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Abstract

We introduce a tractable model of sequential search or choice among distinct
pre-ordered options for web search or informed search. Payoffs are the sum of
a random known factor and a random hidden factor, learned after inspection.
In this nonstationary search model, prior options are sometimes recalled. To
capture search engines, we assume Gaussian factors, where noise shifts from
the hidden to the known factor as web search accuracy rises. We prove:
1. Search lasts longer with more payoff dispersion, and thus with more disperse
hidden factors rises. But dispersion of known factors reduces search duration.
2. The search stopping chance rises over time with log-concave factor densities
3. The chance of recalling options rises, and older ones are recalled more often
4. Search lasts longer with more options, since searchers grow more ambitious
5. The marginal value of web search accuracy is higher eventually than initially
6. With a thin factor density tail, the limit recall chance is boundedly positive

Item 1 solves a long open search theory puzzle. Items 2–4 are new results
for ordered search. Item 5 uncovers a possible natural monopoly in web search.
By Item 6, stationary search might not approximate search with many options.
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1 Introduction

Most search now occurs in mediated web search environments, through smartly sorted
lists online, like Netflix movie quests, Google or Amazon searches, or even using radio
station presets. With generative AI, assisted search will surely grow in importance.
Ordered search fundamentally differs from stationary search — for quitting and re-
calling both play key roles. In the 100,000 Google searches per second, or three
trillion per year, rarely does one choose the most recently-searched web page, and
many searches are abandoned. Neither stopping, quitting, nor recall occur in station-
ary search models. Web search aside, search rarely transpires in the zero information
vacuum of random stationary search. Assuming ex ante identical options is almost
always unjustified. For search is invariably at least partially informed — people know
which stores sell higher quality; firms hiring workers can easily observe their college
of origin; and those seeking romantic partners quickly perceive looks or location.

To analyze this richer world, we introduce and solve a simple new search model
with finitely many ex ante heterogeneous risky options. In our twist, each payoff is
the sum of a random known and hidden factor. A search engine or prior knowledge
sorts by known factors. A searcher, whom we call Sam, sees all known factors, but
only learns the hidden factor after paying a look-see cost. Sam eventually takes one
option or quits searching. He optimally explores options in order of known factors
(maybe inferred from Google), proceeding until either quitting, recalling a prior op-
tion, or exercising the current one. For any given set of known factors, our model is
Weitzman’s 1979 “Pandora’s Box” dynamic programming problem. Think of Google’s
Page Rank algorithm as finding known factors, creating a random Weitzman prob-
lem. Weitzman found no comparative statics except for riskier options, but we derive
many predictions for our random two factor version model when both factors have
log-concave distributions — an assumption met by common continuous distributions.

In stationary wage search, the value function is first horizontal, and then the 45o

diagonal. So its slope is the acceptance chance — zero then one. In our nonstationary
world, the value function is increasing and convex in the fallback prize, and the slope
has richer economic meaning: the chance of eventually taking the option (Figure 2).

Our paper fully characterizes search behavior over time, and as model parameters
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vary. First, pre-search information and optimal recall go hand–in-hand, and we think
ours is the first general theory characterizing recall rates.1 Our model is designed
for estimation, predicting many aspects of Sam’s evolving behavior over time. He is
initially forward-looking, torn just between accepting the current option and passing.
The best fallback option weakly improves over time, while future prospects dim as
the best options are exhausted. At some point, passing is dominated, and search
ends. Log-concavity ensures that quitting, recalling, and choosing the current option
intensify over time: Sam grows more willing to stop and choose the current option, or
recall an earlier one, or quit searching (Theorem 1). Further, when Sam does recall,
he reaches back to the earlier options more often than later ones (Theorem 2).

Second, we turn to an open and fundamental question about standard stationary
search: What stochastic changes raise search duration (Mortensen, 1987)? This is
subtle because Sam optimally searches more aggressively with a richer set of options.
So if the prizes stochastically improve, the reservation threshold rises, but is offset by
more weight in all upper tails. So search duration rises only if the “substitution effect”
of a higher reservation prize dominates the direct effect of better options. Does it?

We show that the dispersion stochastic order — namely, if the gap between any two
percentiles increases everywhere — generally resolves this tradeoff.2 Namely, duration
is higher with a more dispersed prize distribution for the undiscounted stationary
search model (Theorem 3).3 Intuitively, the substitution effect of more aggressive
search swamps the direct effect of more high prizes. The dispersion order notably
differs from a mean-preserving spread that the search literature has long focused on.4

This result is so significant we offer two arguments, one with calculus and one without.
Now consider how the dispersion insight plays out in our two factor search model.

First, search duration rises when the hidden factor grows more disperse (Theorem 4)
— the substitution effect of more ambitious search swamps the direct effect of better
prizes. The logic is more subtle in this nonstationary setting, where the rank-ordered

1We name our searcher Sam for Karlin (1962), who solved the first sequential search problem: It
was nonstationary due to a finite horizon. His options were identical, and disallowed recall. Sam is
also an acronym for “search and matching”, the main topical playground for these methods.

2The dispersion order usefully dovetails with log-concavity: For truncating a log-concave distri-
butions makes it less disperse, and the sum of log-concave r.v.s is more dispersed than either.

3A trickier analysis is in McCall’s (1970) discounted wage search model (see here for details).
4Dispersion is empirically measurable, and typical distributions are indexed by it (see Table 1).
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options deteriorate faster with greater dispersion of the known factor. Sam is less
willing to continue search with a more disperse known factor (Theorem 5).

Third, we offer a novel theory of variable accuracy web search engines. For this,
we restrict to Gaussian factor payoffs, so that rising accuracy transfers variance from
the hidden to the known factor. The search substitution effect is strong: as accuracy
rises from zero, Sam relaxes his search intensity so quickly that his search outcome
actually worsens (Theorem 6): A fortiori, a poor search engine is worse than none at
all. We also discover that for larger quit options, as accuracy rises, the chance that
Sam chooses to search falls, and the probability he quits searching rises (Theorem 7).

A more accurate search engine is more informative in Blackwell’s sense, an ex-
tension of the nonconcavity of the value of information5 now plays an economically
important role. Theorem 8 asserts that the marginal value of accuracy is increasing
for low search costs, but this result extends here all the way to perfect accuracy.
The rising marginal value of information means that search engines may be a natural
monopoly — a now topical issue. Also, the marginal gains to accuracy or lower search
costs are larger with more options. The vast growth of the web has propelled the social
gains to better search engines (Corollary 2), strengthening the natural monopoly.

Fourth, we ask how search changes in the number of options. Web matching
markets, like match.com, boast of large mating pools. While higher quality mates
are presented first, Sam searches even longer with more options, by Theorem 9. For
Sam’s search standards rise faster than do the options stochastically improve. Once
more, the substitution effect swamps the direct effect: For with log-concavity, gaps
between order statistics of known factors shrink with more options, spurring search.

We finally let the number of options explode. The benchmark stationary search
model (McCall, 1970) is justified in a finite world only if it well-approximates search
with many options — an arbitrarily long Google search list here. We question this
premise. For while the conditional chance of recalling a prior option falls in the
number of options, it only vanishes in the limit if the known factor distribution has a
“thin tail” (Theorem 10). Otherwise, the recall chance never vanishes since top order
statistics of known factors have boundedly positive gaps. So the stationary search
model fails to approximate search without a thin tail, as the chance Sam recalls a

5Found by Radner and Stiglitz (1984), a clear theoretical model is in Chade and Schlee (2002).
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prior option does not vanish with many options. For example, top order statistics of
the exponential distribution have constant gaps, irrespective of the number of options.

Since Google search lists, consumer preferences, and information are typically
unobservable to econometricians, our theory must overcome selection effects: Arriving
at a later stage offers more damning evidence of Sam’s already-explored options: And
if prior known factors are weaker, so too is the next one, and thus it is less likely that
search stops. The selection intuitions run counter to the conclusion of Theorems 1
and 2 that Sam’s stopping and quitting grows over time. We show that log-concavity
prevents selection from swamping the direct effect of falling known factors.

Literature. We add to the pure theory of sequential search. The first model
of nonstationary web search and recall with different options is Weitzman’s 1979
“Pandora’s Box” model. He posited finitely many known sampling distributions with
look-see costs; he proved an optimal index rule policy generalizing reservation wages.
While elegant, Weitzman’s model offered no uniform behavioral predictions, since the
box payoff distributions were completely arbitrary.6 Our model with random additive
known and hidden factors yields a tractable large random class of Weitzman models.

Our model of search with learning7 should also prove valuable across applied fields:

A. Macro/Labor Economics. McCall (1970) is the workhorse random search
model, and yet despite assuming that all jobs are identical, it lacks predictions for
distributional changes. Mortensen (1987) showed that job hunters’ welfare rises with
a mean-preserving spread of wages, but noted an ambiguous impact on unemployment
duration. We find that unemployment increases in dispersion. Even when job seekers
have prior job information, search duration increases as the prize distribution grows
more dispersed, conditional on job characteristics (namely, our hidden factor). Also,
we predict that those who have searched longer are more likely to stop.

A recent macro research question asks how search duration reacts to information
technology improvements. Using CPS data, Kuhn and Skuterud (2004) find that web
job search does not increase the job-finding rate, and Martellini and Menzio (2020)
likewise finds a stable unemployment rate. They show that a more efficient match-

6Olszewski and Weber (2015) find a more general index rule; Doval (2018) lets Sam freely exercise
unexplored options. Sam can explore old options or find new ones in Fershtman and Pavan (2022).

7Other work on optimal sequential search with learning include Rosenfield and Shapiro (1981);
Ke and Villas-Boas (2019); Gossner et al. (2021); Nocke and Rey (2021).
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ing function does not reduce the unemployment rate in the Diamond-Mortensen-
Pissarides model. We model the nonstationary search process explicitly and so pro-
vide a clear microfoundation for their matching function. When firms receive more
applications, and so have more options, we show that search duration rises.

B. Industrial Organization. Choi et al. (2018) use our two-factor search
model to study price competition in an equilibrium application of ordered search
models, where sellers post prices and buyers search. They reformulate price compe-
tition here as price competition in classic discrete choice models (Perloff and Salop,
1985). Our analysis fully characterizes the search, quitting and recall behavior.

C. Marketing. The workhorse consumer search model (e.g., Wolinsky, 1986;
Anderson and Renault, 1999) assumes consumers who randomly and sequentially
explore ex-ante identical goods. Recent work uses Weitzman’s ordered search model
(Armstrong, 2017). For instance, Kim et al. (2010) and Moraga-González et al.
(2023) estimate it using search behavior data. With our model, these papers could
analytically characterize search behavior, like search duration and recall.

D. Information Technology. Google search uses the PageRank Algorithm,
and its PageRank score is like a known factor. A formal link is an open question.

The “click-through rate” is our option exploration decision, for which we make
comparative static predictions. A nascent literature predicts online search behavior
using statistical and machine learning techniques, e.g., (Zhou et al., 2018). In a
similar spirit, we assume the modeler uses the searcher’s past actions to predict the
searcher’s next action (continue, recall, strike or quit). While this literature typically
assumes the searcher follows an exogenous decision rule, our searcher is maximizing.

After laying out the search model in §2, we derive Sam’s optimal behavior in §3,
and relate the value function slope to the eventual exercise chance. In §4, an outside
observer predicts Sam’s rising intensity of striking, recall, and quitting search. In §5,
we show that prize dispersion lifts search duration, and explain how dispersion impacts
our two factor search model. In §6, we explore variable accuracy search engines, and
find an increasing returns to accuracy. In §7, we vary the number of options, finding
e.g. that recall need not vanish with a vast number of options: Stationary search is
thus a poor benchmark. An appendix contains all but the most instructive proofs.
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2 A Two Factor Model of Search

A. General Model. A decision maker Sam sequentially searches through N <∞
inside options. Each has random payoff X + Z, where X is the known factor and Z
the hidden factor. Their respective densities g and h are log-concave, and thus their
cdf’s G and H are log-concave too. Each distribution has full support on R, or an
interval in R (Table 1). There is also a fixed quit payoff u ∈ R ∪ {−∞}.8

The modeler faces prospective uncertainty: The known and hidden factors X and
Z are independent random variables. On the other hand, Sam first learns all N
realized known factors X = x before search. He cares about the ranked options
(x ,Z), with random payoffs x +Z, for varying known x .

Sam faces a sequential search exercise, and seeks to maximize his expected payoff.
While searching at stages n = 0, 1, . . . , N , Sam may explore any inside option: To
learn its realized hidden factor Z = z, he pays a “look-see” or an expected search
cost c > 0 . This captures the mental or time toll of web search or list exploration.
He may then either (i) strike, by exercising the current option, consuming its payoff
and stopping search; or (ii) pass, by exploring a new inside option next stage; or (iii)
recall, by exercising a previously passed option, or (iv) quit, by exercising the outside
option. If Sam does not quit at n = 0, he participates and explores an inside option.

If Sam exercises an option with payoff w at stage n ∈ {0, 1, . . . , N}, his final payoff
is the value of the exercised option, less total search costs, or w−nc. Stationary search
is the special case with a constant known factor X (degenerate, with point mass G).

With a constant known factor X ≡ x > u, our model reduces to standard finite
horizon search: Sam employs a constant cutoff, and recalls if he hits the last period.
With a degenerate hidden factor Z ≡ 0, Sam perfectly sorts options, taking the first.

We now give web search and partially informed search backstories for this model.

B. Web Search Special Case. The Gaussian distribution W ∼ N(0, 1) is an
especially useful log-concave distribution that captures search engines. For since a
Gaussian r.v. is stable,9 given a search query, the search engine parses Sam’s payoff

8To be clear, this means that the ex post net economic value of an inside option is x + z − u.
9A r.v. X is stable if, for any iid copies X1 and X2, we have aX1+bX2 equals cX+d in distribution,

∀a, b > 0 and some c > 0 and d ∈ R. Gaussian is the only finite variance stable distribution (Nolan,
2009), and so the only stable log-concave distribution (they have finite variance).
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from each option into W ≡ X + Z — where the known factor X is knowable and
the hidden factor Z is unresolvable noise. So barring an omniscient search engine,
E[Z2] > 0. The search engine lists web sites in descending order of known factors.

Write X ≡ αX and Z ≡
√
1− α2Z, where X and Z are each independent and

N(0, 1), by prospective independence. Then α is a suitable accuracy measure, for it
transfers weight from the hidden to the known factor, as the search engine parses the
option payoff W into

W = αX +
√
1− α2Z. (1)

C. Partially Informed Search Backstory. Our two-factor search model also
captures prior information over options one faces — e.g. firms first view resumes of
job applicants. Assume that Sam is endowed with an unbiased signal X of W from a
quick synopsis, and a costly look-see resolves all remaining uncertainty Z= W −X .

Our Gaussian accuracy model precisely captures this informed search story too.
For assume inside options have Gaussian payoffs W ∼ N(0, 1). Before searching,
Sam observes a signal X ∼ N(αw, 1 − α2) for each option with true value w —
say, a job advertisement. Upon seeing X = x, Sam updates his posterior beliefs to
W ∼ N(αx, 1 − α2).10 Since the noise in his estimate Z = (W − αx)/

√
1− α2 is

also N(0, 1), and is independent of X, the formula (1) arises with X,Z ∼ N(0, 1).
Notably, greater accuracy exactly corresponds to a more precise Gaussian signal.

3 Optimal Stopping Characterization

This section explores Sam’s search problem for realized known factors: x1≥· · ·≥xN .

A. Optimal Stopping. Consider two extreme cases. With a constant known
factor, Sam samples the same distribution at most N times, recalling only at the last
period.11 With a degenerate hidden factor Z ≡ 0, Sam stops at the first option, and so
never recalls. With non-degenerate random known and hidden factors, Sam confronts
a nontrivial nonstationary search problem, and recalls with positive probability.

By Lemma 1 below, Sam explores options in the rank order of known factors.
10Since X/α has mean w and precision α2/(1−α2), the posterior precision of W is 1+α2/(1−α2) =

1/(1− α2) and its posterior mean is therefore [(x/α)α2/(1− α2)]/[1 + α2/(1− α2)] = αx.
11The cutoff is the Weitzman index of each option (derived in (2)). His index formula yields the

reservation wage formula in McCall’s infinite horizon wage search model, embellished with recall.
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Let Fn be the distribution of the random payoff Wn = xn + Zn for the option with
known factor Xn = xn. Its realized payoff is wn= xn + zn. Since xn≥ xn+1, the payoff
cdfs Fn(w)=H(w− xn) fall in n in the sense of first-order stochastic dominance. The
reservation prize w̄n for entering stage n obeys Weitzman’s indifference equation:

w̄n = −c+ w̄nFn(w̄n) +
∫∞
w̄n
wdFn(w). (2)

Log-concavity of H ensures finite moments: w̄n < ∞ for all n. Integration by parts
yields c =

∫∞
w̄n

1−Fn(z)dz, as is standard in search theory. Because Fn stochastically
falls in n, so too do reservation prizes, namely, (⋆): w̄1 ≥ · · · ≥ w̄N .

Given realized inside option payoffs w1, w2, . . . , wN , the dynamic programming
state variable for stages n = 1, . . . , N are fallback payoffs Ωn = max(u,w1, . . . , wn)

with Ω0 = u. By Weitzman (1979), Sam explores options in order of known factors.

Lemma 1 (Optimal Search) Sam explores new options in the falling order (⋆) of
reservation prizes. In stage n, he stops searching when Ωn ≥ w̄n+1. Specifically, he
strikes if wn≥max{w̄n+1,Ωn−1}, and recalls any fallback if Ωn−1 ≥ max{w̄n+1, wn}.

Intuitively, Sam strikes if the present option beats the past and the future, or
wn ≥ max(w̄n+1,Ωn−1). He quits / recalls if the past beats the present and future, or
Ωn−1≥max(w̄n+1, wn). He passes to the next option if the future beats the past and
present, or w̄n+1>Ωn. This triple choice is new in nonstationary sequential search.

Let the search optionality value ζ(c) be the reservation wage in stationary wage
search with a zero known factor. As is well-known, this solves the discrete first order
condition (FOC):

c =
∫∞
ζ(c)

[1−H(z)]dz. (3)

In our two factor model, ζ(c) captures upside benefits of the random hidden factor Z.

Lemma 2 (Reservation Prizes) In stage n−1, Sam accepts w ≥ w̄n = xn + ζ(c).

This expression follows from integrating the tail integral (2) by parts, using (3):

c =
∫∞
w̄n
[1− Fn(w)]dw =

∫∞
w̄n
[1−H(w − xn)]dw =

∫∞
w̄n−xn

[1−H(z)]dz.
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Figure 1: The Phase Transition in Search. We plot Sam’s optimal behavior given
the known and idiosyncratic factors, x and z. Until a phase transition, w̄n+1 > Ωn−1,
and Sam’s choice is always between strike and pass (left). We then transition to
Ωn−1 ≥ w̄n+1, whereupon Sam’s decision margin shifts to strike or recall / quit (right).

The fallback Ωn rises in n, while the reservation value w̄n falls in n, by Lemma 1.
Sam’s future is initially brighter than his past, w̄n+1 ≥ Ωn−1, and he either passes or
strikes. But in Figure 1, the xn + zn = w̄n+1 line shifts left each stage; there comes a
recall moment, after which Ωn−1 ≥ w̄n+1, when Sam strikes or quits/recalls.

Lemma 3 (Recall Moment) Sam’s choice shifts from strike or pass, to strike or
quit/recall, ending search. He stops sooner for a higher search cost c or quit payoff u.

Proof: As Sam either strikes or passes in stage n when Ωn−1 < xn+1 + ζ(c), the recall
moment is at least n with probability P (maxj≤n−1{u, xj + Zj} < xn+1 + ζ(c)). This
chance falls in c and u, and so the transition time falls stochastically in c and u. □

B. Value Functions. The value function Vn(Ωn) at stage n is the maximum
payoff when the best option so far is Ωn. Clearly, VN(ΩN) = ΩN . For any n < N ,
backward induction yields value functions Vn−1, . . . , V1 via the Bellman equation:

Vn(Ωn) = max
{
Ωn,−c+ Vn+1(Ωn)Fn+1(Ωn) +

∫∞
Ωn
Vn+1(z)dFn+1(z)

}
. (4)

Sam optimally stops at stage n seeing only the next known factor xn+1; this is
the dynamic programming one-stage look-ahead property for optimal search. For the
reservation prize w̄n+1 depends only on Fn+1 in (2).
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Figure 2: The Value Function Slope is the Eventual Exercise Chance. To
depict Lemma 4, we schematically plot a value Vn and its slope in the fallback Ωn =
max(w1, . . . , wn). Sam immediately exercises a prize w ≥ w̄n+1, and recalls Ωn−1 if
n ≥ 2 iff Ωn−1=Ωn∈ [w̄n+1, w̄n). So Vn is constant on (−∞, u), then increasing and
strictly convex on [u, w̄n+1), and finally on the diagonal — and its slope is first 0,
then positive and increasing, and eventually one (at right). That the Bellman value
slope is the eventual exercise chance is a defining feature of this search model.

The reservation wage is the continuation value in stationary search. But here
Sam’s reservation prize exceeds his continuation value: w̄n+1 > Vn(Ωn) for Ωn < w̄n+1,
because the known factors xn fall in n. As his fallback Ωn improves, Sam’s value Vn
increases on (u, w̄n+1), as Figure 2 depicts.

Lemma 4 (Value Slope) Vn(Ωn) is convex in Ωn in stages n = 1, . . . , N , and
V ′
n(Ωn) exists (w̄n+1, w̄n), and is Sam’s chance of eventually exercising the fallback

Ωn. As c rises, the slope V ′
n(Ω) weakly rises, as does the eventual exercise chance.

The stationary search value function is flat until the reservation prize, and then
is the 45o line — so the slope is the eventual (and in fact immediate) acceptance
chance. The rising marginal value here reflects the rising chance of exercising the
fallback option (but here only by recall). This slope interpretation holds in the last
period here, since VN is just the 45o line. Inductively, assume Sam eventually exercises
the fallback option Ωn at stage n + 1 with chance V ′

n+1(Ωn). Differentiating the
Bellman equation (4) for fallbacks Ωn < w̄n+1 yields V ′

n(Ωn) = Fn+1(Ωn)V
′
n+1(Ωn).

By Lemma 1, at stage n, Sam eventually exercises the fallback option Ωn if it is the
best in all stages k≥n. By independence of hidden factors across stages,
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P (Ωn best in stages k≥n)=P (Ωn best in stage n+ 1)P (Ωn best in stages k≥n+ 1).

Given this equality, and V ′
N ≡ 1, the probabilistic meaning of V ′

n follows by induction.

4 How Does Search Change Over Time?

We now see how search monotonically change over time. We characterize the respec-
tive stage n stopping, quitting, recalling, and exercising chances — namely, Sn,Qn,
Rn, and En — for a modeler unable to see the known factors. Then Sn=Qn+En, since
Sam either quits or exercises an inside option after stopping. In a stationary search
model, behavior is constant over time, so that Qn=Rn=0, Sn=En is invariant to n.

A. Search Survival Chances. We first develop a simple probabilistic building
block to reflect the modeler’s thinking in this nonstationary world. Assume two inside
options A and B. Say that A delays B if Sam optimally explores A and then B. A
random option (X ,Z) delays one with known factor x̂ if (X ,Z) has a reservation
prize above x̂ , but a realized prize below x̂ + ζ(c). This has delay chance equal to

δ(x̂ , c) ≡ P ({X > x̂ } ∩ {X + Z < x̂ + ζ(c)}) =
∫∞

x
H (x̂ + ζ(c)− x) g(x)dx. (5)

The participation chance σ1 is Sam’s chance of starting search. Obviously, σ1 = 1

given a quit payoff u = −∞, but otherwise, it is nontrivial. More generally, the
n-th survival chance σn is the chance that Sam’s search lasts at least n stages —
unconditional on known factors. Easily, σ0=1>0=σN+1. Then σn is the chance that

Sam is willing to explore the option (xn,Zn), i.e., xn + ζ(c) > u (6a)

n− 1 options (X ′,Z ′) delay option n, i.e., X ′ + ζ(c) > xn + ζ(c) > X ′ + Z ′ (6b)

the other N − n options (X ′,Z ′) have known factors below xn (6c)

Events (6b) and (6c) have chances δ(xn, c)n−1 and G(xn)N−n. Integrating the binomial
probability of (6a)–(6c) over known factors xn of all options, prospective independence
yields

σn = N

(
N − 1

n− 1

)∫ ∞

u−ζ(c)

δ(xn, c)
n−1G(xn)

N−ng(xn)dxn. (7)
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Then the survival chance σn falls in the search cost c and the quit payoff u.12

B. Selection Effects. Predicting Sam’s behavior is thorny as he is apprised
of known factors, but his continued search signals higher known factors. While search
concludes for given known factors (Lemma 3), this “selection effect” makes Sam less
likely to stop the longer he searches. We argue that log-concavity precludes a perverse
search duration jump. To see this, consider for a moment two options, with the first
known. Then the expected gap E[X1 − X2|X1 = x1] rises in x1 if G is log-concave.13

In other words, Sam enters stage 2 less often with a higher known factor x1.

Theorem 1 (Search Intensifies) Sam’s conditional recall and exercise chances,
Rn and En, rise in the stage n, as does the quitting chance Qn for small costs c>0.

For intuition into this result for the stopping chance Sn, assume the modeler sees
all past known factors, and that −X ∼ exp(λ), and Sam never quits (u = −∞). We
argue that the log-concavity of the hidden factor cdf H blunts the discussed selection
effects. As Sam never quits, the exercise and stopping chance coincide, and it suffices
that En = Sn rises in n. Define the order statistic gap ∆j ≡ xj −Xj+1. Then:

Sn = 1− P (Explores option n+ 1)

P (Explores option n)
=1− P (xj + Zj < Xn+1 + ζ, ∀j = 1, ..., n)

P (xj + Zj < xn + ζ, ∀j = 1, ..., n− 1)

=1−
E[H(ζ −∆n)Π

n−1
j=1H(ζ − xj + xn −∆n)]

Πn−1
j=1H(ζ − xj + xn)

where the expectation is over realized gap ∆n. By the memoryless property of the
exponential distribution, ∆j has distribution exp(λ(N − j)), and is independent of
the observed known factors (x1, ..., xj).14 Now, Sn+1 > Sn because ∆n+1 stochastically
dominates ∆n, and because the ratios (8) rise in n, as H is log-concave and xn > xn+1:

H(ζ − xj + xn −∆n)

H(ζ − xj + xn)
= P (xj + Zj < Xn+1 + ζ|xj + Zj < xn + ζ). (8)

12The lower bound u− ζ(c) of the integral (7) rises in c by (3), and the delay chance δ(x , c) falls
in c by (3)–(5). Easily, the survival chance σn falls in the outside option payoff u, as u− ζ(c) rises.

13Let X(−∞,a] be the right truncation of the r.v. X at a. By Theorem 3.B.19 in Shaked and
Shanthikumar (2007), if G is log-concave, then X(−∞,a] grows more dispersive as a rises: Every pair
of quantiles of X(−∞,a] push further from each other (see (10)). So E[X1 −X2|X1 = x1] rises in x1.

14Theorem 3.B.19 in Shaked and Shanthikumar (2007) posit 1−G log-concave. In the log-linear
case: if X has an exponential distribution with mean λ, the order statistic gap XN

n − XN
n+1 is

exponentially distributed with mean nλ, for all N (Pyke, 1965). So hazard rates are constant in N .

13
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Figure 3: Intensifying Search Over Time. Left: By Theorem 1, the hazard rates
of recall Rn and exercising an inside option En ≡ Rn+Kn rise in n (here X ∼ Γ(1.2, 2),
Z ∼ Γ(2.8, 2), c = 0.2, N = 10, u = 0). Right: By Theorem 2, Sam recalls earlier
options more often, and so recall probabilities fall in n — from stage 9. The chance
of recalling the earliest options rises in X dispersion (now with c = 0.1 and u = −10).

We now answer which option Sam recalls most. Earlier options have larger known
factors, and have been passed over more often; this offers more damning selection
evidence of their hidden factors. Surprisingly, these options are most sought after:

Theorem 2 (Older Options Recalled More Often) If Sam explores option n,
then the chance that he recalls any prior option j < n falls in j, for all n = 3, . . . , N .

Proof: If Sam explores option n, his payoff from any prior option falls below the
cutoff w̄n = xn + ζ(c), or search would have stopped. By the Markov property of
order statistics,15 the joint distribution of known and hidden factors for the first n−1

options is that of n − 1 i.i.d. draws (X ,Z) from (G,H), conditional on the known
factor X > xn and the selection effect X + Z < xn + ζ(c). If X = x > xn is the
realized known factor of any prior option, its payoff W ≡ x + Z so has the cdf:

P (W ≤ w|W < xn + ζ(c)) =
H(w − x )

H(xn + ζ(c)− x )
. (9)

As w < xn+ζ(c), this cdf ofW falls in x by log-concavity ofH, and soW stochastically
increases in x — namely, the payoffs of earlier options are stochastically ranked. As

15Let X1:n ≥ X2:n ≥ · · · ≥ Xn:n be order statistics of a random sample X1, X2, . . . , Xn from a
population with cdf F and pdf f . Given Xi:n = xi, the distribution of Xj:n, for j < i, is the same as
that of the j-th order statistic of an (n− i) sample from a population with distribution F truncated
at the left by xi. See Theorem 2.4.1 in Arnold et al. (1992).
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this ordering holds for all Xn realizations, it holds unconditional on Xn. □

The premise of Theorem 2 is tight: later options are recalled more often with a
log-convex hidden factor cdf. For then (9) rises in x : recent options are stochastically
better. At the knife-edge of H exponential, the recall chance is constant. Truncation
in (9) favors later options with logconvexity, and earlier ones with log-concavity.

5 Stochastic Changes that Raise Search Duration
We now ask what distribution changes lift search duration, or the mean search time.
After resolving this open question in stationary search, we then adapt the solution
for our model.16 This question is important: What wage distribution shifts raise
unemployment? If inflation impacts the price distribution, do consumers search more?

The duration results here don’t need log-concavity assumptions. When a prize
distribution incurs a mean preserving spread (MPS), search duration may rise or
fall:17 For while the reservation wage rises, the stopping probability (area above it)
may rise or fall (Figure 4).18 The problem is that a MPS allows localized distributional
compression, as in the left panel of Figure 4. In its right panel, the distribution scales
Z 7→ aZ, for a > 1. This depicts the dispersion stochastic order: ZB is more disperse
than ZA if any two quantiles of the cdf HB are further apart than those of HA, i.e.

H−1
B (α′′)−H−1

B (α′) ≥ H−1
A (α′′)−H−1

A (α′) for all 0 < α′ ≤ α′′ < 1. (10)

As the quantile function H−1
B is steeper than H−1

A , and each is differentiable, the
densities rank oppositely: hB(H−1

B (α)) ≤ hA(H
−1
A (α)) for all α ∈ (0, 1).19 Parametric

16In a study of risk, Chateauneuf et al. (2004) have a no discounting example of stationary search,
in which duration rises if the reward distribution grows location independent riskier (Jewitt, 1989).

17Notably, Keane et al. (2011) claimed that search duration rises in a MPS. For a simplest possible
counterexample, let P (ZA =1)=P (ZA =2)=P (ZA =3) = 1/3. If c = 1/4, then ζA(c)= 3 by (3).
Search ends with chance P (ZA ≥ 3)=1/3. Spread ZA to ZB , where P (ZB = 1)=P (ZB = 3)=1/2.
Now, ζB(c)=3 by (3), and P (ZB ≥ 3)=1/2. Search ends with a higher chance. But if c=1/2, then
ζA(c)=2 and P (ZA ≥ 2) = 2/3, while ζB(c)=3 and P (ZB ≥ 3)=1/2. Search duration increases.
See here for another counterexample with the Pareto distribution.

18We assume h is symmetric around 0 and follows the Weibull distribution on each side, namely
h(z) = (α/β)[(|z| − µ)/β]α−1e−[(|z|−µ)/β]α for |z| > µ and 0 otherwise. The parameters for the blue
line are {α, β, µ} = {1, 0.2, 0} and that for the orange line are {α, β, µ} = {2, 0.2, 0.5} in the left
panel and {α, β, µ} = {1, 0.4, 0} in the right panel. The search cost is c = 0.05.

19Then cdf’s cross once — for when they coincide, HA increases faster than HB .
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Figure 4: Search Duration Can Rise or Fall in a Mean-Preserving Spread.
We plot the probability density h(z). The shaded area indicates the stopping chance,
with dashed orange a MPS of the solid blue. The stopping chance (above ζA, ζB) rises
in the left panel, but falls in the right. The orange dashed stopping area at left is
exactly one-half, exceeding the blue solid; the reverse is true in the right panel.

changes induce the dispersion order in many common distributions (see Table 1).20,21

Search duration is the reciprocal of the stopping probability S(c) = 1 − H(ζ(c)).
Change variables in the Bellman equation (3) from the prize z to its cdf α=H(z).
The quantile function inverse z = H−1(α) obeys dz = dH−1(α) = [∂H−1(α)/∂α]dα.
So (3) gives:’ ∫ 1

1−S(c)

(1− α)
∂H−1(α)

∂α
dα =

∫ ∞

ζ(c)

[1−H(z)]dz = c. (11)

In other words, search cost equals the expected survivor probability w.r.t. the quantile
distribution. By (11), the stopping probability S(c) falls if the quantile function H−1

everywhere grows steeper, and the slope ∂H−1(α)/∂α everywhere rises (Figure 5).

Theorem 3 (Stationary Search) Search duration rises in dispersion if X ≡0.

Our model is undiscounted. In the stationary discounted wage search model of
McCall (1970), duration falls in dispersion for low search costs (see here).

When dispersion rises, Sam searches more if his reservation prize ζ rise swamps
the effect of higher tail probability. Smoothly index the prize pdf ht and cdf Ht of
Z by a dispersion index t ∈ R. Inspired by consumer theory, we now decompose the

20Unlike stochastic dominance, the dispersion order is location free, e.g. N(µ, σ2) has the same
dispersion for all µ. But a mean-preserving increase in dispersion implies a mean-preserving spread.
See Shaked and Shanthikumar (2007) (SS) for a thorough review.

21Ganuza and Penalva (2010) use the dispersive order to study information disclosure in auctions,
and Zhou (2017) for price orders in bundling. Dispersion can be seen as iff for Theorem 3. See here.
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Figure 5: Graphical Proof that Search Duration Rises in Prize Dispersion.
If HB is more dispersed than HA, its inverse quantile plot H−1

B is steeper than H−1
A

(at right). By (11), the area above a cdf H right of its cutoff ζ(c) equals the search
cost c. So the (shaded) quantile slope weighted survivor integral in the right panel
is greater for any cutoff z. By (11), the cutoffs are ranked ζA(c) > ζB(c) and the
conditional stopping chance is higher: αB = HB(ζB(c)) > HA(ζA(c)) = αA.

stopping chance change d
dt
[1−Ht(ζt)] into the sum of a substitution effect and direct

effect. Differentiate the reservation prize equation
∫∞
ζt
[1−Ht(z)]dz ≡ c from (3) in t.

Then22 −[1−Ht(ζt)]ζ̇t =
∫∞
ζt
Ḣt(z)dz, which affords us the decomposition:

d[1−Ht(ζt)]

dt
= −ht(ζt)ζ̇t − Ḣt(ζt) =

ht(ζt)

1−Ht(ζt)

∫ ∞

ζt

Ḣt(z)dz − Ḣt(ζt) (12)

Assume the quantile function H−1
t smoothly steepens in t, in the dispersive order.

Since ∂H−1
t (a)/∂a rises in t, ∂H−1

t (a)/∂t rises in a = Ht(z). Then the derivative23

∂H−1
t (a)/∂t=−Ḣt(z)/ht(z) strictly rises in z. Adjusting a ratio inequality exploited

in Smith (2006),24 we have
∫∞
ζt
Ḣt(z)dz/

∫∞
ζt
ht(z)dz < Ḣt(ζt)/ht(ζt). So the stopping

chance 1 − Ht(ζt(c)) falls in t since the derivative (12) is negative. The substitution
effect swamps the direct effect for prize dispersion — the first term of (12) dominates.

In our two factor search model, greater dispersion of the hidden factor alone will
not raise search duration given the dual payoff source. Since exploring an option with
a known factor x pays more than quitting when x + ζ(c) > u, we need that x + ζ(c)

22We use Newton’s notation ẋ for t derivatives of any function x.
23This equality follows from 0 = ∂

∂ta = ∂
∂tHt(H

−1
t (a)) = Ḣt(H

−1
t (a)) + ht(H

−1
t (a))∂H−1

t (a)/∂t.
24If b(z) > 0, with a(z)/b(z) decreasing, then (

∫
y
a(z)dz)/(

∫
y
b(z)dz) < a(y)/b(y). Smith cites “a

special case of a continuous variable generalization of inequality 3.3.15 in Mitrinović (1970)”.
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Distribution cdf Support More Disperse if Thin tail?
Exponential 1− eλz [0,∞) λ ↑ No
Gamma 1

Γ(k)
γ(k, z/θ) [0,∞) θ ↑ No

Gaussian 1
2
+ 1

2
erf
(

z−µ

σ
√
2

)
(−∞,∞) σ ↑ Yes

Gumbel e−e−(z−µ)/β
(−∞,∞) β ↑ No

Logistic 1/
(
1 + e−

z−µ
s

)
(−∞,∞) s ↑ No

Uniform (z − a)/(b− a) [a, b] a ↓ or b ↑ Yes

Table 1: Dispersion Examples. Logconcave distributions are often parameterized
by dispersion. The last column flags if recall chances vanish as N → ∞ (Theorem 10).

not fall as Z grows more disperse.25 If ZB is more disperse than ZA, call ZB a mean-
enhancing dispersion of ZA if E[ZB] ≥ E[ZA]. In this case, the search optionality
values rank ζB(c) ≥ ζA(c),26 and we can derive increased search duration in §C.

Theorem 4 (Hidden Factor Dispersion) After a mean enhancing dispersion in
the hidden factor Z, survival chances σn rise, as does the participation chance σ1 and
search duration. The recall moment is later with a mean-preserving dispersion for Z.

Search duration rises given increased survival chances, owing to τ =
∑N

n=1 σn.
In our Gaussian factors web search model in §2, hidden factor dispersion rises iff

the known factor dispersion falls, by equation (1). But in our more general model
where these variances need not trade off, we argue that greater known factor disper-
sion shortens search. For order statistics {Xn} drop faster, and so Sam stops sooner,
because exploring the next option is a less inviting prospect. More precisely:

Theorem 5 (Known Factor Dispersion) Assume quit payoff u = −∞. If known
factor dispersion rises, then every survival chance σn falls, as does the search duration.

For insight, assume a vanishing known factor dispersion, with a finite horizon pure
stationary search model. Then a constant reservation prize ζ(c) emerges, by Lemma 2.

25Dispersion in Z can reduce search duration via raising the quitting chance. In here we show
that a more dispersed hidden factor accelerates quitting iff the quit payoff is low.

26By the dispersion order, H−1
B is steeper than H−1

A . If HA and HB have the same mean, HA single
crosses HB , and so ZB is a MPS of ZA (Diamond and Stiglitz, 1974). Then ζB(c) ≥ ζA(c) by (3).
If ZB has a higher mean than ZA, then ZB is a mean-preserving increase in dispersion of ZA and a
right distribution shift, as the dispersion order is location free. Each shift lifts ζB(c) above ζB(c).
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Figure 6: Search With and Without Prior Information (solid vs. dashed lines).
Payoffs are the sum of a zero mean known factor of standard deviation 0.44, and
a zero mean, unit variance hidden factor. The quit payoff is 0.78. The search cost
changes at left (fixing N = 5 options), and the number of options varies at right (for
search cost $0.06). This Monte Carlo simulation uses (7), and depicts Corollary 1:
search duration drops given prior information, for a low enough quit payoff.

Otherwise, the known factor Xn has the cdf of G−1(Un), for the nth uniform [0, 1]

order statistic Un, the order statistic gap Xn−Xn+1 ∼ G−1(Un)−G−1(Un+1) increases
stochastically in the dispersion of X by (10), reducing the survival chances σn. In-
tuitively, consecutive options are expected to fall more in expected payoff with a
more disperse known factor. But since dispersion raises tail weight of X , it might
lift Sam’s participation chance, when X1 + ζ(c) ≥ u, and thereby increase σn. This
countervailing participation effect obviously vanishes with no outside option, u=−∞.

We are now equipped to answer a misspecification question. If researchers ignore
Sam’s prior information, and treat a two factor model as stationary, with known
factor X = 0, then they over-predict search duration. If X = 0, with a quit payoff
u ≥ ζ(c), then Sam never searches, and more known factor dispersion raises duration.
If u < ζ(c), by Theorem 5’s proof, search ends sooner with a dispersed known factor:

Corollary 1 If u < ζ(c), Sam searches, but less than with a degenerate known factor.

In here, we calibrate parameters to match the search duration, purchase chance,
and recall chance in the online book market studied in De Los Santos et al. (2012). In
their data, among the transactions in which consumers visited more than one online
book store, around 40% recalled a prior option. Our non-stationary sequential search
model better explains the data than a stationary model.

In Figure 6, we depicts how the stationary search model over-predicts duration
for their data. Pre-search information greatly reduces search duration, as is intuitive.
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6 Search Outcomes and Web Search Accuracy

6.1 How Accuracy Impacts Search Duration and Outcomes

We consider how a search engine of varying accuracy impacts search. Recall the
Gaussian web search application of §2B, with payoff (1). The extremes are standard
sequential search with α=0, and a given ranking of all known factors X1>X2> · · · .
Search optionality ζ(α, c) in (3) solves for the Gaussian cdf Φ:

c =

∫ ∞

ζ(α,c)

[
1− Φ

(
s√

1− α2

)]
ds (13)

As α rises, the known factor grows more disperse, and the hidden factor less so.
We show that typical search engine measures do not flag accuracy. A common

search engine ranking tool is the click through rate (CTR), or the chance that a visitor
explores a link after posting a query.27 This is the chance Sam explores the first option
after seeing all known factors, i.e. σ1 = P (X1 > ℓ(α, u, c)). Next, the quitting chance q
is the chance Sam does or does not search, but eventually chooses the outside option.

By Lemma 2, Sam searches iff the highest known factor is X1 > ℓ(α, u, c), where

ℓ(α, u, c) ≡ u− ζ(α, c)

α
. (14)

Our first case posits u = −∞ to ensure Sam searches. Since he also never quits,
his optimal payoff V(α, c) equals the mean accepted option WA(α, c) less expected
search costs cτ(α, c):

V(α, c) = E[WA(α, c)]− cτ(α, c). (15)

By Blackwell’s Theorem, the optimal value V(α, c) rises in α. With u = −∞, this
happens by lower search duration τ(α, c) or greater accepted option E[WA(α, c)].28

Theorem 6 (Rising Accuracy, I) Assume a quit payoff u = −∞. The mean ac-
cepted option E[WA(α, c)] obeys ∂

∂α
E[WA(α, c)] < 0 for small c > 0, and all α ∈ (0, 1).

Search duration τ(α, c) monotonically falls in accuracy α, for all α ∈ (0, 1).
27This is a commercial measure of search engines, as clicking means that search ads are seen.
28From §2, greater accuracy implies more informative search engine signal in Blackwell’s sense:

Shifting to accuracy αL from αH > αL adds zero mean Gaussian noise with variance α2
H − α2

L to
the hidden factor, and raises its variance to (1− α2

H) + (α2
H − α2

L)=1− α2
L.
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Figure 7: More Accurate Web Search Initially Worsens the Accepted Payoff.
As Theorem 6 claims, if u = −∞, the expected search reward can fall in accuracy.
At left, we vary search cost c, and fix N = 5 options. W initially falls in α, then rises
and peaks at α = 1. At right, we present the corresponding expected search duration.
Here, N is similar to the book search analysis in De Los Santos et al. (2012).

The strong search substitution effect most strongly manifests itself near accuracy
α = 0, Sam’s search intensity initially falls so fast as α rises that his search outcome
worsens. But for large α, the search outcome improves in accuracy (see Figure 7).

The proof tracks accuracy simultaneously impacts search time and outcome. Since
the marginal value of information M(α, c) ≡ ∂V/∂α exists, it obeys M(α, c) ≥ 0,
by Blackwell’s Theorem. By the Envelope Theorem29 and (15), we have ∂V/∂c =

−τ(α, c). So:
∂τ

∂α
= − ∂2V

∂α∂c
= −Mc(α, c) < 0. (16)

Differentiating the optimal value formula (15) in α, and substituting (16), yields:

∂E[WA]

∂α
=
∂V
∂α

+ c
∂τ(α, c)

∂α
= M(α, c)− cMc(α, c). (17)

So the search outcome initially worsens since M(α, c) is strictly convex in c near 0.30

Our second case posits a quit payoff u > −∞, so that Sam sometimes quits
searching. The mean accepted option places positive weight on the quit payoff:31,32

29The derivatives of V exist, as shown in Online Appendix I.
30The marginal value M(α, c) vanishes as c↓0 — as Sam explores all options τ→N . As this holds

for all α∈(0, 1), we have ∂τ/∂α→0 as c↓0. Then Mc(α, c)=−∂τ/∂α vanishes as c↓0, by (16). But
M(α, c)≥0 by Lemma 5. So M(α, c) is non-negative and is zero at c=0, and Mc(α, c)→0 as c↓0,
so is strictly convex in c, for c near 0. We formally show Mc(α, c)→0 in Appendix.

31Theorem 6’s claim that the mean accepted option falls in α for small c > 0 holds for u > −∞.
32If u rises, q rises. Sam’s search falls so much that the mean accepted option falls, even though

one might accept a higher quit payoff : ∂
∂uE[WA(α, c)] < 0 for large N (Online Appendix IV).
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Figure 8: Search Behavior and Accuracy (Theorem 7). At left, the quitting
chance slope in α changes sign when u = ζ(α, c). At right, the expected search time
falls/rises in α below/above the curve. The simulated graphs assume c = 0.3, N = 6.

E[WA(α, c)] = qu+ (1− q)E[XA + ZA]. (18)

By Theorems 4–5 and Corollary 1, the CTR and search duration τ both fall if
either the hidden factor dispersion falls, or the known factor dispersion rises, when
u = −∞. Theorem 5 implies that the CTR σ1 and duration τ ≡ ΣN

n=1σj then rise in
accuracy α. But with higher quit payoffs u > −∞, these two conclusions can reverse:

Theorem 7 (Rising Accuracy, II) For low quit payoffs u > −∞, the CTR and
search duration τ fall in α; otherwise both rise in α. For low quit payoffs u > −∞
(specifically, u < ζ(α, c)), the quitting chance q(α) rises in α; otherwise it falls in α.

So the CTR is a completely misleading search engine accuracy measure for low quit
payoffs u. And for high quit payoffs, a more accurate search engine leads Sam to
spend longer searching. We also identify a conflict of interest between consumers and
web shopping platforms at low u. For consumers always desire greater accuracy, but
given low u, more accuracy lifts the quitting chance q, and so lowers the sale chance.

For intuition into Theorem 7, observe that more accuracy: (i) better sorts Sam’s
options and (ii) improves his quitting decision. For (i), assume u = −∞, so that Sam
never quits: The chance that he hits stage n, given known factors x⃗ ≡ {x1, x2, . . . , xN},
is simply the chance that the nth cutoff exceeds the payoffs of options 1 to n− 1, i.e.

ςn(x⃗, α) ≡ P (αxn + ζ(α, c) > αxj + Zj, ∀j < n) = Πn−1
j=1H[α(xn − xj) + ζ(α, c)|α],

recalling (6b), with H(·|α) the cdf of the hidden factor Z ≡
√
1− α2Z. Accuracy

impacts ςn(x⃗, α) through two channels. First it falls in α given xn − xj < 0. Second,
fixing any ∆ ≥ 0, the hidden cdf H[−∆+ζ(α, c)|α] falls as accuracy rises (Claim 5), as

22



6

-
ζ(c)

√
2

−ζ(c)
√
2

45o

No search Search

I

II

III

XA+ZA=0

ZA

XA

Figure 9: Marginal Value of Web Search Information. At left, the search
decision if N = 1, α = 1/

√
2, u = 0. Sam searches if XA > −ζ(c)

√
2 and accepts the

option if XA + ZA > 0. At right, we plot the marginal value of information M(α, c)
with N = 15 options and quit payoff u = −1: M(α, c) is increasing in α for c small.

dispersion of Z falls. The first channel uses Theorem 5: Sam stops sooner with larger
known factor gaps. The second channel uses Theorem 4: less hidden factor dispersion
reduces search duration. Since Sam does not quit before exploring the nth option iff
Xn > ℓ(α, u, c), the nth search survival chance is σn = E[ςn(X⃗, α)1{Xn>ℓ(α,u,c)}]. Since
ℓα(α, u, c)>0 iff u is small,33 all survival chances σn fall, as do the CTR and τ .

6.2 Convexity in Accuracy and Informational Nonconcavity

Arguably, with countless Google searches every hour, information acquired from
search engines is quite valuable. We thus revisit the classic nonconcavity of the value
of information, and find a fortiori strict convexity V(α, c) in search engine accuracy.
This endogenous increasing returns in search engines suggests a natural monopoly.

Let A be the event that Sam eventually accepts an inside option (XA,ZA) =

(αXA,
√
1− α2ZA), and L ⊂ A the event that Sam is pleasantly surprised by the

hidden factor: ZA ≥ ζ(α, c). So while Sam would still accept a lesser prize, he would
have been willing to search had he foreseen its hidden factor: XA+ZA ≥ XA+ζ(α, c),
the cutoff for exploring (XA,ZA), by Lemma 2. Also, (XA,ZA) dominates Sam’s fall
back options, as well as the lower cutoffs of future options. Sam accepts (XA,ZA).

Lemma 5 The marginal value of information is M(α, c) = P (L)E[XA|L] ≥ 0.
33Observe from (14) that ℓα(α, u, c) > 0 iff the outside option u is below some real ū. For

ℓα(α, u, c)=−[ℓ(α, u, c) + ζα(α, c)]/α ≷ 0 as u ≶ ū, since ℓ(α, u, c) increases in u.
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Intuitively, L is the event that an option impacts Sam’s search, and lifts his payoff.
Sam’s value (15) is V(α, c) = u[1− P (A)] +E[(αXA +

√
1− α2ZA)1A]− τc. By the

Envelope Theorem, the derivative in α is simply the partial derivative:

M(α, c) =
∂V
∂α

= E[(XA − α√
1− α2

ZA)1A]. (19)

For intuition into Lemma 5, assume N = 1, u = 0, and accuracy α =
√
1− α2 =

1/
√
2. Consult the left panel of Figure 9. As Sam searches if XA > ζ(1/

√
2, c)

√
2 by

(14), Sam accepts in event A = {XA > ζ(1/
√
2, c)

√
2, XA +ZA > 0}, or area I + II:

∂V
∂α

= E[(XA − ZA)1I+II ] = E[XA
1II − ZA

1I+II ] + E[XA
1I ]

The first bracketed term vanishes: Reflecting area I + II in the dashed diagonal line
into area III preserves the N(0, 1) probability densities of XA and ZA. So the integral
of ZA in I + II is the integral of −XA in III. Since XA and ZA are independent:

E[XA
1II − ZA

1I+II ] = E[XA
1II +XA

1III ] = E[XA
1{ZA<−ζ(c)

√
2}] = 0.

Since L = A ∩ {ZA ≥ −ζ(c)
√
2} is area I, E[XA

1I ] = E[XA
1L] = P (L)E[XA|L]. □

The marginal value of information is higher at α = 1 than at 0 (Figure 9, right).

Theorem 8 The marginal value of information is higher near a perfect search engine
than a bad one: M(0, c)≤M(1, c), with equality iff N =1 and u=−∞. Also, this
marginal value rises (Mα(α, c)>0) for small search costs c > 0, and α ∈ (0, 1).

To see that M(α, c) can rise in accuracy, consider the extreme case α = 0. When
u > ζ(0, c), Sam will not search, and more accuracy has no value, i.e. M(0, c) = 0.

Next, assume α > 0. For small costs c > 0, Sam explores all options and accepts
the best if its payoff exceeds u. Sam can only explore fewer options as α rises, and so
the accepted option’s known factor E[XA|L] rises in α. Also, the acceptance decision
does not depend on α. But P (L) ≡ P (A ∪ {ZA ≥ ζ(α, c)/

√
1− α2}) rises in α as

ζ(α, c)/
√
1− α2 falls in α (see Claim 9). Both factors lift M(α, c), by Lemma 5.

Corollary 2 (Search Engine Synergy) Accuracy α and usability −c are comple-
ments to the web size N , namely ∂2V/∂N∂α ≥ 0 and ∂2V/∂N∂c ≤ 0.

So as the web size N has exploded, search engine accuracy has risen and costs fallen.
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7 How Does Search Change with More Options?

We now consider what happens when the number of options N grows, as has occurred.
Stopping decisions depend on the order statistic gaps XN

n − XN
n+1. We next use

dispersion logic to show that with more total options N , search lasts longer since
these gaps stochastically shrink, thereby depressing quitting, striking, and recall.

Let Kn be the chance of striking the stage-n option, where En = Kn +Rn.

Theorem 9 (More Options) The quitting, striking and recall chances QN
n , KN

n ,
and RN

n in any stage n all weakly fall in the number of options N . Search duration
rises with additional options, and the recall moment happens later.

Sam’s welfare rises in the number of options N , since the best are first presented.
But more subtly, search duration optimally rises in N . For instance, many firms
receive far more web applications for every position than in pre-web days.34 With a
larger applicant pool, the options presented first are better, but employers grow more
ambitious. Does vacancy duration rise? For the same reason, those searching for
mates online expect to remain unmatched much longer, given the wealth of options.

For insight into Theorem 9, assume we draw N +1 options rather than N . Given
any realization of the smallest known factor XN+1 = xN+1, by the Markov property
of order statistics, the joint distribution of known factors {X1, ...,XN} is the same
as N i.i.d. draws from the left-truncated distribution with cdf G(x )/[1 − G(xN+1)].
This is less dispersed than the original distribution G, and so the order statistics gaps
are smaller — akin to the proof of Theorem 5. So search continues more often at
every subsequent stage than when there are only N options (see footnote 14). This
intuition highlights the link between log-concavity and dispersion for search theory.

Ours is a nonstationary search model with a finite number of options, and ranked
order statistics of high known factors. Does the standard stationary search model
reasonably predict Sam’s behavior in the limit with N ↑ ∞ options? Sam never quits
in this limit — since the outside option is dominated by some inside option. But recall

34Using CPS data, Kuhn and Skuterud (2004) find that web job search does not raise the job-
finding rate. Martellini and Menzio (2020) likewise explain the stability of the unemployment rate
despite information technology improvements: A more efficient matching function might not reduce
the unemployment rate in the Diamond-Mortensen-Pissarides model. We model the nonstationary
search process, well-founding their matching process. Firms get more applications means N rises.
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Figure 10: Dispersion and Search Duration. Assume c = 0.2 and u = −∞. Left:
Duration rises in the hidden factor dispersion for X ∼ N (0, 2.8) (Theorem 4). Right:
Duration falls in the known factor X dispersion for Z∼Γ(1.2, 2) (Theorem 5).

is forever a feature, and its probability need not vanish if, say, known factors X are
exponentially distributed. For then order statistic gaps are constant (footnote 14).

The striking and recall hazard rates converge to their stationary limits only if
all top order statistic gaps XN

n − XN
n+1 vanish as N ↑ ∞. This happens35 if the

distribution G has a thin (right) tail, namely, if limx ↑G−1(1) g(x )/[1−G(x )]=∞. This
excludes our knife-edge exponential case, given the constant hazard rate nλ > 0.

Theorem 10 (Many Options) Fix stage n. Let N→∞. Then QN
n → 0. If G has

a thin tail, RN
n → 0 and KN

n → 1 − H(ζ(c)). If not, RN
n →R∞

n > 0 and KN
n → K∞

n >

1−H(ζ(c)), where R∞
n +K∞

n <1. The limit recall chance R∞
n rises in X dispersion.36

When the known factor lacks a thin tail, optimal behavior with a vast number
of options differs much from the infinite horizon search model.37 Sam recalls with a
boundedly positive chance. Sam also strikes more often than justified by the hidden
noise. The reason is that the gaps between consecutive known factors don’t vanish;
this gives an extra incentive to strike now — as next period is worse than this one.38

35As the hazard rate g/[1 − G] is non-decreasing, when limx↑G−1(1) g(x )/[1 − G(x )] exists and is
positive. A thin tail means limx↑G−1(1) g(x )/[1−G(x )] < ∞. Table 1 lists thin tail distributions.

36This also result holds at the interim stage. In here we show that, conditioned on realized known
factors, the stage-n conditional recall chance rises as the gaps, xi − xi+1, for i ≤ n, weakly increase.

37For example the difference in search duration (Corollary 1) can be substantial — in here we
show that the ratio between the search duration in an infinite horizon stationary search model and
that in our model with a vast number of options can explode to infinity as c ↓ 0.

38The two models also make different predictions over the expected search cost τc. We show here
that when the known factor lacks a thin tail, the expected search cost with large N always vanishes
as c → 0. But in an infinite horizon search model τc vanishes if and only if H also has a thin tail.
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Figure 11: More Options Lift Duration and Search Intensifies. Left: The
mean recall moment when search ends (Lemma 3) rises in N , by Theorem 9. Put
X ∼ N (0,

√
0.3) and X ∼ Γ(1.2, 2) with variance 0.3. Right: By Theorem 10, as

N ↑∞, the recall chance Rn vanishes if X has a fat tail (Gaussian), but otherwise is
strictly positive (here, Gamma). In both panels, Z∼Γ(2.8, 2), c = 0.2, and u = −∞.

8 Conclusion

We develop and characterize a tractable twist on the benchmark stationary search
model to capture economic settings with prior information or web search. We assume
finitely many options whose payoffs are the sum of known and hidden factors with
logconcave densities. This generates random families of Weitzman search models.

With logconcave distributions, search intensifies over time: quitting, recall and
exercise chances increase. If recall occurs, older options are recalled more often.

We have resolved a basic but long outstanding open problem — dispersion is the
distribution shifts increasing search duration. In our two factor model, more hidden
factor dispersion prolongs search, and more known factor dispersion truncates search.

Improved web search engines always help Sam: A more accurate search engine
always reduces Sam’s search duration. But initially as accuracy rises, Sam relaxes
his search effort so quickly that his expected search outcome worsens. We also find a
strong manifestation of the nonconcavity of informational value — namely, it persists
at all accuracy levels, and suggests that Google might be a natural monopoly.

Finally, Sam searches more with more total options. In the limit of an exploding
number of options betrays a failure of lower hemicontinuity: Stationary search poorly
predicts finite real world behavior unless the known factor has a thin tail.
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Our two factor model has practical economic applications. For example, online
matching has improved over time (Regnerus, 2017). If new technology raises signal
precision, known factors grow more disperse, and search duration falls (Theorem 5).
But if it instead more cheaply yields the same quality signal, then people grow pickier.

Our paper opens the door to formal analyses of age-old behavioral topics on the
curse of choice (Chernev et al., 2015) — like Toffler’s 1970 concept of “overchoice”.
Indeed, with more options, Sam’s investigative look-see efforts rise. Our model also
captures decision fatigue — smart behavioral model of an unmodeled ex ante stage
in which Sam rank orders known factors is an intriguing open problem.

Finally, De Los Santos et al. (2012) study an online book market and find that
finding price discounts does not raise the stopping chance of the searchers. They
conclude that consumers do not search sequentially in web search. We argue here in
a calibrated model that if the price discounts belong to the known (and not hidden)
factors, then they can induce consumers to search longer, even if search is sequential.

A Optimal Stopping: Proof of Lemma 4
All claims hold at stage N : For it reduces to a one-shot search problem with a fallback
option: VN(Ω)=Ω for Ω<w̄N as the best option ΩN is exercised. Then V ′

N(Ω)=1.
Assume all claims at stage n + 1. Search stops at stage n if Ωn ≥ w̄n+1. By (4),

Vn(Ω) = Ω on [w̄n+1,∞) and so V ′
n(Ω) = 1, i.e., the stopping chance. Sam searches

at stage n + 1 if Ωn < w̄n+1. Then V ′
n(Ωn) = Fn+1(Ωn)V

′
n+1(Ωn) by (4). Since V ′

n+1

jumps up at w̄N < · · · < w̄n+2, so does V ′
n. Now, 1 = V ′

n(w̄n+1+) > V ′
n(w̄n+1−) =

Fn+1(w̄n+1)V
′
n+1(w̄n+1−) as V ′

n+1(w̄n+1−) < 1 by assumption, and Fn+1(w̄n+1) < 1.
Then V ′

n exists except at jumps w̄N < · · · < w̄n+1. If Ωn < w̄n+1, then Sam enters
stage n+1 and recalls Ωn with chance V ′

n(Ωn) = Fn+1(Ωn)V
′
n+1(Ωn). As Fn+1 has full

support and Vn+1 is convex, Fn+1V
′
n+1 rises, and Fn+1(Ωn)<1. So Vn is strictly convex

and V ′
n(Ω)< 1 for all Ω< w̄n+1. The last claim holds since Sam enters stage k with

best-so-far w iff w = Ωk−1 < w̄k, and he recalls w iff w = Ωk ≥ w̄k+1, by Lemma 1.
Finally, Vn(Ω) grows weakly steeper for all n = 1, . . . , N . The claim holds if n = N ,

as V ′
N(Ω)=1. For n < N , V ′

n(Ω)=1 for Ω≥ w̄n+1 and V ′
n(Ω) = Fn+1(Ω)V

′
n+1(Ω) < 1

otherwise. As w̄n+1 falls in c by (4), and V ′
n+1(Ω) weakly rises in c, so does V ′

n(Ω). □
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B Search Over Time: Selection Effect Proofs
B.1 Stochastic Shifts of the Known Factor
The ex ante probability density when we hit stage n with known factor Xn = x is:

η(x , c, n,N) ≡ δ(x , c)n−1G(x )N−ng(x ). (20)

By (7) and (20), the stage-n conditional expectation operator EXn is given by the cdf

P (Xn ≤ a|stage n)=
N
(
N−1
n−1

) ∫ a

u−ζ(c)
η(x , c, n,N)dx

σn
=

∫ a

u−ζ(c)
η(x , c, n,N)dx∫∞

u−ζ(c)
η(x , c, n,N)dx

(21)

Claim 1 (More Options) If Sam hits stage n, the known factor Xn stochastically
rises in the number N of options, search cost c > 0, and quit payoff u, and falls in n.

Proof : We argue that the cdf (21) falls in N, c and u, and rises in n. For by (20):

∂

∂a
log

[∫ a

u−ζ(c)

η(x , c, n,N)dx

]
=

δ(a, c)n−1G(a)N−ng(a)∫ a

u−ζ(c)
δ(x , c)n−1G(x )N−ng(x )dx

. (22)

We repeatedly use logsupermodularity. SinceG(a)/G(x ) > 1 if x < a, the RHS of (22)
rises in N . So the bracketed term in (22) is LSPM in (N, a), and ratio (21) falls in N ,
as a <∞. Since δ(x , c) is LSPM by Claim 2 below, δ(a, c)/δ(x , c) rises in c, if x < a.
As u − ζ(c) rises in c, the RHS of (22) rises in c and u. So

∫ a

u−ζ(c)
η(x , c, n,N)dx is

LSPM in (c, a) and (u, a). So the ratio (21) falls in c and u. Finally, δ(x , c)/G(x )
falls in x , by Claim 2, i.e. δ(x , c)/G(x ) > δ(a, c)/G(a) for x < a. So (22) falls in n,
and the bracketed term in (22) is LSPM in (n, a). So the ratio (21) rises in n. □

Claim 2 (Delay Chance) δ(x , c) falls in c and is LSPM; also, δ(x , c)/G(x ) falls in x .

Proof: Put s=a−x in (5). Then δ(x , c) =
∫∞
0
H (ζ(c)− s) g(s+x )ds. Then ζ ′(c) < 0

implies δc(x , c) < 0. Since H(ζ(c)−s) and g(s+x ) are LSPM in (ζ(c), s) and (s,−x ),
resp., and partial integration preserves LSPM (Karlin and Rinott, 1980), δ(x , c) is
LSPM in (ζ(c),−x ), and so in (c, x ). Integrating (5) by parts, the delay chance is

δ(x , c) = −H (ζ(c))G(x ) +
∫∞
0
h (ζ(c)− s)G(s+ x )ds. (23)

Since G(x ) is log-concave, G(s+x )/G(x ) falls in x , and thus so does δ(x , c)/G(x ). □
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B.2 Conditional Stopping Chances: Proof of Theorem 1

By prospective independence, Sam explores n≤N options and then quits with chance:

qn =
(
N
n

)
δ(u− ζ(c), c)nG(u− ζ(c))N−n. (24)

Then the quitting hazard rate Qn ≡ qn/σn rises in the stage n if σn falls and qn rises
in n. The survival chance σn that search lasts at least n stages must fall in n. Next:

Claim 3 (Quitting Chance) The quitting chance qn rises in n for all small costs
c > 0, is hump-shaped in n for intermediate c, and falls in n for all large c.

Proof: By (24), the ratio qn+1/qn = [(N − n)/(n+ 1)]δ(u− ζ(c), c)/G(u− ζ(c)) falls
in n = 0, 1 . . . , N − 1. For if δ/G < 1/N , then qn+1/qn < 1 for all n = 0, . . . , N − 1,
and so qn falls in n. If δ/G > N , then qn+1/qn > 1 for all n = 0, . . . , N − 1, and so qn
rises in n. Finally, if 1/N <δ/G<N , then qn is hump-shaped in n from 0 to N .

Next, we show that δ(u− ζ(c), c)/G(u− ζ(c)) falls from ∞ to 0 as for c ∈ [0,∞).
For (5) implies:

δ(u− ζ(c), c)

G(u− ζ(c))
=

∫ ∞

−ζ(c)

H(−s) g(s+ u)

G(u− ζ(c))
ds. (25)

Since ζ ′(c) < 0, (25) falls in c, vanishing as c → ∞ (for then ζ(c) → −∞ by (3)),
exploding as c→ 0 (for then ζ(c) → ∞, and thus H(ζ(c)− r) → 1). So, (25) implies:

lim
c→0

δ(u− ζ(c), c)

G(u− ζ(c))
=lim

c→0

∫∞
0
H(ζ(c)− r)g(r + u− ζ(c))dr

G(u− ζ(c))
= lim

ζ(c)→∞

[1−G(u− ζ(c))]

G(u− ζ(c))

i.e. an infinite limit. So ∃c̄ > c s.t. (1) δ(u−ζ(c), c)/G(u−ζ(c))>N if c<c, and so qn
rises in n; (2) δ(u−ζ(c), c)/G(u−ζ(c)) ∈ [1/N,N ] if c ∈ [c, c̄], and qn is hump-shaped
in n; and (3) δ(u− ζ(c), c)/G(u− ζ(c)) < 1/N if c > c̄, and so qn falls in n. □

Consider the temporary perspective of a partly omniscient observer, knowing one
realized option (x , z). Let w∗(x , z) ≡ min(x + z, w̄), for the reservation prize w̄ =

x + ζ(c). Modifying the n-survival event (6a)–(6c), Sam exercises (x , z) at stage n iff

w∗(x , z) > u (26a)

X ′ + ζ(c) > w∗(x , z) > X ′ + Z ′ for n− 1 options (X ′,Z ′) (26b)

w∗(x , z) > X ′′ + ζ(c) for N − n options (X ′′,Z ′′). (26c)
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We claim (26) implies n-survival. Then (6) holds if w∗(x , z) = w̄. And if w∗(x , z) =

x + z < w̄, all X ′+ ζ(c) and w̄ exceed x + z, all X ′+Z ′, all X ′′+ ζ(c), and u; so Sam
explores (x , z) and all (X ′,Z ′). We claim Sam exercises (x , z) in event (26).

Claim 4 (Exercise) Sam strikes (x , z) given (26) and X ′ > x for all n− 1 options
(X ′,Z ′). Sam recalls (x , z) if (26) and X ′ ≤ x for some of the n−1 options (X ′,Z ′).

Proof: As w∗ ≡ w∗(x , z) > u, Sam never quits in a one option world, and so never
quits with N options. For which inside option does Sam exercise, and how?

Assume (26). First, (x , z) blocks (ex ante dominates) the N − n options with
w∗ > X ′′ + ζ(c) — Sam never later explores them. We next show that Sam explores
all n−1 options (X ′,Z ′) in some order, and then exercises (x , z). First, Sam explores
(x , z) at some stage, as no option (X ′,Z ′) blocks it: For w̄>X ′ + Z ′, by (26).

Next, as X ′+ ζ(c) > w∗, either X ′+ ζ(c) > w̄ and so Sam explores (X ′,Z ′) before
(x , z), or w̄ ≥ X ′ + ζ(c) > x + z, and so (x , z) delays Sam. In either case, (x , z) does
not block (X ′,Z ′). Finally, as any two of the n − 1 options (X ′

A,Z ′
A) and (X ′

B,Z ′
B)

obey X ′
A+ ζ(c)>w∗>X ′

B +Z ′
B by (26), no option (X ′

B,Z ′
B) blocks another (X ′

A,Z ′
A).

So Sam eventually explores all (X ′,Z ′), exercising (x , z) at stage n, as x +z > X ′+Z ′.
When X ′ > x for n− 1 known factors, the option (x , z) is the nth option, and so

Sam strikes (x , z). The last claim follows at once from (26) and the first claim. □

We first introduce the interim random variable W∗ ≡ X+min(Z, ζ(c)) ≡ w∗(X ,Z).
The interim n-exercise event (26) is the n-survival event (6) if w∗ = x + ζ(c), and has
chance

Λn(w) ≡ N

(
N − 1

n− 1

)
δ(w − ζ(c), c)n−1G(w − ζ(c))N−n (27)

for w>u, and Λn(w) = 0 otherwise. Next, convoluting densities for z = ζ(c)−s and
x =w∗ −min(z, ζ(c))=w∗ − ζ(c) +max(s, 0), we see that W∗ has ex ante probability
density

ϕ(w∗) ≡
∫∞
−∞ h(ζ(c)− s)g(w∗ − ζ(c) + max(s, 0))ds. (28)

So, the n-survival chance (7) as σn = Eg[Λn(X + ζ(c))], and the n-exercise chance as

en = Eϕ[Λn(W∗)] = N

(
N − 1

n− 1

)∫ ∞

u

δ(w∗−ζ(c), c)n−1G(w∗−ζ(c))N−nϕ(w∗)dw∗ (29)

Steps 1–3 use the operator EXn to compute the conditional chances En,Kn, Rn.
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Step 1 (Exercise Chance Formula) The conditional exercise chance En rises in n,
and

En = 1−H(ζ(c))+EXn

[∫ ∞

0

h(ζ(c)− s)
g(s+ Xn)

g(Xn)
ds

]
. (30)

The 1−H(ζ(c)) term integrates the top rectangle of the striking set in Figure 1:
Sam always strikes if zn > ζ(c) — for if he enters stage n, then xn+ζ(c)>Ωn−1 by (6a)
and (6b) — and the striking event wn≥max{w̄n+1,Ωn−1} holds (see Lemma 1). We
prove that the second term in (30) is the conditional exercise chance if zn ≤ ζ(c).

Proof of Step 1: By (7) and (29), rewrite the conditional chance En ≡ en/σn as

En =

∫∞
u
δ(w∗−ζ(c), c)n−1G(w∗−ζ(c))N−nϕ(w∗)dw∗∫∞

u−ζ(c)
δ(x , c)n−1G(x )N−ng(x )dx

=

∫∞
u−ζ(c)

ϕ(x+ζ(c))
g(x )

η(x )dx∫∞
u−ζ(c)

η(x )dx
(31)

writing x = w∗ − ζ(c), where η(x )= η(x , c, n,N) ≡ δ(x , c)n−1G(x )N−ng(x ) by (20).
Since η(x ) is the density in (21) of Xn in the operator EXn , (28) yields (30), as

En = EXn

[
ϕ(Xn+ζ(c))

g(Xn)

]
= EXn

[∫∞
−∞h(ζ(c)−s)g(Xn+max(s, 0))ds

g(Xn)

]
.

Then (30) rises in n, as Xn stochastically falls in n (Claim 1), and g(s+x)
g(x)

falls in x.□

Step 2 (Striking Chance Formula) The conditional striking chance Kn equals

Kn=1−H(ζ(c))+EXn

(∫ ∞

0

h (ζ(c)−s)g(s+ Xn)

g(Xn)

[∫∞
s
H(ζ(c)− t)g(t+ Xn)dt∫∞

0
H(ζ(c)− t)g(t+ Xn)dt

]n−1

ds

)
.

Proof: By Claim 4, Sam strikes if (26) holds and X ′ > x for n−1 options (X ′,Z ′). The
interim density ϕI(w

∗) below modifies the ex ante density ϕ(w∗) in (28), conditioning
on X ′ > x = w∗ − ζ(c) +max{0, s} for n− 1 options (X ′,Z ′) — and so we divide by
P (X ′ + ζ(c) > w∗ > X ′ + Z ′) for each of these n− 1 options:

ϕI(w
∗)=

∫ ∞

−∞
h(ζ(c)−s)g(w∗−ζ(c)+max{s, 0})

[∫∞
max{0,s}H(ζ(c)−t)g(t+w∗−ζ(c))dt∫∞
0
H(ζ(c)− t)g(t+ w∗ − ζ(c))dt

]n−1

ds.

Sam strikes at stage n with ex ante chance kn=EϕI
[Λn(W∗)]=

∫∞
u

Λn(w
∗)ϕI(w

∗)dw∗,
recalling (27). By the logic for (30), as seen in (31), the conditional striking chance
is
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Kn ≡ kn
σn

=

∫∞
u−ζ(c)

[ϕI(x + ζ(c))/g(x )]η(x )dx∫∞
u−ζ(c)

η(x )dx
= EXn

[
ϕI(Xn+ζ(c))

g(Xn)

]
.

We can rewrite this expression as the desired formula by the proof logic in Step 1. □

Step 3 (Recall Chance Formula) The recall chance is Rn = EXn [B(Xn, n)], where

B(x , n) ≡
∫ ∞

0

h (ζ(c)− s)
g(s+ x )

g(x )

(
1−

[∫∞
s
H(ζ(c)− t)g(t+ x )dt∫∞

0
H(ζ(c)− t)g(t+ x )dt

]n−1
)
ds. (32)

Proof: Formula (32) follows at once from Steps 1 and 2 and Rn = En −Kn. □

Lastly, we prove that Rn increases in n. This is subtle, for while B(x , n) in (32)
increases in n, the parenthetical factor in (32) rises in x , and Xn falls stochastically
in n. But Step 4 implies that B(x , n) falls in x , and so Rn=EXn [B(Xn, n)] rises in n.

Step 4 (Recall Chance and Stage) B(x , n) weakly falls in x , and Rn rises in n.

Proof: As Sam strikes (x , z) if z≥ζ(c), if he recalls (x , z) then he once passed it over,
and so z < ζ(c); thus, w∗(x , z) = x + z < x + ζ(c) = w̄. Also if Sam recalls (x , z) at
stage n, then he must have explored (x , z), and so x > Xn. Given w∗(x , z) = w ≡ x +z

and x > Xn, event (26b) is equivalent to the intersection of the next two events:

Xn + ζ(c) > w > Xn + Zn and x > Xn, (30′)

X ′ > Xn and w > X ′ + Z ′ for n− 2 prior options (X ′,Z ′). (30′′)

By (30′), (Xn,Zn) obeys both inequalities in (26b) and (x , z) ranks before (Xn,Zn).
By (30′′), n−2 other options satisfy (26b), also ranking before (Xn,Zn). By Claim 4,
the ex ante chance of recall rn is the ex ante chance of (30′), (30′′), (26a) and (26c).

To compute rn, let Υ(w) be the density of (i) the interim variable W ≡ X+Z = w

for the target option, (ii) a given option (Xn,Zn) obeying (30′) and (iii) n−2 options
(X ′,Z ′) obeying (30′′). By Claim 4, (26a), and (26c), the stage-n recall chance is

rn = N(N − 1)

(
N − 2

N − n

)∫ ∞

u

Υ(w)G(w − ζ(c))N−ndw (34)

The coefficient counts the ways to choose the target option (x , z), the last explored
option (Xn,Zn), and the n−2 prior options (X ′,Z ′), and N−n later options (X ′′,Z ′′).
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First, the density of w≡x + z is
∫∞
s
h (ζ(c)− t) g(t+w− ζ(c))dt, where xn = s−

ζ(c)+w. Event Xn+ζ(c) > w in (30′) has density g(s+w−ζ(c)) for s > 0, and given xn,
the second inequality event in (30′) has chance P (Zn < w−xn)=H(ζ(c)−s). Each of
the n−2 events in (30′′) has chance

∫∞
s
H(ζ(c)−t)g(t+w−ζ(c))dt = ι(s, w−ζ(c), ζ(c)),

if ι(s, x , ζ(c))≡
∫∞
s
H(ζ(c)− t)g(t+ x )dt. By event independence:

Υ(w)≡
∫ ∞

0

H(ζ(c)−s)g(s+w−ζ(c))
[∫ ∞

s

h (ζ(c)−t)g(t+ w− ζ(c))dt

]
ι(s, w−ζ(c), ζ(c))n−2ds.

Recalling (7) and (34), then (20) and (21), the stage-n conditional recall chance equals

Rn=
rn
σn

=
(n− 1)

∫∞
u−ζ(c)

Υ(x + ζ(c))G(x )N−ndx∫∞
u−ζ(c)

g(x )δ(x , c)n−1G(x )N−ndx
=EXn

[
(n− 1)Υ(Xn + ζ(c))

g(Xn)δ(Xn, c)n−1

]
(35)

where x = w−ζ(c). Since Rn = EXn [B(Xn, n)] by Claim 3, the B(Xn, n) formula (32)
is the bracketed term in (35). Since B(x , n) = (n− 1)Υ(x + ζ(c))/[g(x )δ(x , c)n−1],

B(x , n)

n− 1
=

∫ ∞

0

H(ζ(c)− s)g(s+ x )

g(x )

[∫∞
s
h (ζ(c)− t) g(t+ x )dt∫∞

s
H(ζ(c)− t)g(t+ x )dt

]
ν(s, x , ζ(c))n−1ds (36)

where we define ν(s, x , ζ(c)) ≡ ι(s, x , ζ(c))/δ(x , c).
We argue that B(x , n) falls in x : First, g(s+x )/g(x ) falls in x , as g is log-concave.

Second, given g and H log-concave, It≥sH(ζ(c) − t)g(t + x ) is log-supermodular in
(s, ζ(c),−x , t), the integral ι(s, x , ζ(c)) ≡

∫∞
s
H(ζ(c)−t)g(t+x )dt is log-supermodular

in (ζ(c),−x ), by Karlin and Rinott (1980), and so log-submodular in (ζ(c), x ). Hence,∫∞
s
h (ζ(c)− t) g(t+ x )dt∫∞

s
H(ζ(c)− t)g(t+ x )dt

=
∂ log[ι(s, x , ζ)]

∂ζ
(37)

falls in x . By log-concavity of g, the following also falls in x :

∂ log[ι(s, x , ζ(c))]

∂s
=

−H(ζ(c)− s)g(s+ x )∫∞
s
H(ζ(c)− t)g(t+ x )dt

=
−H(ζ(c)− s)∫∞

0
H(ζ(c)− r − s)g(r+s+x )

g(s+x )
dr

(38)

So ι(s, x , ζ(c)) is log-submodular in (s, x ), and ν(s, x , ζ(c)) ≡ ι(s, x , ζ(c))/ι(0, x , ζ(c))

falls in x . As g(s+ x )/g(x ), and (37) and (38) fall in x , B(x , n) in (36) falls in x . □
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C Search Duration and Prize Dispersion Proofs
C.1 Proof of Increased Search Duration Claim in Theorem 4

Index the distribution Ht so that Zt has a mean-enhancing dispersion as t rises. The
quantile function steepens in t, or H−1

t (ᾱ)−H−1
t (α) rises in t if ᾱ > α; if differentiable,

∂H−1
t (α)/∂α rises in t. Let ζt(c) solve the analogous Bellman equation (3).

Claim 5 For any ∆ ≥ 0, Ht(ζt(c)−∆) increases in the dispersion index t.

Proof: Changing variables from z to α=Ht(z−∆) in the Bellman equation (3) yields:

c =

∫ 1

Ht(ζt(c)−∆)

(1−Ht(H
−1
t (α) + ∆))

∂H−1
t (α)

∂α
dα (39)

Put At(α,∆) ≡ Ht(H
−1
t (α)+∆). So H−1

t (At(α,∆))−H−1
t (α) ≡ ∆, and At(α,∆) falls

in t (more disperse). As t rises, the integrand of (39) rises, as does Ht(ζt(c)−∆).□

Claim 6 Every survival chance σn rises in the dispersion index t.

Proof: By (7), the survival chance σn rises in δt(x , c) and falls in u−ζt(c). By Claim 5,
Ht(ζt(c) − s) rises in t. From (5), δt(x , c) =

∫∞
0
Ht(ζt(c) − s)g(x + s)ds rises in t,

by (5). Thus, σn rises if u− ζt(c) falls in t. Now, a mean-enhancing dispersion in Zt

is a mean-preserving dispersion of Zt plus a positive constant. Also, ζt(c) rises in any
MPS of Zt by (3), and thus in a mean-preserving dispersion. Also, ζt(c) rises when
Zt shifts up by a positive constant, by (3). So ζt(c) rises in t, and u− ζt(c) falls. □

C.2 Proof of the Recall Moment Claim in Theorems 4 and 9

The chance ρn that the recall moment is at least stage n ≥ 1 falls in n. By Lemma 1,
Sam strikes or passes in stage n if the fallback is at most the cutoff Xn+1 + ζ(c). So

ρn = P ( max
j≤n−1

{u,Xj + Zj} < Xn+1 + ζ(c)). (40)

= N

(
N − 1

n− 1

)∫ ∞

u−ζ(c)

∫ ∞

xn+1

[∫ ∞

xn

H(xn+1 + ζ(c)− x)dG(x)

]n−1

dG(xn)dG(xn+1)
N−n

Claim 7 The recall moment rises with a mean-preserving dispersion increase of Z.
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Proof: By Claim 5, H(xn+1 + ζ(c) − x) increases in the dispersion of Z. Also, the
optionality value ζ(c) increases as Z incurs a mean-preserving dispersion, reducing
the lower support u− ζ(c) of the integral in (40). Altogether, ρn increases. □

Claim 8 The recall moment stochastically increases in the number of options N .

Proof: By the Markov property of order statistics, the joint distribution of the n top
known factors is that of n i.i.d. draws X from G, given X > xn+1 (proof of Theorem 2),
i.e., with cdf G̃(x) = G(x)/[1−G(xn+1)] on [xn+1,∞). Since 1−G is log-concave, G̃(x)
grows less disperse as xn+1 increases (Theorem 3.B.19 in Shaked and Shanthikumar
(2007)). So the gap between draws from G̃ and xn+1 stochastically shrinks. As N
rises, u−Xn+1 and Xj −Xn+1 stochastically fall, and so ρn rises, as (40) implies:

ρn = P ( max
j≤n−1

{u−Xn+1,Xj−Xn+1+Zj} < ζ(c)) □

C.3 Dispersion in X : Proof of Theorem 5 and Corollary 1

Theorem 5: Write Xj −Xn = Σn−1
k=j (Xk−Xk+1) = Σn−1

k=j∆k, for ∆k ≡ Xk−Xk+1 ≥ 0.
Then

σn = P ({Xn + ζ(c) > Ωn−1) = P
(
{Xn + ζ(c) > u} ∩j<n

{
ζ(c)− Σn−1

k=j∆k ≥ Zj

})
is the chance of event (6). By the joint distribution ψ of ∆⃗n=(∆1, . . . ,∆n−1) and Xn:

σn =

∫
xn∈R,∆⃗n∈Rn−1

+

I{xn+ζ(c)≥u}

n−1∏
j=1

H(ζ(c)− Σn−1
k=j∆k)dψ(∆⃗n, xn). (41)

With no quit payoff (u=−∞), the indicator I=1 in (41). As X grows less dispersive,
quantiles compress by (10), and ∆⃗n ≡ {X1−X2, . . . ,Xj−Xj+1, . . . ,Xn−1−Xn} falls
stochastically. Since all gaps ∆j stochastically fall for j=1, . . . , n− 1, σn rises. □

Corollary 1: Let τ(u,X ) be the search duration. We argue that τ(u,X ) < τ(u, 0)

iff ζ(c) > u. Assume ζ(c) > u. First, τ(−∞,X ) < τ(−∞, 0) for nondegenerate X
(Theorem 5). As noted after (7), search duration falls in u, for non-degenerate X , i.e.
τ(u,X )<τ(−∞,X ) for all u > −∞. But when X = 0, Sam never stops if u < ζ(c).
So search duration is constant in u: τ(−∞, 0) = τ(u, 0). So τ(u,X ) < τ(−∞,X ) <

τ(−∞, 0) = τ(u, 0). But if ζ(c) ≤ u then search duration is τ(u,X )>τ(u, 0)=0. □
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D Web Search Proofs

D.1 Expected Search Duration and Attraction
Claim 9 (Optionality) The search optionality value ζ(α, c) falls in accuracy α,
when ζ(0, c) > −c = ζ(1, c). Also, ζ(α, c)/

√
1− α2 monotonically falls in α to −∞.

Proof: As α rises, the hidden factor experiences a mean preserving contraction, and
so ζ(α, c) falls. As α ↑ 1, (13) reduces to c =

∫ 0

ζ(α,c)
ds = −ζ(α, c), and so ζ(α, c) ↓ −c.

Next, change variables to s′ = s/
√
1− α2 in (13), and let z(α) ≡ ζ(α, c)/

√
1− α2.

This yields c/
√
1− α2 =

∫∞
z(α)

[1− Φ (s′)] ds′. The LHS rises to ∞ as α rises to 1.
Since the mean of a left truncated Gaussian distribution is finite,

∫∞
z(α)

[1− Φ (s′)] ds′ =

E[max{z(α), S ′}]− z(α) is finite if z(α)>−∞. So z(α) ↓ −∞ as α rises to 1. □

Attraction and Expected Search Duration. The attraction is the chance
that a random option (X ,Z) does not prevent Sam from exploring an option with
known factor x , i.e. the sum of the chance that x >X and the delay chance δ(x , c),
or, π(α, x)≡G(x )+δ(x , c). Put X =αX and Z=

√
1− α2Z into the δ formula in (5).

Then
π(α, x|c) =

∫ ∞

0

Φ

(
ζ(α, c)− αs√

1− α2

)
ϕ(x+ s)ds+ Φ(x). (42)

Next, using (7), the expected search time formula τ(α) =
∑N

n=1 σn collapses to

τ(α) = N

∫ ∞

ℓ(α,u,c)

π(α, x|c)N−1ϕ(x)dx. (43)

D.2 Rising Accuracy, I: Proof of Theorem 6

Claim about τ : If u = −∞, then τ(α) = N
∫∞
−∞ π(α, x|c)N−1dΦ(x ) by (43), as

ℓ(α,−∞, c) = −∞ by (14). Then τ ′(α) < 0, since πα(α, x) < 0 by Claim 10 in §D.3.

Claim about E[WA(α, c)]: We argue ∂
∂α
E[WA(α, c)] < 0 for small c > 0 and for

all u. By footnote 30, we only need show Mc(α, c)↓0 as c→0. By (16) and (43),

Mc(α, c) = −τ ′(α) =−N(N − 1)

∫
ℓ(α,u,c)

π(α, x|c)N−2∂π(α, x|c)
∂α

dΦ(x )

+Nℓα(α, u, c)ϕ(ℓ(α, u|c))π(α, ℓ|c)N−1.

(44)
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Let c ↓ 0. Then the first line of (44)’s RHS vanishes. For ζ(α, c) ↑∞ by (13) and so
π(α, x|c)→1 by (42), and π(α, x|c)N−2 → 1 in (44). Differentiation of (13) yields

ζα(α, c) = − α√
1− α2

ϕ(z(α))

1− Φ(z(α))
< 0. (45)

where z(α) ≡ ζ(α, c)/
√
1−α2. Then by (42) and (45),

∂π(α, x|c)
∂α

=−
∫ ∞

0

ϕ

(
z(α)− α√

1− α2
s

)
ϕ(x+s)

(
α( ϕ(z(α))

1−Φ(z(α))
− z(α))

1− α2
+

s

(1− α2)3/2

)
ds

Since z(α) ↑ ∞ as c ↓ 0, and so ϕ(z(α) − αs/
√
1− α2) → 0. By the inverse Mills

ratio, ϕ(z(α))/[1 − Φ(z(α))] − z(α) = E[Z − z(α)|Z > z(α)] > 0 falls in z(α), by
log-concavity. So ∂

∂α
π(α, x|c)→0 as c↓0, and thus so does the first line of (44).

Put ℓ ≡ ℓ(α, c) ≡ ℓ(α, u, c). The second line of (44) vanishes as c ↓ 0, since
ℓα(α, c)ϕ(ℓ(α, c)) → 0. Put (45) into ℓα(α, c)=−[ℓ(α, c) + ζα(α, c)]/α (footnote 33):

ℓα(α, c)ϕ(ℓ) = −ϕ(ℓ)
α

[
ℓ(α)− α√

1− α2

ϕ(z(α))

1− Φ(z(α))

]
= −ϕ(ℓ)ℓ

α

[
1− α√

1− α2

z(α)

ℓ
− α

ℓ
√
1− α2

(
ϕ(z(α))

1− Φ(z(α))
− z(α)

)]
(46)

To show that (46) vanishes as c ↓ 0, we add and subtract z(α)α/
√
1− α2 to the

bracketed term, and factor out ℓ. As c ↓ 0, ζ(α, c) ↑∞ by (42). So by (14), ℓ(α, c)≡
[u − ζ(α, c)]/α ↓ −∞, and thus the lead factor on (46) vanishes: ϕ(ℓ)ℓ→ 0, for ϕ a
Gaussian density. The bracketed term is boundedly finite, as z(α)≡ ζ(α, c)/

√
1−α2

implies z(α)/ℓ(α, c) → −α/
√
1−α2 as ζ ↑ ∞. The last parenthetical term equals

E[Z − z(α)|Z > z(α)] > 0, by the inverse Mills ratio, and falls to 0 as z(α) ↑ ∞. □

D.3 Increasing Accuracy, II: Proof of Theorem 7

Claim about quitting chance: Recall the attraction notion in §D.1. Given
π(α, ℓ(α, u, c)|c) ≡ δ(u−ζ(α, c), c)+G(u−ζ(α, c)), q(α) = ΣN

n=1qn, and formula (24),
the chance that Sam either does not search, or does, but eventually quits, equals:

q(α) = ΣN
n=0

(
N
n

)
δ(u− ζ(α, c), c)nG(u− ζ(α, c))N−n = π(α, ℓ(α, u, c)|c)N . (47)
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By algebraic simplification (see Online Appendix II):

∂

∂α
π(α, ℓ(α, u, c)|c) = −

[
1− Φ

(
ζ(α, c)/

√
1− α2

)]
ℓ(α, u, c)ϕ(ℓ(α, u, c))/α. (48)

We have q′(α) > 0 iff ∂π(α, ℓ(α, u, c))/∂α > 0, and so by (48), iff ℓ(α, u, c) < 0, or
ζ(α, c) > u. Given Claim 9, this validates Figure 8 and proves the statement for q.

Claim about CTR: The CTR is σ1 = 1 − Φ(ℓ(α, u, c))N and hence ∂σ1/∂α =

−Nϕ(ℓ)Φ(ℓ)N−1ℓα has the sign of −ℓα(α, u, c). The derivative ℓα(α, u, c) falls in u by
footnote 33, and ℓα(α, u, c) > 0 for low enough u, by (14). So the CTR claims holds.

Claim about τ : We show that τα is single-crossing in u, i.e., negative then positive
as u increases. Since πα(α, x|c) < 0 by Claim 10 below, and ℓα(α, u, c) > 0 for ℓ < 0,
we have τα < 0 for low enough u, from (43). Differentiate (43) in α, and then change
variables s = x− ℓ(α, u, c). Writing ℓ(α, u, c) = ℓ, the slope ∂τ/∂α equals:

− ℓαNπ(α, ℓ|c)N−1ϕ(ℓ) +N(N − 1)

∫ ∞

0

π(α, ℓ+ s|c)N−2πα(α, ℓ+ s)ϕ(ℓ+ s)ds (49)

=Nπ(α, ℓ)N−1ϕ(ℓ)

[
−ℓα + (N − 1)

∫ ∞

0

[
π(α, ℓ+ s|c)
π(α, ℓ|c)

]N−1
πα(α, ℓ+ s|c)
π(α, ℓ+ s|c)

ϕ(ℓ+ s)

ϕ(ℓ)
ds

]

Let Ξ(α, u) be the bracketed term. Pick large u so that ℓ = ℓ(α, u, c) ≥ 0. The
integrand in Ξ is negative and rises in ℓ, and thus in u given ℓu(α, u, c)>0 by (14):

• 0 >
πα(α, ℓ+ s|c)
π(α, ℓ+ s|c)

rises in ℓ by log-supermodularity of π(α, x) (Claim 10 below)

• π(α, ℓ+ s|c)
π(α, ℓ|c)

falls in ℓ by log-concavity of π(α, x|c) in x (Claim 11 below)

• The last fraction ϕ(ℓ+ s)/ϕ(ℓ) falls in ℓ, since ϕ is strictly log-concave.

Also, ℓα(α, u, c) falls in u by (14). As Ξ(α, u) is increasing in u, τα(α, u) is strictly
single-crossing in u. But as noted above, τα(α, u) < 0 for small enough u. When
u→∞, ℓα(α, u, c)→−∞ and so Ξ(α, u)>0, and τα(α, u)>0. So τα(α, u) changes sign
exactly once as u rises from −∞ to ∞. □

Claim 10 (Log-supermodularity of Attraction) πα(α, x) < 0 < (log[π(α, x)])xα.
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Proof: Since ∂[ζ(α, c)/
√
1− α2]/∂α < 0 by Claim 9, differentiating (42) yields πα < 0.

Next, rewrite (42) as π(α, x) =
∫∞
−∞ ϕ(x+ s)f(α, s)ds, where for s ≤ 0:

f(α, s) ≡ Φ
(
(ζ(α, c)− αs)/

√
1− α2

)
and f(α, s) ≡ 1 for s ≤ 0. Since the Gaussian density obeys ϕ′(x) = −xϕ(x), we have

−∂ log[π(α, x)]
∂x

=

∫∞
−∞(x+ s)ϕ(x+ s)f(α, s)ds∫∞

−∞ ϕ(x+ s)f(α, s)ds
=

∫∞
−∞ rϕ(r)f(α, r − x)dr∫∞
−∞ ϕ(r)f(α, r − x)dr

. (50)

This is the mean of a r.v. with density ϕ(r)f(α, r − x). Next, we argue f(α, s) is
log-submodular, or equivalently f(α, s2)/f(α, s1) falls in α for all s2 > s1. First, if
s1, s2 < 0, we have f(α, s2)/f(α, s1) ≡ 1/1 = 1 weakly falls in α. Second, if s1, s2 > 0,
then f(α, si) ≡ Φ((ζ(α, c)−αsi)/

√
1− α2) for i = 1, 2. It suffices that this falls in α:

∂ log[f(α, s)]

∂s
= − αs√

1− α2
ϕ

(
ζ(α, c)− αs√

1− α2

)/
Φ

(
ζ(α, c)− αs√

1− α2

)
. (51)

This follows from Φ log-concave, and because [ζ(α, c)−αs]/
√
1−α2 falls in α, as

∂[ζ(α, c)/
√
1−α2]/∂α<0 by Claim 9 and s>0. Third, f(α, s2)/f(α, s1) = f(α, s2) =

Φ
(

ζ(α,c)−αs2√
1−α2

)
falls in α, for s1 ≤ 0 < s2. Altogether f(α, s) is log-submodular, and

thus the middle term in (50) falls in α, or ∂2 log[π(α, x)]/∂α∂x>0. □

Claim 11 (Log-Concavity of Attraction) πx(α, x)>0>(log[π(α, x)])xx if x≥0

Proof: For the log-concavity of π(α, x) in x, integrate (42) by parts to get

π(α, x) =
α√

1− α2

∫ ∞

0

ϕ

(
ζ(α, c)− αs√

1− α2

)
Φ(x+ s)ds+ Φ(x)

(
1− Φ

(
ζ(α, c)√
1− α2

))
.

Then

πx(α, x) =
α√

1− α2

∫ ∞

0

ϕ

(
ζ(α, c)− αs√

1− α2

)
ϕ(x+s)ds+ϕ(x)

(
1− Φ

(
ζ(α, c)√
1− α2

))
> 0

Since the Gaussian density ϕ is hump-shaped and peaks at 0, the RHS falls in x ≥ 0.
In other words, (log[π(α, x)])xx < 0 for x ≥ 0. □
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D.4 Marginal Value of Information: Proof of Lemma 5

By definition, the L event occurs when Sam explores an option and draws ZA ≥
z(α) ≡ ζ(α, c)/

√
1− α2. Given the logic in (6a)-(6c), Sam explores an option with

known factor x if it dominates the outside option, i.e. x > ℓ(α, u, c), and the other
options either ranked after x or delay it, which happens with chance π(x , c)N−1. Thus,
the L event has ex-ante chance P (L) = [1 − Φ(z(α))]N

∫∞
ℓ(α,u,c)

π(x , c)N−1dΦ(x) and
P (L)E[XA|L] can be written as the right side of (52) below:

Claim 12 The marginal value of information can be written as

M(α, c, u) =
∂V(α, c, u)

∂α
= [1−Φ (z(α))]N

∫ ∞

ℓ(α,u,c)

π(α, x)N−1xdΦ(x) ≥ 0. (52)

Proof: First, ∂V/∂u = q, by the proof of Claim 22. Hence, ∂2V/∂u∂α=q′(α). Since
the quitting chance is q(α) = π(α, ℓ(α, u, c))N by (47), then by (48),

∂q

∂α
= Nπ(α, ℓ(α, u, c))N−1

(
−u+ ζ(α, c)

α2

)
ϕ

(
u− ζ(α, c)

α

)[
1−Φ

(
ζ(α, c)√
1− α2

)]
. (53)

We can derive ∂V/∂α by integrating ∂q/∂α over u, using (53). We use the boundary
condition ∂V/∂α|u=∞ = 0, because as u → ∞ Sam never searches through and the
accuracy is payoff irrelevant. Integrating (53) in u yields (52).

As 0 < π(α, x)N−1 is strictly increasing in x, by Claim 11 , and
∫∞
ℓ(α,u,c)

xdΦ(x) ≥ 0,
the integral in (52) is positive.39 Hence, M(α, c, u) ≥ 0. □

D.5 Marginal Value of Information Proofs: Theorem 8, Etc.

Claim that M(1, c, u)>M(0, c, u). We prove it in each of three quit payoff u cases:

Case 1: u > ζ(0, c): As α → 0, by (14), ℓ(α, u, c) → ∞ if u > ζ(0, c), ℓ(α, u, c) →
−∞ if u < ζ(0, c), and ℓ(α, u, c) → 0 if u = ζ(0, c). So M(0, c, u) = 0 if u > ζ(0, c),
by (52). Next, recall z(α) ≡ ζ(α, c)/

√
1− α2. As α → 1, by Claim 9, z(α) → −∞.

Thus, π(α, x) → Φ(x) by (42). Since ℓ → u− c by (14) and Claim 9, M(1, c, u) > 0

by (52). Hence, M(1, c, u) >M(0, c, u) for u > ζ(0, c).
39By Karlin and Rubin (1955), if f is single-crossing and

∫
f(x)dx ≥ 0, positivity is preserved if

one multiplies the integrand by a positive and increasing function b(x), namely
∫
f(x)b(x)dx ≥ 0.
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Case 2: u=−∞: Divide and multiply (52) by τ(α), where τ(α) is given by (43),
then:

M(α, c, u) =

∫∞
ℓ(α,u,c)

π(α, x)N−1xdΦ(x)∫∞
ℓ(α,u,c)

π(α, x)N−1dΦ(x)
τ(α) [1− Φ (z(α))] . (54)

When u = −∞, ℓ(α, u, c) = −∞. Hence, the fraction on the RHS of (54) rises in α

because π(α, x) is log-supermodular in (α, x) by Claim 10. So this fraction is higher
when α = 1 than when α = 0, and strictly so when N > 1. When N = 1, the fraction
vanishes and thus M(0, c,−∞) = M(1, c,−∞) = 0.

We show τ [1−Φ (z(α))] is higher α = 1 than at α = 0. As α → 1, τ → 1,
as Sam always participates when u = −∞, and one search suffices as α → 1. Also
[1−Φ (z(α))] → 1 since z(α) → −∞, by Claim 9. Then τ [1−Φ (z(α))] → 1 as α → 1.
As α → 0, Sam stops iff Z > z(α), except in the last period. So the search duration
τ(α) is strictly lower than that of an infinite horizon stationary model with constant
cutoff z(α), which is 1/ [1−Φ (z(α))] by standard results. So τ [1−Φ (z(α))] < 1 as
α → 0. So M(0, c,−∞) ≤ M(1, c,−∞) and the inequality binds iff N = 1.

Case 3: u ∈ (−∞, ζ(0, c)]: By (52), M(α, c, u) is hump-shaped in u and peaks
at u = ζ(α, c). Since ζ(1, c) < ζ(0, c), M(1, c, u) rises and then falls as u rises in
(−∞, ζ(0, c)]. In the same interval of u, as α → 0, by (14), ℓ(α, u, c) → −∞ if
u < ζ(0, c), and ℓ(α, u, c) → 0 if u = ζ(0, c). Hence M(0, c, u) is constant in u for
u ∈ (−∞, ζ(0, c)) and jumps up at u = ζ(0, c) by (52). Since we showed M(0, c, u) ≤
M(1, c, u) at u=−∞, we need only check the inequality at u = ζ(0, c).

When u=ζ(0, c), ℓ(α, u, c)→0 as α→0. Also, π(0, x)=Φ(x)+[1−Φ(x)]Φ (ζ(0, c))

by (42), as α→0. Hence, ∂π(0, x)/∂x=ϕ(x)[1−Φ (ζ(0, c))]. Given (43), rewrite (54)
as

M(0, c, ζ(0, c)) =

∫∞
0
π(0, x)N−1xdΦ(x)∫∞

0
π(0, x)N−1dΦ(x)

∫ ∞

0

Nπ(0, x)N−1∂π(0, x)

∂x
dx (55)

where the last integral equals 1− π(0, 0)N .
As α → 1, z(α) → −∞ and so [1−Φ(z(α)] → 1. Since Sam explores at most one

option, search duration is his participation chance: τ(α) = σ1(α) = 1−Φ(ℓ(α, u, c))N .
Also, ζ(α, c) → −c and so ℓ(α, ζ(0, c), c) → ζ(0, c) + c. Hence (54) becomes

M(1, c, ζ(0, c)) =

∫∞
ζ(0,c)+c

π(1, x)N−1xdΦ(x)∫∞
ζ(0,c)+c

π(1, x)N−1dΦ(x)
[1− Φ(ζ(0, c) + c)N ]. (56)
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We first argue the fraction in (56) exceeds that in (55). The fraction in (54) is the
truncated mean of a r.v. with density π(α, x)N−1ϕ(x) and support [ℓ,∞). Fixing ℓ,
it rises in α since π(α, x) is log-supermodular in (α, x) by Claim 10. This fraction
rises in the lower support ℓ, as a truncated mean. The lower support of the truncated
mean in (55) is 0 and that in (56) is ζ(0, c) + c. We have ζ(0, c) + c > 0 because
ζ(0, c) > ζ(1, c) = −c (Claim 9). Hence, the fraction in (56) exceeds that in (55).
Finally, the last integral in (55) is 1−π(0, 0)N and is smaller than 1−Φ(ζ(0, c)+ c)N

in (56) because π(0, 0) > Φ(ζ(0, c) + c) ((60) in Online Appendix III).

Claim that Mα(α, c)> 0 for small search costs c > 0: Recall that ζ(α, c)
falls in α, and ζ(α, c) ↑ ∞ as c ↓ 0. So ℓ(α, u, c) ≡ [u − ζ(α, c)]/α rises in α for
small c > 0. So the fraction in the RHS of (54) rises in α for small c > 0 because
π(α, x ) is log-supermodular and ℓα(α, c) > 0 for small c > 0. Since by (45),

z′(α) =
∂

∂α

ζ(α, c)√
1− α2

= − α

1− α2

(
ϕ(z(α))

1− Φ(z(α))
− z(α)

)
We see that the α derivative of log{τ(α) [1−Φ (z(α))]} is

τ ′(α)

τ
+

ϕ(z(α))

1− Φ(z(α))

(
ϕ(z(α))

1− Φ(z(α))
− z(α)

)
α

1− α2
. (57)

Let c ↓ 0. Then τ ′(α)→ 0 because §D.2 shows that the right side of (44) vanishes.
Next, ζ(α, c) → ∞ and z(α)→∞. In the limit, the second term of (57) tends to
α/(1−α2) > 0, by l’Hopital’s rule (61 in Online Appendix III). Thus, τ(α)[1−Φ (z(α))]

is strictly rising in α, for small c > 0. Altogether, (54) rises in α, for small c > 0. □

Proof of Corollary 2: To see that the number of options N and accuracy α

are complements, consider the derivative ∂V/∂α in (54). As N rises, the r.v. that has
density π(α, x)N−1ϕ(x) increases in the first-order stochastic sense because π(α, x)
increases in x by Claim 11. Also, search duration τ rises in N , by Theorem 9. So
∂2V/∂α∂N ≥ 0. The claim ∂2V/∂N∂c≤ 0 follows directly from the Envelope result
that ∂V/∂c=−τ (Online Appendix §I) and Theorem 9 which states τ rises in N . □
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E More Search Options Proofs
E.1 Equivalent Thin Tail Characterizations

By log-concavity, ℓ = limx→F−1(1) f(x )/[1− F (x )] exists. If F has a thin tail, ℓ = ∞.

Claim 13 If F−1(1)=∞, then limx→F−1(1) f(s+x )/f(x )=e−sℓ for all s > 0.

Proof: As F−1(1) = ∞, for all s>0:

lim
x→∞

log

(
1− F (s+ x )

1− F (x )

)
= lim

x→∞

∫ s

0

−f(r + x )

1− F (r + x )
dr =

∫ s

0

lim
x→∞

−f(r + x )

1− F (r + x )
dr = −sℓ,

exchanging integration and limits by the Monotone Convergence Theorem: f/(1−F )
is monotone if f is log-concave. For all s > 0, by l’Hôpital’s rule and exponentiation:

lim
x→∞

f(s+ x )

f(x )
= lim

x→∞
exp

[
log

(
1− F (s+ x )

1− F (x )

)]
=exp

[
lim

x→∞
log

(
1− F (s+ x )

1− F (x )

)]
=e−sℓ

Claim 14 If F−1(1) = ∞, F has a thin tail iff limx→F−1(1)
f(s+x )
f(x )

= 0 for all s>0.

Proof: Given a thin tail, ℓ = ∞ and f(s+x )/f(x ) → 0 for s > 0 by Claim 13. But if
limx→∞ f(s+ x )/f(x ) = 0 ∀s > 0, then limx→F−1(1) f(x )/[1− F (x )] equals

lim
x→∞

(∫ ∞

0

f(s+ x )

f(x )
ds

)−1

=

(
lim

x→∞

∫ ∞

0

f(s+ x )

f(x )
ds

)−1

=

(∫ ∞

0

lim
x→∞

f(s+ x )

f(x )
ds

)−1

= ∞.

by continuity and the Monotone Convergence Theorem. Hence, F has a thin tail. □

E.2 Increasing Number of Options: Proofs of Theorems 9–10

Index the striking, recall and quitting hazard rates by the number of options N . We
argue that KN

n , RN
n , and QN

n weakly fall in N , and so limits K∞
n , R∞

n , and Q∞
n exist.

Claim 15 (Known Factors) Conditional on hitting stage n, XN
n converges to G−1(1)

in probability as N → ∞, i.e., limN→∞ P (XN
n ≤ a|enter stage n)=0 if a < G−1(1).

Proof: By (20) and (21), the cdf of Xn is

P (XN
n ≤ a|enter stage n)=

∫ a

u−ζ(c)
δ(x , c)n−1[G(x )/G(a)]N−ng(x )dx∫∞

u−ζ(c)
δ(x , c)n−1[G(x )/G(a)]N−ng(x )dx

.
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As N → ∞, the numerator vanishes as G(x )/G(a) < 1 for all x ∈ [u − ζ(c), a), and
the denominator explodes, as G(x )/G(a) > 1 for x ∈ (a,∞) and the density g(x ) has
positive mass on (a,∞) if a<G−1(1). Thus, limN→∞ P (XN

n ≤ a)=0 ∀a<G−1(1). □

Claim 16 (Striking Chance) Fixing n, the conditional striking chance KN
n falls

in N . The limit K∞
n =1−H(ζ(c)) if G has a thin tail, and K∞

n >1−H(ζ(c)) if not.

Proof: Write KN
n =1−H(ζ(c))+EXN

n
[Γ(s,XN

n )], where Γ(s,XN
n ) is Step 2’s bracketed

term. As ι(s, x , ζ(c)) ≡
∫∞
s
H(ζ(c)− t)g(t+ x )dt is log-submodular in (s, x ) by (38)

and log-concavity of g, and g(s+x )/g(x ) weakly falls in x by log-concavity, (♦) holds:
Γ(s,XN

n ) falls in XN
n . As XN

n stochastically rises in N by Claim 1, KN
n falls in N .

The nth known factor XN
n → G−1(1) = ∞ in probability by Lemma 15, asN → ∞.

If G has a thin tail, then limx→∞ g(s + x )/g(x ) = 0 for s > 0, by Claim 14, and so
g(s+Xn)/g(XN

n )↓0 as N→∞. In this case, Step 2 implies limN→∞ KN
n = 1−H(ζ(c)).

Assume no thin tail of G. As limx→∞ g(t+ x )/g(x )=e−tℓ for ℓ > 0, by Claim 13,

Γ(s, x ) ≡
∫∞
s
H(ζ(c)− t)g(t+ x )/g(x )dt∫∞

0
H(ζ(c)− t)g(t+ x )/g(x )dt

→
∫∞
s
H(ζ(c)− t)e−ℓtdt∫∞

0
H(ζ(c)− t)e−ℓtdt

>0 as x → ∞.

(58)
By the above claim (♦), Γ(s, x ) falls in x , tending to limx→∞ Γ(s, x )> 0 by (58).
Since XN

n increases stochastically in N , by Claim 1, limN→∞EXN
n
[Γ(s,XN

n )]> 0 by
the Continuous Mapping Theorem, and therefore, K∞

n >1−H(ζ(c)). □

Claim 17 (Recall) RN
n falls in N and R∞

n = 0 iff G has a thin tail. The limit
E∞
n ≡R∞

n +K∞
n is 1−H(ζ(c)) if G has a thin tail, and E∞

n ∈ (1−H(ζ(c)), 1) if not.

Proof: As Xn stochastically rises in N (Claim 1), and B(x , n) falls in x (Step 4),
RN

n = EXn [B(Xn, n)] falls in N . So R∞
n = limx→G−1(1)B(x , n) by the Continuous

Mapping Theorem, as Xn→G−1(1) in probability if N →∞ (Claim 15).
If G has a thin tail, and s > 0, then g(s + x )/g(x ) ↓ 0 as x → G−1(1) = ∞, by

Claim 14; so B(x , n)↓0 by (32). With no thin tail, (1−Γ(s, x )n−1) in (32) is boundedly
positive as x →G−1(1) (by (58)). So limx→G−1(1)B(x , n)>0 by (32), i.e. R∞

n =0 iff G

has a thin tail.
By Claim 1, E∞

n =1−H(ζ(c)) if G has a thin tail. Else, E∞
n ∈ (1−H(ζ(c)), 1). □

Claim 18 (Quitting) For any G, QN
n falls in N , and tends to the limit Q∞

n = 0.
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Proof: Expanding Qn ≡ qn/σn using (24) and (7), respectively:

QN
n =

δ(u− ζ(c), c)nG(u− ζ(c))N−n

n
∫∞
u−ζ(c)

δ(x , c)n−1G(x )N−ng(x )dx
.

Easily, QN
n falls in N , since G(x )/G(u − ζ(c)) > 1 except at x = u − ζ(c), and thus

[G(x )/G(u− ζ(c))]N−n is monotone in N . By the monotone convergence theorem, we
can swap the (infinite) limit as N → ∞ and integration: lim

N→∞
QN

n = Q∞
n = 0. □

Claim 19 (Duration) Search duration rises in N .

Proof: Since Qn, Rn and Kn fall in N , search duration τ rises in N . For the striking
hazard rate Sk ≡ 1 − σk+1/σk yields (by a telescoping product) the survival chance
formula σk = σ1Π

k−1
j=1(1−Sj). As N rises, so does this product: σ1 = P (X1 > u−ζ(c))

rises by Claim 1, and every Sj≡Qj+Ej falls. Duration τ≡
∑N

k=1 σk rises in N . □

Claim 20 (Limit Recall Chance) Absent a thin tail, R∞
n rises in dispersion of X .

Proof: By (36) and ν(s, x , ζ(c))≡
∫∞
s
H(ζ(c)− t)g(t+ x )dt/

∫∞
0
H(ζ(c)− t)g(t+ x )dt,

B(x , n)

n− 1
=

∫ ∞

0

H(ζ(c)−s)g(s+x )

g(x )

[∫∞
s
h (ζ(c)− t)g(t+x )

g(x )
dt∫∞

s
H(ζ(c)− t)g(t+x )

g(x )
dt

][∫∞
s
H(ζ(c)− t)g(t+x )

g(x )
dt∫∞

0
H(ζ(c)− t)g(t+x )

g(x )
dt

]n−1

ds.

By Claim 13, with no thin tail, limx→G−1(1) g(s+x )/g(x )=e−sℓ for all s > 0, where ℓ ≡
lima→1 g(G

−1(a))/(1− a). Since R∞
n ≡ limN→∞EXN

n
[B(XN

n , n)]=limx→G−1(1)B(x , n):

R∞
n = (n−1)

∫ ∞

0

H(ζ(c)−s)e−sℓ

[∫∞
s
h (ζ(c)− t) e−tℓdt∫∞

s
H(ζ(c)− t)e−tℓdt

] [∫∞
s
H(ζ(c)− t)e−tℓdt∫∞

0
H(ζ(c)− t)e−tℓdt

]n−1

ds.

The limit ℓ ≡ lima→1 g(G
−1(a))/(1−a) falls in the dispersion of X . As in the proof of

Step 4,
∫∞
s
H(ζ(c)− t)e−tℓdt is log-submodular in (ℓ, ζ) and in (ℓ, s), by log-concavity

of H. So R∞
n rises in the dispersion of X , as each bracketed factor above falls in ℓ. □
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Proposed Online Appendix
I More Value Function Differentiability
By Lemma 4, the slope V ′

n(Ω) in (4) is the chance that the best-so-far Ω will be
eventually exercised. In the same spirit, now we show that the derivative of −Vn(Ω)
with respect to the search cost c equals the expected number of remaining searches.

Claim 21 (Differentiability) The period n value function Vn(Ωn) is differentiable
in the cost c when the stage n best option so far Ωn 6= w̄j+1 for j ∈ {n + 1, . . . , N}.
The derivative −∂Vn(Ωn)/∂c is the expected number of remaining searches.

Proof: Assume Ωn 6= w̄j+1 = xj+1 + ζ(c) for j ∈ {i, . . . , N}. The terminal value
function is VN(ΩN) = ΩN . Since ∂VN(ΩN)/∂c = 0, all claims are true at stage N .
Suppose the statements hold at stage n + 1. At stage n, if Ωn > w̄n+1 then Sam
stops searching. By (4), we have Vn(Ωn) = Ωn on [w̄n+1,∞) and so ∂Vn(Ωn)/∂c = 0.
If Ωn < w̄n+1, then Sam continues to stage n + 1. In this case, −∂Vn(Ωn)/∂c =

1− [∂Vn+1(Ωn)/∂c]Fn+1(Ωn)−
∫∞
Ωn
[∂Vn+1(z)/∂c]dFn+1(z) by (4). The integral exists

since ∂Vn+1(z)/∂c exists except at finitely many points. Then −∂Vn(Ωn)/∂c equals
one plus the expected number of remaining searches. This proves the induction. □

We now show that the value V is differentiable in u and c as long as X is non-
degenerate, namely

∂V(u, c)
∂u

= q and ∂V(u, c)
∂c

= −τ. (59)

Consider the stage after the realization of x⃗ ≡ {x1, x2, . . . , xN} but before Sam explores
any option. Let V0(x⃗) be Sam’s expected payoff. By Lemma 4 and Claim 21, V0(x⃗ )
is differentiable in u and c except when u = xj + ζ(c) for any j ∈ {1, . . . , N}. Sam’s
ex ante payoff before the known factors are realized is V(u, c) = E[V0(X⃗ )] where
the expectation is taken over X⃗ . Both ∂V(u, c)/∂u and ∂V(u, c)/∂c exist because
∂V0(X⃗ )/∂u and ∂V0(X⃗ )/∂c exist except on a set of measure zero.40

The slope ∂V0(x⃗ )/∂u is the quitting chance given x⃗ , by Lemma 4. And the
expected search time given x⃗ is −∂V0(x⃗ )/∂c, by Claim 21. So (59) holds. □

40By the Dominated Convergence Theorem (DCT), if ∂V0(X⃗ )/∂c exists except on a measure
zero set and |∂V0(X⃗ )/∂c| is bounded above by a constant a.s. for all c, then ∂V(u, c)/∂c =

∂E[V0(X⃗ )]/∂c = E[∂V0(X⃗ )/∂c]. Here the slope of V0(X⃗ ) with respect to c is bounded in [−N, 0], as
Sam at most searches N times. Hence the DCT applies. A similar proof works for ∂V(u, c)/∂u.
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II Omitted Algebra: Proof of Equation (48)
Put u = ζ(α, c) and x = ℓ(α, u, c) in (42). Then (∂/∂α)π(α, ℓ(α, u, c)) equals∫ ∞

ℓ(α,u,c)

ϕ

(
u− αs√
1− α2

)
(αu− s)√
1− α2

dΦ(s) +
∂ℓ(α, u, c)

∂α
ϕ(ℓ(α, u, c))

[
1− Φ

(
ζ(α, c)√
1− α2

)]
= ϕ(u)

∫ ∞

ℓ(α,u,c)

ϕ

(
s− αu√
1− α2

)
(αu− s)√
1− α2

ds+
∂ℓ(α, u, c)

∂α
ϕ(ℓ(α, u, c))

[
1− Φ

(
ζ(α, c)√
1− α2

)]
= − ϕ(u)√

1− α2
ϕ

(
ℓ(α, u, c)− uα√

1− α2

)
+
∂ℓ(α, u, c)

∂α
ϕ(ℓ(α, u, c))

[
1− Φ

(
ζ(α, c)√
1− α2

)]
= ϕ(ℓ(α, u, c))ϕ(ℓ(α, u, c))

[
1− Φ

(
ζ(α, c)/

√
1− α2

)]
The second equality uses the Gaussian density property ∂ϕ(s)/∂s = −sϕ(s).

III Omitted Algebra for Proof of Theorem 8

A Key Inequality. We verify π(0, 0) = 1/2(1 + Φ (ζ(0, c))) > Φ(ζ(0, c) + c), or

1− Φ(ζ(0, c) + c)

1− Φ(ζ(0, c))
≥ 1

2
. (60)

As c ↑ ∞, ζ(0, c) → −∞ by (13). By integration by parts of (13) yields ζ(0, c) + c =

E[max{Z, ζ(0, c)}] → E[Z] = 0 as c ↑ ∞, the LHS of (60) has limit 1/2 as c→ ∞.
Log-differentiate (60) in c, using ∂ζ(0, c)/∂c = 1/[1− Φ(ζ(0, c))] from (13):

ϕ(ζ(0, c) + c)

1− Φ(ζ(0, c) + c)

Φ(ζ(0, c))

1− Φ(ζ(0, c))
− ϕ(ζ(0, c))

1− Φ(ζ(0, c))

1

1− Φ(ζ(0, c))

≤
(

ϕ(ζ(0, c))

1− Φ(ζ(0, c))
+ c

)
Φ(ζ(0, c))

1− Φ(ζ(0, c))
− ϕ(ζ(0, c))

1− Φ(ζ(0, c))

1

1− Φ(ζ(0, c))

The first inequality owes to ϕ(ζ+c)/[1−Φ(ζ+c)] = E[Z|Z > ζ+c], where Z ∼ N(0, 1),
and E[Z|Z > ζ + c] ≤ E[Z|Z > ζ] + c by Heckman and Honore (1990). This has the
sign of

cΦ(ζ(0, c))− ϕ(ζ(0, c)) = −[1− Φ(ζ(0, c))](c+ ζ(0, c)) < 0.

Equality follows by integrating (13) by parts at α = 0, to get ζ(1−Φ(ζ))− ϕ(ζ) = c.
The last inequality reflects ζ(0, c) strictly falling in α and ζ(1, c) = −c, by (13).

Altogther, the LHS of (60) strictly falls in c, and inequality holds at all c > 0. □
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A Key Limit. We verify that

lim
z→∞

ϕ(z)

1− Φ(z)

(
ϕ(z)

1− Φ(z)
− z

)
→ 1. (61)

Now,
∫∞
z
sϕ(s)ds=−

∫∞
z
dϕ(s)=ϕ(z), as a Gaussian density ϕ obeys ϕ′(s)=−sϕ(s).

Then
ϕ(z)

1− Φ(z)
=

∫∞
z
sdΦ(s)

1− Φ(z)
=

∫∞
z
[1− Φ(s)]ds

1− Φ(z)
+ z.

integrating by parts. Hence,

lim
z→∞

ϕ(z)

1− Φ(z)

(
ϕ(z)

1− Φ(z)
− z

)
= lim

z→∞

ϕ(z)

1− Φ(z)

∫∞
z
[1− Φ(x)]dx

1− Φ(z)
= lim

z→∞

ϕ(z)

1− Φ(z)

1− Φ(z)

ϕ(z)

This limit is one, where the second equality uses L’Hôpital’s rule. □

IV Mean Accepted Option and Quit Payoff

We prove the claim in footnote 32 in §6 that a higher quit payoff worsens the accepted
eventual option, even thought one might accept that higher quit payoff.

Claim 22 (Mean Accepted Option) ∂
∂u
E[WA(α, c)] < 0 for large enough N

Proof: Recalling (18), the optimal payoff is V = uq + E[WA(α, c)](1 − q) − τc, and
so ∂V/∂u = q, by the Envelope Theorem (justified in Online Appendix I). Since
E[WA(α, c)] = V(α, c) + cτ(α, c) from (15), we have:

∂

∂u
E[WA(α, c)] = q − cN

α
π(α, ℓ(α, u, c))N−1ϕ(ℓ(α, u, c))

= π(α, ℓ(α, u, c))N−1

[
π(α, ℓ(α, u, c))− cN

α
ϕ(ℓ(α, u, c))

]
.

The first line uses (43) and ℓu(α, u, c) = 1/α from (14). The second line owes to
q = π(α, ℓ(α, u, c))N from (47). The right side is negative for large N . □
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