

The Economics of Counterfeiting

Elena Quercioli and Lones Smith Central Michigan and Wisconsin

Winter, 2012

Currency Counterfeiting: Past and Present

- Counterfeiting has forever been a thorn in the flesh of fiat money
- In the Civil War, counterfeiting helped push the Confederate currency out of use
- U.S. passed rate is now about 1-2 per 10,000 notes
- In 2007, the direct cost to USA public of passed money was a record \$61*M*
- Other costs are surely much larger:
 - undermining faith in the U.S. currency
 - driving notes out of circulation ("No \$100 bills allowed")
 - eliminating market transactions

Document Counterfeiting

- counterfeit checks are a much larger problem estimated \$20 billion in 2003 ("Nigerian scams")
- "Record \$6 Trillion of Fake U.S. Bonds Seized" (February 17, 2012)

The U.S. embassy in Rome has examined the securities dated 1934, which had a nominal value of \$1 billion apiece, they said in the statement. "Thanks to Italian authorities for the seizure of fictitious bonds for \$6 trillion" the embassy said.

Goods Counterfeiting

- "The Crime of the 21st Century" (FBI): fake, fake, fake
- In 2000, trade in counterfeit goods was \$450 billion
- goods counterfeiting is critically different: price is a market quantity, and people buy them for themselves as final consumers
- gray line exists between counterfeits and "knock-offs" (fake Prada), bought because they are cheaper

- The existing literature on counterfeit money consists of matching models that explore the possibility of monetary models with circulating counterfeit fiat money
- · People may see random signals of counterfeit status
- In this "general equilibrium" literature, people to discount money due to counterfeiting

- How realistic is this?
- Discounting happens for goods, but not much for notes and documents, except possibly when counterfeiting runs amok (Civil War)
- Discounting ignores the *actual choices* being made how carefully to examine notes

- How realistic is this?
- Discounting happens for goods, but not much for notes and documents, except possibly when counterfeiting runs amok (Civil War)
- Discounting ignores the *actual choices* being made how carefully to examine notes
- How useful is this?
- It did not seek to explain the facts of counterfeiting, nor can it. Apart from data, even "No \$100 bills allowed"

- How realistic is this?
- Discounting happens for goods, but not much for notes and documents, except possibly when counterfeiting runs amok (Civil War)
- Discounting ignores the *actual choices* being made how carefully to examine notes
- How useful is this?
- It did not seek to explain the facts of counterfeiting, nor can it. Apart from data, even "No \$100 bills allowed"
- Nosal and Wallace (2007), "A Model of (the Threat of) Counterfeiting," *Journal of Monetary Economics* Abstract: "there is no equilibrium with counterfeiting" (!)

- How realistic is this?
- Discounting happens for goods, but not much for notes and documents, except possibly when counterfeiting runs amok (Civil War)
- Discounting ignores the *actual choices* being made how carefully to examine notes
- How useful is this?
- It did not seek to explain the facts of counterfeiting, nor can it. Apart from data, even "No \$100 bills allowed"
- Nosal and Wallace (2007), "A Model of (the Threat of) Counterfeiting," *Journal of Monetary Economics* Abstract: "there is no equilibrium with counterfeiting" (!) ...phlogiston economics??

Talk Outline

 This paper travels a different road, developing a theory of costly vigilance, and applying it to counterfeiting

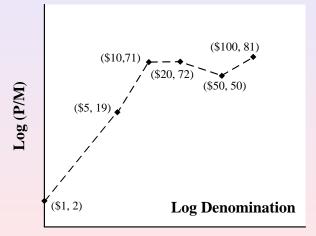
Talk Outline

- This paper travels a different road, developing a theory of costly vigilance, and applying it to counterfeiting
- Big picture: A counterfeiting game by bad guys knowingly trying to pass bad money induces a collateral passing game by good guys trying not to unknowingly accept bad money
- Let us examine these games in reverse order
- 1 "Hot Potato Game" (among good guys passing money)

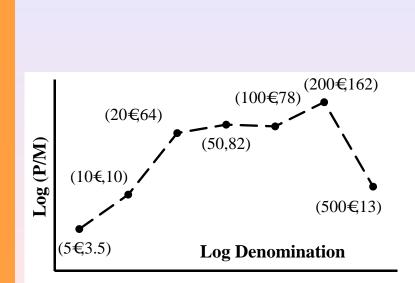
Talk Outline

- This paper travels a different road, developing a theory of costly vigilance, and applying it to counterfeiting
- Big picture: A counterfeiting game by bad guys knowingly trying to pass bad money induces a collateral passing game by good guys trying not to unknowingly accept bad money

Let us examine these games in reverse order

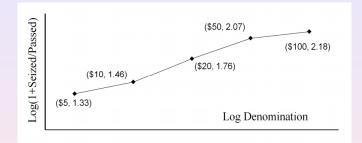

- 1 "Hot Potato Game" (among good guys passing money)
- 2 Counterfeiters Model 1: Non-optimizing Criminals --> cannot explain data
- Ounterfeiters Model 2: Criminals Optimize Quantity
 - ---> partially explain data (at low denominations)
- 4 Counterfeiters Model 3: Criminals Optimize Quality available data
 - --→ explains data
- ↔ Model 3 = "Cat and Mouse Game"

Seized and Passed Counterfeit Money


- Seized counterfeit money are bad notes taken from "bad guys"
- *Passed counterfeit money* are bad notes found in the possession of "good guys"
- Knowingly trying to pass counterfeit money is a crime

Data

USA Passed Counterfeit Money Rate, 1995–2007

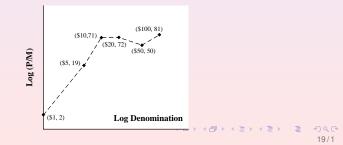


Data

The Counterfeit-Passed Ratio (1995-2007)

Our New Decision Margins

- We begin with a new decision margin for "good guys": How carefully do I examine the notes I acquire?
- This costly verification assumption alone explains the rising passing fraction in the note value.
- Where our story fails at the high denominations, we show that this owes to our assumption that the quality of counterfeits is constant


- We begin with a new decision margin for "good guys": How carefully do I examine the notes I acquire?
- This costly verification assumption alone explains the rising passing fraction in the note value.
- Where our story fails at the high denominations, we show that this owes to our assumption that the quality of counterfeits is constant
- One missing additional new decision margin does the trick — an endogenous quality choice by counterfeiters
- We produce a tractable framework for answering many empirical questions, and apply it where we have data
- That the theory even works is amazing, for we argue that the costs are astoundingly low — at most 1/4 cent to check a \$100 note, much less for other notes!

Can We Explain Passed Counterfeit Money?

- First, let's ignore incentives of bad guys ⇒ exogenous counterfeiting inflow is a fraction *m* of money supply
- κ = counterfeiting rate, v = verification rate
- π = passed rate
- counterfeit outflow (passed money) = fixed inflow:

```
\pi = \kappa \mathbf{v} = \mathbf{m} (steady-state)
```

 This model fails to explain the passed data, except by assuming that entry so happens to generate it

Costly Vigilance: What Good Guys Do

- Vigilance = action undertaken by good guys
- · Verifying authenticity of money is costly and stochastic
- Catching a counterfeit note with chance v ∈ (0, 1) mentally costs χ(v)

- Vigilance = action undertaken by good guys
- · Verifying authenticity of money is costly and stochastic
- Catching a counterfeit note with chance v ∈ (0, 1) mentally costs χ(v)
 - Properties
- $\chi(v)$ is a smooth increasing and strictly convex function
- We must assume log-concavity: $[\log(\chi(\nu))]'' \leq 0$
- Example: $\chi(v) = v^B$ with $B \ge 2$.

The Hot-Potato Passing Game

The Hot-Potato Passing Game

- Large Game: A continuum of good guys randomly match each period, trading a denomination Δ > 0.
- $\kappa \in [0, 1]$ is the endogenous fraction of counterfeit notes
- v ∈ [0, 1] is the endogenous average verification rate
- In the *hot-potato passing game*, individuals choose v̂ to minimize

 $\kappa(1-\hat{\mathbf{v}})\mathbf{v}\Delta + \chi(\hat{\mathbf{v}})$

- For a given counterfeit rate κ, this is a supermodular verification game ⇒ increasing best reply function
- Indeed, the FOC yields

$$\kappa \mathbf{V} \Delta = \chi'(\mathbf{V}^*)$$

• Everyone faces the same decision problem $\Rightarrow v^* = v$

• The symmetric Nash equilibrium counterfeiting rate in the large game is

$$\kappa = \frac{\chi'(\mathbf{v})}{\mathbf{v}\Delta}$$

- One could have allowed heterogeneity here among verifiers, if needed.
- The passed rate $\pi = \kappa v$ is therefore

 $\pi = \frac{\chi'(\mathbf{v})}{\Delta} = \frac{\text{marginal verification cost}}{\text{denomination}}$

A Big Picture: Police, Good Guys, & Bad Guys

- We cheaply introduce police into the story: When innocents verify with chance v, the fraction crooks pass into circulation is the passing fraction $f(v) \le 1 v$
- \Rightarrow f(1) = 0 while f(0) > 0 with some police enforcement
 - f' < 0 and diminishing returns f'' > 0. Also, $f'(0) > -\infty$
 - We will also assume log-concavity of f
 - Example: If police and verifiers independently find fractions γ and ν of money, then f(v) = (1 − γ)(1 − v)

Bad Guys

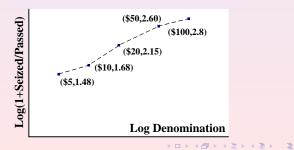
26/1

э

Trivial but Optimizing Model of Counterfeiters

- Counterfeiting inflow comes from a competitive market
- Criminals produce an expected quantity *x* of counterfeit Δ notes at cost *c*(*x*), smooth, increasing, and convex
- They are eventually caught, & pay a legal penalty *L* > 0
- A fraction f(v) of notes pass into circulation
- Profits are then revenues less physical and legal costs:

$$\Pi(x,v) = xf(v)\Delta - c(x) - L$$


- Optimal quantity $\Rightarrow f(v)\Delta = c'(x)$
- Crime does not pay:
- Free entry \Rightarrow zero profits $\Pi(x, v) = 0$

 \Rightarrow producer surplus = $x^*c'(x^*) - c(x^*) = L$

Quantity x* is independent of Δ!!

Trivial but Optimizing Model of Counterfeiters

- Our optimal quantity relation implies that the passing fraction is inverse to the note $f(v) = c'(x^*)/\Delta$
- Good: Near the positive least counterfeit note, v vanishes, and so does the passed rate $\pi = \chi'(v)/\Delta$
- Bad? The passed rate should vanish as $\Delta \uparrow \infty$
- Bad: The (inverse) counterfeit-passed ratio should double when the denomination doubles. It does not.

Our Model: Variable Quality Counterfeiting

- We henceforth fix the quantity *x*, and assume instead that counterfeit quality is a choice variable.
- Quality inflates the passing rate
- The \$100 note is high quality, and passes more easily
- Supernote, Columbian counterfeits of \$50 & \$100 bills, vs. "Counterfeit Millionaire" vs. youthful counterfeits

Our Model: Variable Quality Counterfeiting

- We henceforth fix the quantity *x*, and assume instead that counterfeit quality is a choice variable.
- Quality inflates the passing rate
- The \$100 note is high quality, and passes more easily
- Supernote, Columbian counterfeits of \$50 & \$100 bills, vs. "Counterfeit Millionaire" vs. youthful counterfeits
- Quality q note scales verification costs to $e = q\chi(v)$
- Critically, quality has a cardinal meaning!
- Quality *q* (of quantity *x* notes) incurs cost *c*(*q*), a smooth, increasing, and strictly convex function
- Good guys choose vigilance effort e not observing q
- Notice that the verification intensity is the endogenous outcome of good guys' efforts and bad guys' quality:

$$oldsymbol{v} = oldsymbol{V}(oldsymbol{e},oldsymbol{q}) \qquad \Leftrightarrow \qquad oldsymbol{e} = oldsymbol{q}\chi(oldsymbol{v})$$

The Verification Function

 To see how effort and quality interact to fix a verification rate, differentiate the identity qχ(V(e, q)) ≡ e:

$$q\chi' V_q + \chi = 0 \Rightarrow V_q = -\frac{\chi}{q\chi'} < 0$$

$$q\chi' V_e \equiv 1 \Rightarrow \boxed{V_e = rac{1}{q\chi'} > 0}$$

$$q^2 V_{qq} = \frac{\chi}{\chi'} + \left(\frac{\chi}{\chi'}\right)^2 \left(\frac{\chi'}{\chi} - \frac{\chi''}{\chi'}\right)$$

- There are diminishing returns to quality, or V_{qq} > 0, if costs χ are log-concave (thus assumed from now on)
- χ(ν) = ν^γ is convex and log-concave for all γ > 1
- $\chi(v) = e^{\gamma v}$ is convex and log-linear for all $\gamma > 0$

The Supply of Counterfeit Money

- Counterfeiting inflow comes from a competitive market
- Criminals produce a quality q of counterfeit △ notes at cost c(q), smooth, increasing, and convex
- Let us fix the quantity x. Profits are thus:

 $\Pi(q, e) = f(V(e, q)) x \Delta - c(q) - L$

• Free entry \Rightarrow zero profits

 $xf(V(e,q))\Delta = c(q) + L$

Optimal quality

 $xf'(V(e,q))V_q(e,q)\Delta = c'(q)$

Cat and Mouse Equilibrium

- A *cat and mouse equilibrium* is a pair (q, e) yielding zero profits, for which the quality q is profit-maximizing.
- Both effort and quality adjust as counterfeiting evolves

Theorem (Non-Existence)

No cat and mouse equilibrium exists for notes $\Delta \leq \underline{\Delta}$.

- For if $\Delta < \underline{\Delta}$, then profits are less than $\underline{\Delta}xf(0) L = 0$.
- If $\Delta = \underline{\Delta}$, then zero profits requires that quality vanish.
- Verification would then be perfect for all effort *e* > 0, and counterfeiters would lose at least *L* > 0.

We henceforth restrict to notes $\Delta > \underline{\Delta}$.

Let's explore the battle between effort and quality, as various parameters change.

Cat & Mouse Equilibrium

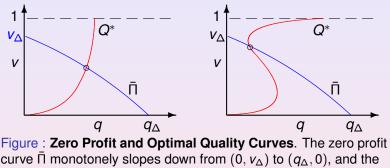
Zero profit locus Ī

$$\Delta x f(v) = c(q) + L$$

Optimal quality locus Q*

$$-\Delta x f'(v) rac{\chi(v)}{\chi'(v)} = q c'(q)$$

By taking logs, write these as respectively


$$F(v) + \log \Delta = T(q)$$

 $G(v) + \log \Delta = U(q)$

We assume not only strictly log-concave costs $\chi(v)$ and but also a log-concave passing function f(v), so that:

$$G'(v)-F'(v)\equivrac{f''}{f'}-rac{f'}{f}+rac{\chi'}{\chi}-rac{\chi''}{\chi'}>0$$

35/1

Graphical Depiction of Equilibrium

curve $\bar{\Pi}$ monotonely slopes down from $(0, v_{\Delta})$ to $(q_{\Delta}, 0)$, and the optimal quality locus Q^* initially rises. The left panel captures a monotone Q^* curve with no police interdiction. The right panel allows police interdiction: Any negatively-sloped portion of Q^* is steeper than the zero profit curve $\bar{\Pi}$ at an equilibrium.

When Does Optimal Quality Locus Slope Up?

 Q^* slopes upward for a robust class of models with diminishing police efficacy, i.e.

$$\frac{f''}{f'} + \frac{\chi'}{\chi} - \frac{\chi''}{\chi'} > 0$$
 (1)

- Example: Assume $f(v) = (1 \gamma v)(1 v)$.
- $\gamma = 0$: no police interdiction
- 0 ≤ γ < 1: *f* is monotone decreasing, convex and log-concave, with *f*(0) > 0 = *f*(1).
- With geometric verification costs χ(v) = v^B, inequality (1) reduces to vf''(v)/f'(v) ≥ −1, i.e. γ ≤ 1/3

Cat & Mouse Comparative Statics

Theorem (Legal Costs)

Assume that legal costs rise. Then the verification effort and rate each fall, and the least counterfeit note Δ rises. the counterfeit quality surely falls at low and high notes, and always falls if the optimal quality curve slopes upward.

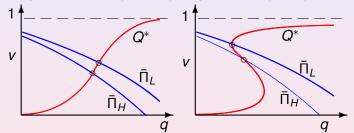
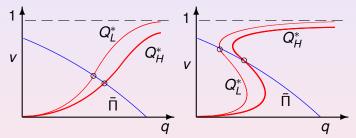
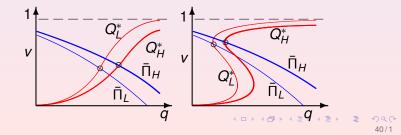


Figure : Shifting Legal Costs. The optimal quality locus Q^* is unaffected by legal costs. When legal costs rise, verification v falls, while quality surely falls for low and high notes, and always falls if the Q^* curve is locally rising.

Theorem (Verification Costs)

Lower verification costs raises the verification rate, raises verification effort, and lowers counterfeit quality.




Figure : **Easier Verification**. Assume the optimal quality curve slopes up. As verification costs fall, the zero profit curve $\overline{\Pi}$ is fixed, while the optimal quality locus Q^* shifts left (from *H* to *L*, thick to thin). So verification rises, while quality falls.

Theorem (Denomination)

(a) The verification effort and verification rate, and the counterfeit quality, vanish as $\Delta \downarrow \underline{\Delta}$.

(b) Effort and quality monotonically rise in the note $\Delta > \underline{\Delta}$. (c) The verification rate increases in Δ at low and high Δ , and increases for all $\Delta > \underline{\Delta}$ given a monotone quality cost elasticity:

$$\left(rac{qc'(q)}{c(q)}
ight)'\geq 0$$

- *Technological improvement* lowers the production costs of any quality: The quality Q(q, t) that costs c(q) given technology t obeys $Q_t < 0 < Q_q$.
- Opposite to the denomination comparative static, the optimal quality curve *Q*^{*} shifts farther right than Π.

Theorem (Technology)

Technological improvement raises counterfeit quality, raises the verification effort but reduces the verification rate.

A *counterfeiting equilibrium* is a triple (q^*, e^*, κ^*) yielding equilibrium in each market:

- 1. Verifiers' effort *e*^{*} and counterfeit quality *q*^{*} are a cat and mouse equilibrium.
- 2. Given counterfeit quality q^* , the effort e^* by good guys is an equilibrium of the hot potato game for the counterfeiting rate $\kappa^* \in (0, 1)$, namely:

$$\kappa = \frac{q\chi'(v)}{v\Delta} = rac{\text{marginal verification cost}}{\text{discovery rate } imes \text{denomination}}$$

A Stable Multimarket Equilibrium

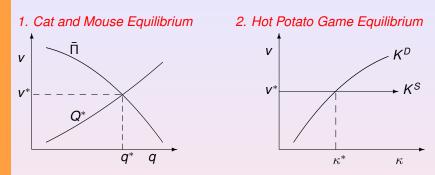


Figure : Two Sector Equilibrium Logic. The same verification rate must clear two counterfeit money markets — for criminals and verifiers. The cat and mouse equilibrium in (q, v)-space (left) yields the verification rate v^* — captured in the infinitely elastic derived counterfeiting supply for the hot-potato game in (κ, v) -space (right).

Side Remark on Heterogeneous Bad Guys

- Since the counterfeiting rate is a free variable, we can solve the games sequentially: first the cat and mouse game and then the hot-potato game.
- With heterogeneous criminals, this logic fails, since the marginal criminal who determines the counterfeiting rate will care about the verification rate.

An Example of a Cat and Mouse Equilibrium

- Assume geometric verification and quality production cost functions χ(ν) = ν^B and c(q) = q^A, with A, B > 1.
- So $\chi(v)$ and c(q) are convex and χ is log-concave.
- Assume no police, so that f(v) = 1 v. Then

$$\Delta x(1 - v) - q^{A} - L = 0 \quad \Leftarrow \text{ zero profit}$$
$$Aq^{A} - \Delta xv/B = 0 \quad \Leftarrow \text{ optimal quality}$$

- $v = q = 0 \Rightarrow$ least counterfeit note is $\Delta = L/x$
- Putting $\bar{v} = AB/(1 + AB) < 1$, the solution is
- $q^A = (1 \overline{\nu})(\Delta x L)$ and $v = \overline{\nu}(1 \underline{\Delta}/\Delta)$ (4)
 - Effort $e = qv^B$ rises proportionately faster than q in Δ .

The Constant Counterfeiting Rate Locus

Lemma (Slopes)

The constant counterfeiting locus \overline{K} has a negative slope, but greater than $\overline{\Pi}$. In addition, the slope of \overline{K} is less than Q^* given

$$\frac{vf''(v)}{f'(v)} + \frac{v\chi'(v)}{\chi(v)} \ge 1$$

In this case, the \overline{K} locus lies between the optimal quality locus Q^* and the zero profit curve $\overline{\Pi}$.

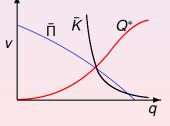


Figure : Counterfeiting Rate.

46/1

The Constant Counterfeiting Rate Locus

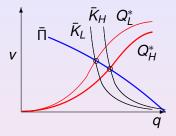
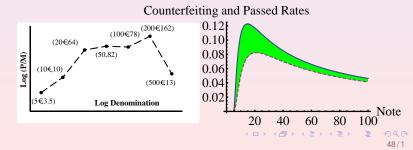


Figure : **Counterfeiting Rate**. With easier verification, the optimal quality locus shifts left (from Q_H to Q_L). This shifts to a lower constant counterfeiting rate locus \bar{K}_L , that is also lower *also* because the verification cost function has fallen.


Theorem The counterfeiting rate rises if the legal costs ℓ fall, the verification costs χ rise, or there is technological improvement in counterfeiting.

The Counterfeiting and Passed Rates

- In the example, $\kappa = q\chi'(v)/(v\Delta) = qBv^{B-1}/(v\Delta)$.
- Now, substitute equilibrium formulas (♣) for *q* and *v*:

$$\kappa \leq Bx^{1/A}\Delta^{-1+1/A}(1-\underline{\Delta}/\Delta)^{B+1/A-2}$$

 Passed rate π = νκ lies below the counterfeiting rate, as seen in right graph below (empirical Euro passed rate at left, theoretical graph in example at right)

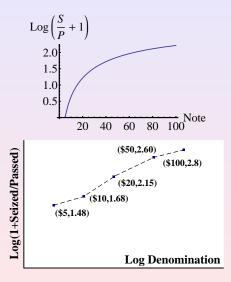
• Recalling the hot potato game, we have

$$v\kappa\Delta = q\chi'(v) \quad \Rightarrow \quad \kappa = rac{q\chi'(v)}{v\Delta}$$

- Theorem (The Hill-Shaped Counterfeit Rate).
 (a) The counterfeiting rate vanishes at lowest notes.
 (b) The counterfeiting rate vanishes also for the highest notes if marginal costs of quality c'(q) explode.
- Meanwhile quality explodes near highest notes, but not as fast as the denomination explodes, since its marginal cost rises: So q/Δ → 0 as Δ → ∞.

Seized Money and the Verification Rate

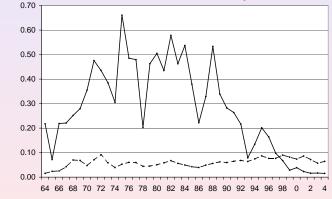
- Counterfeit money is eventually either *seized* from the criminals by law enforcement or the first verifiers, or successfully *passed* onto the public
- Seized money $S[\Delta]$ and passed money $P[\Delta]$
- steady-state condition 1:
 S[Δ] + P[Δ] = value of counterfeit money found = counterfeit production
- The inflow of passed money then equals the passing fraction times the counterfeit production:


 $P[\Delta] = f(v[\Delta]) \cdot (\text{production value}) = f(v[\Delta]) \cdot (S[\Delta] + P[\Delta])$

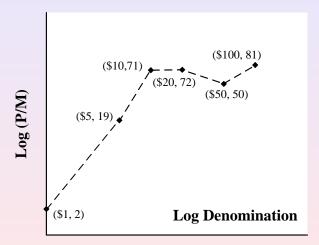
• So the *seized-passed ratio* $S[\Delta]/P[\Delta]$ obeys

$$\frac{1}{f(v[\Delta])} = 1 + \frac{S[\Delta]}{P[\Delta]}$$

Since f(v) falls in v, and v rises in Δ, the seized-passed ratio should rise in Δ. Does it?


Rising Verification and Seized-Passed Ratio

The Plummeting Counterfeit Seizures


 (\star) Recall that technology reduces the verification rate.


Logic: Technological revolution in counterfeiting.

Passed Counterfeit Money Rate, 1995–2007

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Euro Passed Counterfeit Rate, 2002-5

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theoretical Links to the Literature

- The literature on counterfeiting is somewhat counterfactual, and caught up with the satisfaction of being general equilibrium, despite often finding no equilibria with counterfeiting.
- Costly verification or attention has been a large focus of much research (eg. Sims, 2003). This paper brings this thinking to the search and money literature. This is the first "behavioral" model in the field.
- Our model is a general equilibrium model when we view the verification rate as an implicit price. This is part of a line of research looking at "implicit markets."
- We think this is the first multi-market large game
- Our model is based on a large game, where payoffs depend on one's own action, the average action, and a state variable eg. Angeletos and Pavan (2007). Unlike those models, our state variable is endogenous (the counterfeiting rate).