed (the last product). This product vanishes with zero vigilance effort,
for then no one ever finds the bad. Equally well, it vanishes with perfect screening, as
the fake note is never passed on. When prevalence γ rises to c/v in (6), the equilibrium
calls for effort ē = 1, choking off new passed money. So the peak counterfeiting rate
corresponds to a minimum passed money. We now explore the generality of this insight.

Passed money requires inattention by one buyer, and diligence by the next (0 <

ē(γ) < 1). Now, ē(γ)[1− ē(γ)] rises in ē(γ) < 1/2, and by Proposition 1, the vigilance
effort obeys ē′(γ) > 0, if r > 2. Easily, passed money (8) rises too, or I ′(γ) > 0. We
focus on the surprising case when the passed rate falls as the counterfeiting rate γ

rises, due to the rising vigilance effort, amplified by the supermodular game effect.
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Figure 1: Private Bad Traits. Vigilance effort rises in the stock γ (Proposition 1).
The plot assumes cost elasticity r = 2.5 and parameter c = 0.1. With a constant
screening, passed money (8) would rise in γ. But with effort rising in response to
greater γ, the peak passed rate is at γ ≈ 0.08, as Proposition 2 asserts.

Proposition 2 Assume a private bad, and strictly convex marginal costs r > 2. Passed
money falls when the counterfeiting rate γ rises if γ ∈ (0, c] is high enough.

Proof: Differentiate incidence (8), substituting (6) into (7), to get:

I ′(γ) = ē(γ)(1− ē(γ)) + γ(1− 2ē(γ))ē′(γ) = ē(γ)(1− ē(γ)) +
(1− 2ē(γ))ē(γ)

r − 2
(9)

Simplifying, passed money falls in the counterfeiting rate, or I ′(γ) < 0, iff ē(γ) >

1− 1/r. Given ē(γ) = (γv/c)
1

r−2 , this holds iff γv > c(1− 1/r)r−2. The right side rises
to c as r ↓ 2, and so for every r > 2, there is ε > 0 with I ′(γ) < 0 for γv > (1− ε)c. □

Now let’s consider implications of this result for policy changes. The government
usually wishes to reduce counterfeiting by encouraging vigilance effort. For instance, a
more unique currency feel lessens the cost parameter c. This raises the vigilance effort
ē(γ) in (6) only if ē < 1/2. So Proposition 2 says that infections move in opposition
to the counterfeiting rate γ when the vigilance effort exceeds 1− 1/r > 1/2 — which
eventually holds for large γ, by the logic of the proof of Proposition 2. In this case,
policies to encourage vigilance effort are counterproductive.

Large counterfeiting rates that lead to this possibility are not without precedent.
For instance, during the American Revolution, the British so successfully counterfeited
American money that the Continental currency soon became worthless — hence the
saying “Not worth a Continental.” The Secret Service reports that later on, during
the Civil War, one-third to one-half of the circulating currency was counterfeit. Some
elite goods have a large share of counterfeit goods passed as the real deal.
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3.3 The Prevalence Dynamics

We now allow more realistically that the counterfeiting rate γ is an equilibrium object.
For one might wonder if it is meaningful to premise Proposition 2 on its changes.
Assume a fixed inflow δ > 0 of new counterfeits in continuous time [0,∞). For instance,
this may be new counterfeits or forged art entering the economy. Since infections are
exits from the prevalence pool, dynamics are by (8):

γ̇ = δ − I(γ) = δ − γē(γ)[1− ē(γ)] (10)

Since ē ≡ (γv/c)
1

r−2 by (6), the steady-state level of the bad trait obeys γ̇ = 0, and
thus

ēr−1(1− ē) = δv/c (11)

The peak is ē∗ ∈ (ē1, ē2). Then ˙̄e > 0 on (0, ē1) and ˙̄e < 0 on (ē1, ē2) and ˙̄e > 0 on
(ē2,∞). Thus, ē1 is the stable root. Ignore e > ē2, where counterfeiting rate spirals
out of control. If e < ē∗, or the counterfeiting rate γ is below cē∗, then incidence
I(γ) and the counterfeiting rate γ both rise or both fall. But suppose a large cache
of new fake money enters circulation and γ jumps to (ē∗, ē2). Then initially incidence
I(γ) rises as the counterfeiting rate γ falls. Thus, Proposition 2’s finding — more
passed counterfeits observed and yet a lower counterfeiting rate can occur — is a
robust insight for equilibrium models with a fixed inflow of new counterfeits, and an
endogenous counterfeiting rate.

4 Collective Bad Traits

4.1 Equilibrium

We now consider collective bad traits, like a contagion, with payoffs (3). At each mo-
ment, faced with prevalence γ and others’ mean effort ē(γ), someone who is susceptible
minimizes expected infection costs and vigilance costs:

γ(1− ē(γ))(1− e)v + cer/r

with respect to vigilance effort e. This yields the equilibrium FOC of the contagion
game:

γ(1− ē(γ))v = cē(γ)r−1 (12)
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Hence, ē(0) = 0, given r > 1. As in the private bad traits case in §3.1, the second
order condition holds given strict cost convexity r > 1, since gains are linear in effort.

Proposition 3 Assume a collective bad and strictly convex costs (r > 1). There exists
a unique Nash equilibrium, and it is symmetric and in pure strategies. The vigilance
effort ē(γ) rises in prevalence γ.

Proof: We can no longer explicitly solve the equilibrium FOC, as we did in §3.1.
Instead, differentiating (12) in γ yields (1 − ē(γ))v − ē′(γ)γv = c(r − 1)ē(γ)r−2ē′(γ).
Simplify this derivative, by substituting back from (12):

ē′(γ) =
(1− ē(γ))v

γv + c(r − 1)ē(γ)r−2
=

ē(γ)(1− ē(γ))

γ[ē(γ) + (r − 1)(1− ē(γ))]
> 0 (13)

Notably, the convexity threshold (r > 1) for an increasing equilibrium vigilance
effort is less with collective bad traots here than with private bad traits (r > 2) in
Proposition 1. To understand why vigilance more readily rises in prevalence in a
collective good traits setting, note that strategic forces for monotonicity now reinforce
individual incentives. For with collective bad traits, actions are strategic substitutes:
The more carefully one protects against disease transmission, the more one lowers
the marginal product of others’ efforts. In other words, greater vigilance effort lowers
the marginal product of others’ actions — it is a submodular game (see Table 1). If
perchance others’ efforts fell as prevalence rose, then this would amplify the individual
incentive for greater effort.

4.2 The Market Response to Infections and Disease Dynamics

Fix the prevalence γ, namely, the chance that someone is contagious. New infections
happen when a contagious and a susceptible person meet (chance γ(1 − γ)), and the
disease passes. If we assume that efforts do not reflect infection status (since symptoms
have not yet been obvious), then by (3), the equilibrium flow of new infections is:

I(γ) = γ(1− γ)(1− ē(γ))2 (14)

The key strategic difference with (8) is the effort interaction.

Proposition 4 Assume a collective bad, and strictly convex costs r > 1. Incidence
rises iff prevalence falls, for all γ > 1/2.
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Figure 2: Collective Bad Traits. Vigilance effort rises in prevalence γ (Lemma 3).
The parameters are as in Figure 1. With a constant vigilance effort, new infections
will peak at γ = 0.5, when γ(1− γ) is maximized. But in this strategic model, effort
rises in prevalence γ, and accordingly incidence peaks at a lower γ, here just over 0.1.
This is well below the threshold guaranteed by Proposition 4.

Proof: Substituting from (13), the derivative of new infections (14) equals

I ′(γ) = (1− 2γ)(1− ē(γ))2 − 2γ(1− γ)(1− ē(γ))ē′(γ)

= (1− ē(γ))2
[
1− 2γ − 2(1− γ)ē(γ)

ē(γ) + (r − 1)(1− ē(γ))

]
As the subtracted last term is positive if r > 1, we have I ′(γ) < 0 when γ > 1/2. □

Assume finally an exit rate (deaths or recovery) δ > 0 of those infected with the
contagious trait. Modifying the standard disease dynamics using (14), we find that

γ̇ = I(γ)− δγ = [1− ē(γ)]2γ(1− γ)− δγ =
[
1− (γ/c)

1
r−2

]2
γ(1− γ)− δγ (15)

Assume 0 < δ < 1 and r > 2. Then the left side of (15) is strictly falling from 1 to 0
on (0,min(1, c)), and so (15) has a unique root γ̄. So if γ > γ̄, then γ̇ < 0 — namely,
prevalence falls. By Proposition 4, incidence rises for γ > 1/2. Thus, Proposition 4 is
a robust insight for equilibrium models when the prevalence is endogenous.

5 Private and Collective Good Traits

First consider private good traits. Individual i maximizes his expected gains (2) in
effort ei, given others’ expected effort ē, less his vigilance costs. Thus, his effort e

maximizes
γ(1− ē)ev − cer/r
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Notably, the first order condition γ(1 − ē)v = cer−1, and thus optimal behavior, is
identical to the case of collective bad traits. Table 1 explains why, since individual i’s
payoffs in these two submodular games only differ by an additive term independent
of his own effort ei. In other words, the unrelated economic games — collective bad
traits and private good traits — share the equilibrium effort solving (12), and so have
the same predictions Proposition 3: Namely, effort is always rising in prevalence.

Next, the discovery flow of the diamonds in the rough reflects their prevalence γ,
and the equilibrium passage chance. By (2), the equilibrium incidence is now:

I(γ) = γē(γ)(1− ē(γ)) (16)

Incidence always rise in prevalence γ, unlike in Proposition 4 with collective bad traits.
Indeed, substituting from (13), new infections (5) have slope:

I ′(γ) =
ē(γ)(1− ē(γ))2r

ē(γ) + (r − 1)(1− ē(γ))
> 0

Just as in §3.3, the prevalence γ of good traits can be an equilibrium object. Given
an inflow δ > 0 of new diamonds in the rough in [0,∞), we solve I(γ) = δ, as in (6).

Finally, consider collective good traits, like information scoops. In the matching
game, individual i maximizes his payoffs (4) in effort e, fixing others’ expected efforts ē:

γeēv − cer/r

Here too, the first order condition, γēv = cer−1, implies the identical equilibrium effort
as (6), for the diagonally opposite private bad traits case. Namely, ē(γ) = (γv/c)

1
r−2 .

This makes sense from Table 1, since the payoffs of individual i in these supermodular
game only differ from an additive independent of his effort ei.

Finally, inspired by (2), the equilibrium incidence I(γ) = γē(γ)ē(γ) has slope

I ′(γ) =
rē(γ)2

r − 2
> 0

after substituting from the formula for ē′(γ) in (7). So unlike Proposition 2, the
incidence of information scoops is increasing in prevalence. So while the equilibrium
efforts are the same, the prevalence dynamics are not.
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6 Conclusion

Inspired by the matching paper of Mortensen (1982), we have written this as a simple
parable. We introduce a class of passing games of hidden traits in random matching
models, in which incentives reflect estimated prevalence rates of a trait — like a coun-
terfeit note, a contagious disease, a prized stamp, or a valuable information nugget.
These can be private or collective traits, as well as good or bad. Ours is also a new
2 × 2 class of games that toggles between supermodular and submodular, as well as
between positive and negative externalities.

In all cases, static Nash equilibrium correctly captures fully rational dynamic play,
given a continuum of players. It is not unreasonable to infer unobserved stocks from
flows; with constant behavior, this would be justified. But equilibrium efforts reflect
stocks, and skew flows. For private and collective bad traits, incidence flows may
fall when stocks rise, or conversely. This respectively reflects the supermodularity
and submodularity. But for private and collective good traits, higher incidence does
correctly signal higher prevalence.

A referee has suggested that community vigilance norms are an intriguing research
avenue, since they could help others in public trait passing games. Notably, however,
if done en masse, would impact others in the private trait passing games, by impacting
prevalences: So all passing games are public. If only we all checked our money more
carefully, the counterfeiting rate would fall. This no doubt underlies efforts by the
Secret Service to ensure we check our money.
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