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Abstract

This article offers a self-contained graduate lecture on develop-
ments frictional matching models 1990–2010, exploring how frictions 
skew the matches that occur. This literature turned exploiting new 
tools from monotone methods under uncertainty, and seeing how 
this journey plays out is instructive in itself for economic theory.
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payoffs Y1 Y2 Y3
X1 2, 23 4, 24 6,25
X2 4, 16 8,18 12, 20
X3 6,9 12, 12 18, 15

sums Y1 Y2 Y3
X1 25 28 31
X2 20 26 32
X3 15 24 33

Figure 1: Match Payoffs and Payoff Sums. We indicate the stable
(blue) matching for the NTU match payoffs at left. Once monetary or utility
transfers are allowed (the TU case at right), the corresponding payoff sums
are the relevant benchmark, and the stable matching switches (now red).

1 Frictionless Matching Benchmarks

1.1 A Motivational Example

Let’s consider a matching market between two sides of the market, called
X’s and Y ’s. The Gale-Shapley algorithm (1962) will discover the stable
matching. Consider the payoffs (in utils) in Figure 1. If the X’s do the
proposing, then everyone first asks Y3, since he is best for all. Then Y3

accepts X1, sealing that match. At the next round, X2 and X3 ask Y2, who
then accepts X2. Finally, X3 and Y1 match. The final matching is (X1, Y3),
(X2, Y2), (X3, Y1). Or, if instead Y ’s propose, each asks X1, who accepts Y3.
Each Y then asks X2, who chooses Y2. Finally, X3 and Y1 match. The same
matching arises in this example — and so there is a unique stable matching.

Next observe how these matches are inefficient. For instance, X3 is
willing to sever his match with Y1, and pay Y3 up to 18−6 = 12 to join forces
with him; furthermore, this deal sweetener exceeds the loss 25 − 15 = 10

that Y3 suffers from quitting his match with X1. The above unique NTU
matching is thus unstable once transfers are allowed. Intuitively, the total
payoffs (at right in Figure 1) determine matching decisions once individuals
can offer side-payments — and, as they say, money changes everything!

While side-payments have the ring of illegality, at issue here is the world
with wages and other plain vanilla transfers. These are driven by outside
options — namely, the least amount that someone can guarantee himself in
the matching model by exercising his best other match. In this setting, the
outside options are wages. Imagine that two agent firms (i, j) can costlessly
form that pay out wages using the match payoff sums f(i, j). Let the
Walrasian auctioneer call out wages for everyone until all markets clear for
the individuals. Call the wages of the X and Y sides wX

i and wY
j . Then the
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PAM firms make nonnegative profits exactly when wX
i + wY

i ≤ f(i, i) for
i = 1, 2, 3. Meanwhile, the non-PAM firms will not form only if wages over-
exhaust output, namely, wX

i + wY
j ≥ f(i, j) for all payoffs f(i, j) (i 6= j) at

the right in Figure 1. One can show that these inequalities have a solution.1

1.2 Conditions for Assortative Matching

The more general matching model has two distinct sides of the market —
at one end of the spectrum, men and women in a social setting, and at the
other, workers and firms in an employment context. A simpler matching
setting is the “unisex” model of symmetric partnerships.

Individuals can be of several observable types — the matching appeal of
the social mate, the productivity of the worker or the excellence of the firm.
Any individual of type x matches like another other such individual, and
thus, we can simply refer to the types. Types are simply scalars x ∈ [0, 1],
and have an atomless distribution with cdf L(x) and finite density ℓ(x) ≡
L′(x). We assume that a type x earns f(x, y) when matched with a type y.
Throughout, the function f : R2 7→ R+ is a nonnegative and for simplicity,
continuous and twice differentiable on R2.

This is in many ways a ridiculously simplified setting. Firstly, beauty is
not in the eye of the beholder: There is no disagreement about a worker’s
productivity across jobs, nor a firm’s appeals to different workers. Second,
there is no role for choice, such as effort, apart from the matching decision.
Relaxing these restrictions is an important avenue for future research.

In the symmetric unisex case, the production function obeys f(x, y) ≡
f(y, x). For as in the earlier example, this arises when matched individuals
can share outputs. Positive assortative matching (PAM) occurs when types
sort into matches according to their quantile. In this uni-sex environment,
each type x ∈ [0, 1] matches with another type x. By contrast, with nega-
tively assortative matching (NAM), each type x matches with the “opposite
percentile” type y(x) — namely, the one for whom L(y(x)) ≡ 1− L(x).

A passing result in Becker 1973 considered the NTU setting — namely,
1For we know on the one hand, that there is solution to the social planner’s problem,

and on the other hand, that it solves the Kuhn-Tucker optimization conditions. If we let
each type’s wage be its shadow value to the planner (i.e., the Lagrange multiplier), then
the complementary slackness conditions yield the desired inequalities.
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the stable matches determined by the Gale-Shapley algorithm.2 Consistent
with the earlier example, Becker found out that the “market outcome” in
the NTU case is PAM exactly when preferences over partners are increasing:
f2(x, y) > 0. Essentially, the market clears “top to bottom” in this case.

Becker (1973) focused on the transferable utility (TU) world, allowing
utility side payments. He then deduced that PAM is both efficient and a
competitive equilibrium when types are productive complements, possessing
a positive cross partial derivative f12(x, y) > 0. Economists have also seized
on the lattice-theoretic label supermodular for this property (Topkis, 1998).

To see Becker’s efficiency claim,3 let’s consider any pair of types x < y.
Integrating f12 > 0 on any rectangle [x, y]× [x, y] yields a positive discrete
cross partial difference f(y, y)− f(x, y) > f(y, x)− f(x, x). In other words,
f(x, x) + f(y, y) > 2f(y, x). This implies that mixed matches (x, y) are
inefficient: For a mass ϵ > 0 of such mixed matches near (x, y) can create
equal ϵ/2 masses of matches near (x, x) and (y, y) with higher total output.

We now prove Becker’s claim that PAM is a competitive equilibrium.
Let’s introduce the match surplus function s(x, y) for easier comparison
later:

s(x, y) = f(x, y)− w(x)− w(y)

This measures the amount by which the inside match option exceeds the
sum of the two best outside options. Since every type x will find the best
match y, we know that he solves the first order condition s2(x, y) = 0. Then
this “ideal partner”, say y(x), is rising in x precisely because s12(x, y) ≡
f12(x, y) > 0. In the unisex matching world, the only increasing function
that clears the market is y(x) = x. So try the candidate wage profile
w(x) ≡ f(x, x)/2, namely equal sharing of the output, which is obviously
feasible. Second, given these wages, no other matches are profitable:

w(x) + w(y) ≡ f(x, x)/2 + f(y, y)/2 > f(x, y) (1)

This follows because of symmetry and supermodularity of f(x, y).
Conversely, consider submodular production, with f12 < 0. Then in-

equality (1) reverses, and the equilibrium (and efficient) outcome now in-
2Eeckhout (2000) formally proves this, among other things.
3As so often happens, mathematicians got there long before economists, and with

far greater generality, but without the essential economic context. In this case, Lorentz
(1953) deduced the formal content of Becker’s Pareto claim.
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volves NAM. Define the production function g(x, y) ≡ f(x, 1 − y), thus
reversing the order on types. Then g12 > 0, and therefore PAM is optimal
for the production function g(x, y). Logically, NAM is optimal for f(x, y).

The distinction between the TU and NTU allocation predictions seen
in the motivational example emerges for any production functions that are
submodular and increasing, or supermodular and decreasing. In the first
case, NTU predicts PAM and TU predicts NAM; in the second case, the
opposite holds. For instance, types in the example were 1, 2, 3, and the X-
payoffs 2XY , and the Y -payoffs XY −8X+30. Easily, the own payoffs were
falling in the partner types, but the shared payoff sums were supermodular.

The importance of Becker’s focus on complementarity was underscored
in Kremer’s (1993) paper. He found that production functions where success
depends multiplicatively on all types — such as when everyone must suc-
cessfully perform a task — were automatically complementary; thus Kremer
found that Becker’s sorting theorem applies in these settings. Kremer and
Maskin (1996) instead motivate non-complementary cases with examples
where the “strongest link” matters — capturing matches with a defined
“second banana” role. This setting yields some interesting discontinuous
efficient matching patterns. Adding more economic structure, Ackerberg
and Botticini (2002) explore matching in a contractual setting between
principals (landowners) whose projects vary in their riskiness and agents
(tenants) of varying risk tolerances. Serfes (2005) explores a more general
setting, where either PAM or NAM emerges. Here, positive sorting means
that poor tenants (and so very risk averse) cultivated risky vines, while
wealthier tenants took charge of safer cereal production.

2 Matching with Search Frictions
In Becker’s frictionless matching world, the long side of the market can get
capriciously shafted. For instance, with 109 women and 109 + 1 men, if all
matches yield payoff 1 and being unmatched yields nothing, then men earn
a zero wage. But if one man dies, as so often happens, then a 50-50 split
may emerge. The search world that we now explore does not suffer from
this somewhat counterfactual fragility.
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2.1 Anonymous Search for Partners

Anonymous search is a natural formulation of search frictions that builds
on the story underlying the consumer price search literature (Lippman and
McCall, 1976). Proceeding in continuous time, we imagine that unmatched
individuals find it hard to locate partners. The simplest story might be
the linear search technology. It assumes that potential partners arrive at
some exogenous and fixed “rendezvous” rate ρ > 0 — and so with chance
ρ dt in any infinitesimal length dt interval. These partners are randomly
and representatively drawn from the pool of unmatched individuals on the
other side of the market. But it is more tractable to analyze the quadratic
search technology, in which ρ is scaled by the mass of unmatched partners.
Or equivalently, one can imagine that randomly-chosen potential partners
for any unmatched individual should arrive at rate ρ, but if that partner
happens to be matched, then he misses the meeting.

Since there is a continuum of atomless (negligible) individuals, we can
intuitively ignore mixed strategies, and simply assume that the strategies
are acceptance sets A(x) ⊆ [0, 1]. Having in mind that everyone is both
consumer and consumption good, we must keep track of the inverse oppor-
tunity set Ω(x) ≡ {y ∈ [0, 1]|x ∈ A(y)} of each type x. So the sets A(x)
and Ω(x) correspond to the preferences and opportunities of type x. The
matching set consists of the set of mutually agreeable matches, namely,
M(x) = A(x) ∩ Ω(x). All matches in this intersection solve the double
coincidence of wants, since both parties to the match are now willing.

In a further simplification, let us explore a world without on-the-job
search. Namely, we venture that everyone is either matched and thus un-
available, or unmatched and searching. So the opportunity cost of matching
is that new partners cease to arrive; this intuitively gives individuals an in-
centive to decline some matches, and avoid trivialities.

Almost all successful research on equilibrium search and matching has
assumed a steady-state model. For even the simplest of nonstationary envi-
ronments can be notoriously intractable, and should only be attacked if the
underlying theoretical exercise really turns on the nonstationarity.4 I follow
this pattern, which conveniently makes unnecessary any time subscripts.

There are two primary ways to secure a steady-state. First, we could
4Shimer and Smith (2001) underscores how hard a nonstationary search model can

be to analyze.
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venture that matches dissolve at some fixed rate δ > 0 — or equivalently,
with chance approaching δdt in any small dt interval, where δ > 0. Second,
we could assume eternal matches (so that δ = 0), and then posit a steady
inflow of unmatched individuals that replaces the newly matched.

We assume that f(x, y) now describes the flow payoffs, discounted at
some interest rate r > 0. We can then define two interrelated values: First,
the expected present (Bellman) value V (x) of payoffs to x when initially
unmatched, assuming optimal behavior; second, the expected present value
V (x|y) of payoffs to x when initially matched with y. Since the unmatched
value is a pure option on getting matched, its return is the expected arrival
rate of the expected surplus s(x|y) = V (x|y)−V (x) from matching with an
acceptable type y ∈M(x). If we let U(y) denote the stationary cumulative
distribution function of unmatched individuals, then we discover rV (x) =

ρ
∫
y∈M(x)

[V (x|y)− V (x)]U ′(y)dy.
We find our analysis easier if we use the average present unmatched value

v(x) = rV (x) and the average matched value v(x|y) = rV (x|y), since they
will share the same flow payoff units. Our earlier accounting expression for
the value then becomes:

v(x) = (ρ/r)

∫
y∈M(x)

[v(x|y)− v(x)]U ′(y)dy (2)

Next, the average present value v(x|y) of type x from matching with y

includes a flow payoff f(x, y), as well as a δ arrival rate of a capital loss of
v(x)− v(x|y). This yields the implicit equation

v(x|y) = f(x, y) + (δ/r)[v(x)− v(x|y)] (3)

2.2 Assortative Matching

As with Becker (1973), we ask what assumptions on productive interaction
yield PAM for all levels of search frictions, and for all type distributions.
More to the point, since possible mates are drawn from an atomless con-
tinuum, matching sets can no longer be point-valued. In this case, what
exactly does PAM mean? We now explore a natural definition of PAM in
this setting, that subsumes the PAM definition in the Walrasian setting. It
should have the same econometric properties — that the expected partner
of type x must be weakly increasing in x. We find a mathematically elegant
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Figure 2: Assortative Matching. The left two panels respectively depict
the definitions of PAM and NAM: If the pairs indicated by filled dots match,
then the pairs indicated by hollow dots match as well. The right panel
depicts the proof of convexity. If low and high types, x1 and x3, match with
y2 ∈ (y1, y3), then so must a middle type x2 ∈ (x1, x3), given PAM or NAM.

lattice definition that achieves this. This definition is necessary and suffi-
cient for the above econometric property to hold for all type distributions.

Let us reconsider the basic insight that PAM means that high types
should match with other high types, and low types with other low types.
One way of formulating this is that if high and low types are matched,
namely the pairs (x1, y2) and (x2, y1), with x1 < x2 and y1 < y2, then so are
the matches of like types (x1, y1) and (x2, y2). (Equivalently, the match-
ing set is increasing function of types in the “strong set order”.) Figure 2
illustrates this and the parallel definition of NAM.5

A useful property of this definition is that given PAM or NAM, ev-
ery type has a convex matching set. This proof is graphically obvious,
as seen in Figure 2. This implies that the matching set can be written
M(x) = [θ(x), ψ(x)], with lower and upper bounds θ(x) and ψ(x). Next,
since the matching sets of the types on the vertical axis are themselves con-
vex, the lower bound function θ(x) is quasiconvex, and the upper function
ψ(x) is quasiconcave. This offers an easier attack on the assortative match-
ing characterization. For if matching sets are convex, then PAM arises
exactly when the lower and upper bounds are weakly increasing. For such
monotone bounds obviously ensures the lattice definition of PAM in Fig-
ure 2; conversely, that PAM picture fails at the extremes when the upper
or lower bound fall somewhere. This suggest an immediate definition that
if matching sets are convex, and the lower and upper bounds are strictly

5At a formal level, we ask that the set of mutually agreeable matches be a lattice for
PAM: For all pairs of partners z, z′ in R2, if z and z′ are each in the matching set, so is
the meet z ∧ z′ and join z ∨ z′ (respectively, the vector-max and vector-min).
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increasing whenever possible, then matching obeys strict PAM.

3 NTU Matching
Let us start in the world of NTU matching, as this will prove a springboard
into the harder TU matching exercise. We will assume for now that an
equilibrium exists, and describe who matches with whom. In fact, we will
essentially construct an equilibrium in the process.

For simplicity, let’s assume that preferences are monotone, with f2 > 0.
In this case, the acceptance set is A(x) = [θ(x), 1], for some cut-off partner
θ(x). The opportunity set is therefore Ω(x) = {y ∈ [0, 1]|x ≥ θ(y)}. Then
by our earlier discussion, PAM arises exactly when θ(x) is nondecreasing.
In words, higher types are choosier. Optimality is then easily captured by
the equality of inside and outside options, or f(x, θ(x)) = v(x). In other
words, individuals should match with all types that provide at least the
unmatched value.

3.1 Block Segregation

There is one low-hanging fruit in this domain — so low-hanging, that it was
repeatedly re-discovered in a “great minds thinking alike” rush of research
in the 1990s. Indeed, suppose that we can express output multiplicatively,
as f(x, y) = h1(x)h2(y). For instance, everyone might just care about his
partner’s type, whereupon f(x, y) = y. This implies that all types x share
the same cardinal preferences over match partners y. For we can create
an affine transformation of match payoffs f(x′, y) = [h1(x

′)/h1(x)]f(x, y)

— that includes the unmatched option, whose flow payoff is zero.6 And in
a world of uncertainty, cardinal preferences govern risky choices, such as
the decision to accept a match, or press on and search. As such, any two
individuals with the same opportunity sets must make the same choices.

So motivated, consider the highest type x = 1, who is desired by all.
Faced with search frictions, his optimal reservation partner or threshold
partner is θ(1) < 1. Then everyone in the interval [θ(1), 1] shares the
opportunity set of type 1, as well as the same cardinal preferences. Ipso

6With explicit flow search costs, this fails, since it is not true that −c =
[h1(x

′)/h1(x)](−c) for all x, x′. Thus, block segregation would not arise. See Chade
for more discussion.
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facto, they will choose the same cut-off partner θ(1). Thus, the interval of
individuals [θ(1), 1] must constitute a closed matching set. But now this
logic can be iterated, considering the preferences of individuals just slightly
below θ(1). They too share a threshold partner θ(2) < θ(1), and so on.
What emerges is a unique equilibrium of “block segregation”, a partition of
[0, 1] with class boundaries θ(1) > θ(2) > · · · . It is easy to see that there
will be only finitely many such boundaries exactly when f(0, 0) > 0. For as
the threshold partner vanishes, the chance of lesser types finding a willing
partner vanishes too. If the bottom type provides strictly positive payoff,
then it is best to accept him and end the search.

Allocation results yield easy insights into wages and values. And in this
case, block segregation forces a discontinuous value function.

3.2 Strictly Increasing Matching Sets

Whenever continuous fundamentals (the preferences and the search tech-
nology) lead to a discontinuous economic outcome, one’s curiosity is natu-
rally piqued. Block-segregation is in this way a striking matching outcome.
This provides an equilibrium economic rationale for the numerous Victorian
classist fables. But the stark perfectly non-communicating nature of these
classes almost demands a larger picture.

Let us ponder what is special about block segregation payoff functions
of the form f(x, y) = h1(x)h2(y). While motivated from decision theory,
might some mathematical structure be relevant here? In particular, the
function log f(x, y) is additively separable in x, y, or equivalently has a zero
cross-partial derivative. Any such function is also known as log-modular.
Could it be that stepping just outside this class offers the missing bigger
picture? What can be said of strictly log-supermodular functions, for which
log f(x, y) has a positive cross partial?

To answer this question, let’s consider two equivalent expressions for the
value function. First, ponder how it relates to the inside option. Inspired
by the log-supermodularity insight, we work with logarithms throughout.
Assume that the threshold θ(x) is differentiable. Differentiating the log-
optimality condition log v(x) ≡ log f(x, θ(x)) in the type x yields:

v′(x)

v(x)
=
f1(x, θ(x))

f(x, θ(x))
+ θ′(x)

f2(x, θ(x))

f(x, θ(x))
(4)
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Next, we proceed likewise from the purely accounting definition of the
values as an outside option — namely, the present value of future matches.
It helps to ignore deaths, putting δ = 0, so that the matched value in (3) is
v(x|y) = f(x, y). We could then re-write the Markov recursive equation (2).
Instead, focus on the highest types for whom the world is their oyster, since
everyone wishes to match with them. Let’s employ a cut-off partner θ. Then
the resulting policy value vθ(x) solves an analogous equation:

vθ(x) = (ρ/r)

∫
Y≥θ

[f(x, Y )− vθ(x)]U(dY ) =
ρ
∫
Y≥θ

f(x, Y )U(dY )

r + ρU(Y ≥ θ)
(5)

Since the best cut-off is the optimal threshold θ = θ(x), the partial deriva-
tive of the policy value vθ(x) in θ vanishes at θ = θ(x). So if we totally
differentiate log v(x) ≡ log vθ(x)(x) in x, then we arrive at an Envelope
Theorem implication:

v′(x)

v(x)
=

∫
Y≥θ(x)

f1(x, Y )U(dY )∫
Y≥θ(x)

f(x, Y )U(dY )
(6)

Jointly, the optimization and accounting lessons (4) and (6) imply

f1(x, θ(x))

f(x, θ(x))
+ θ′(x)

f2(x, θ(x))

f(x, θ(x))
=

∫
Y≥θ(x)

f1(x, Y )U(dY )∫
Y≥θ(x)

f(x, Y )U(dY )
(7)

We now finish the argument with an elementary insight about ratios. Note
that the inequality 3/4 < 5/6 implies 3/4 < (3 + 4)/(5 + 6) < 5/6. This
logic underlies the easy proof that if a(t), b(t) > 0 are smooth functions,
and [a(t)/b(t)]′ > 0, then

a(t0)

b(t0)
<

∫ t1
t0
a(t)dt∫ t1

t0
b(t)dt

<
a(t1)

b(t1)
∀ t0 < t1 (8)

If f1/f is strictly increasing in y, then this inequality implies that the right
side of (7) exceeds the first term on its left side. From this, we deduce that
θ′(x) > 0. This says that higher agents are more selective. Observe that
this argument is tight: For if f is strictly log-submodular, then past some
point, even higher types are willing to accept lower types: θ′(x) < 0.

The argument that the lower threshold rises in the type can be finished
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Figure 3: NTU Matching with Anonymous Search. At left is the
graph of the matching set with payoff function f(x, y) = x+ xy + y. Pref-
erences are not only increasing in partners, as in Becker’s corresponding
result requires, but even supermodular: f12 > 0. At right is the graph
of the matching set with a log-supermodular f(x, y) = exy. Here, we find
assortative matching.

by inverting the matching set, and deducing that the upper bound ψ(x)

falls as the type x falls because θ(x) is increasing. One can show that this
shifting upper bound reinforces the logic above.

Theorem 1 (PAM and NTU) If x earns f(x, y) > 0 in a match with y,
where f2(x, y) > 0, then the equilibrium NTU matching is block segregation
if f is log-modular, and strict PAM if f is strictly log-supermodular.

The left panel of Figure 3 illustrates the theorem, while the right panel
shows the necessity of the log-supermodularity assumption. So quite unlike
the frictionless NTU result in Becker (1973), monotonicity alone does not
deliver PAM. It is not enough that one prefers that higher types hold out
for them longer. In fact, even Becker’s supermodular condition for PAM
in the Walrasian setting is not enough. Rather, the payoff of matching up
must rise proportionately faster at higher types. For as an outside option,
the value is the price of the agent’s time. Then log-supermodularity alone7

guarantees that the value of an agent’s time rises faster than the value of
matching with a fixed reservation partner; hence, the only way to equalize
the inside and outside options is for the reservation partner to rise.

7Log-supermodularity is stronger than supermodularity if f is increasing in both
types, since f12f > f1f2 and f1, f2 > 0 imply f12 > 0.
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4 TU Matching
Transferable utility demands that we understand the accounting of shared
surplus. We first derive a useful identity. Since matches dissolve at rate δ:

v(x|y) + v(y|x) ≡ f(x, y) + (δ/r)[v(x) + v(y)− v(x|y)− v(y|x)]

This implies that the average total match surplus for both parties equals

[v(x|Y )− v(x)] + [v(Y |x)− v(Y )] =
r

δ + r
[f(x, y)− v(x)− v(y)] (9)

Since side payments are allowed in a TU model, parties agree to match
precisely when there is non-negative surplus. Define the average surplus
function s(x, y) and the matching set M(x) as follows:

s(x, y) ≡ f(x, y)− v(x)− v(y) ≥ 0 ⇔ y ∈M(x) (10)

The unmatched value serves a similar outside options role in this search
model with transferable utility as the wage in Becker’s model: Individuals
agree to match exactly when their joint match value weakly exceeds the sum
of their values. But in a search setting, this surplus of inside over outside
options will generally be strict. How match surplus is split is therefore
critical. Equal division is a neutral benchmark:

v(y|x)− v(x) = v(x|y)− v(y) (11)

This is often dubbed the Nash bargaining solution; but since no bargaining
is modeled, it is more natural to appeal to simplicity. Indeed, any other
split would need motivation, justifying why one class of agents is stronger
than another (addressed in §??). Modifying the value expression (2) in light
of (11), we discover:

v(x) = (ρ/r)

∫
Y ∈M(x)

[v(x|Y )− v(x)] (12)

Using (9) and the Nash split (11), we may rewrite the value function (12)
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as:

v(x) =
1

2

ρ

δ + r

∫
Y ∈M(x)

(f(x, Y )− v(x)− v(Y )) (13)

Observe that (12) resembles the optimality equation for NTU, but with
a fraction 1/2 scaling the surplus, and matches now discounted by r + δ,
given match dissolutions. If β is the lead factor in (12), we can rewrite it as:

v(x) = β

∫
Y

max〈0, f(x, Y )− v(x)− v(Y )〉 (14)

This fundamental equation lies at the heart of the TU search-matching
paradigm. The value function resembles a potential,8 and is uniquely de-
fined given the production function f(x, y). Understanding such potentials
is a recurrent and interesting open problem in dynamic economic theory.

The value function solving the equation (14) is continuous — and in this
respect, the TU model critically differs from the NTU model. As a result,
the match surplus vanishes around the boundary of the matching set.9 This
intuitively means that marginal changes in the matching set have no partial
effect on match value (12), since those matches yielded vanishingly little
surplus. Abbreviating 2β ≡ ρ/(r + ρ) yields a key derivative:

v′(x) = β

∫
Y

(max〈0, f1(x, Y )− v′(x)〉) =
β
∫
Y ∈M(x)

f1(x, Y )

1 + βU(Y ∈M(x))
(15)

Given (15), any value function solving (14) is increasing and differentiable.
Equation (15) resembles the NTU value equation (5), except that the

marginal value v′ replaces the value v, and the marginal product f1 appears
instead of f . This observation originally inspired the attack on PAM in the
TU model that follows. The key log-supermodularity assumption intuitively
should apply to the own-marginal product f1 in this setting.

In light of our earlier discovery that PAM follows if matching sets are
convex and have monotone bounds, our plan of attack is:
A. We show that if all matching sets are convex, then supermodularity

8Sergiu Hart and Andreu Mas-Colell, “Potential, Value, and Consistency”, Econo-
metrica, Vol. 57, No. 3 (May, 1989), pp. 589-614.

9By contrast, the own surplus s(x|y) ≡ f(x, y) − v(x) in an NTU match rises as the
partner y approaches the top of the matching interval M(x). Just as well, this too follows
from the Envelope Theorem logic, the matching set is jointly optimal.
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implies PAM provided10 the marginal product of 0 vanishes: f2(0, y) ≡ 0.
B. We argue that matching sets are convex when own marginal products are
log-supermodular in both types (and one other missing ingredient obtains).

4.1 Convex Matching and Supermodularity ⇒ PAM

We proceed by contradiction, since that gives us an extra ingredient in the
proof to work with. Suppose that matching sets are all convex, production
is supermodular, but that PAM fails. There are two ways this can occur.

First, some matching set M(x1) may have a higher upper bound than
another set M(x2), with x2 > x1, say y1 = ψ(x1) > ψ(x2) = y2. In this
case, the value function would have to fall, since we could deduce that lower
types have higher surplus. For production is supermodular exactly when
match surplus is supermodular, as s12 = f12 > 0. So the higher type x2 sees
his match surplus rise faster in his parter’s type than does the lower type x1.
Now, type x2 has a lower upper partner than type x1. Since he derives zero
surplus with the highest match partner, integrating s2(x, y) down from y1,
his surplus must be lower with every parter.

Second, PAM mail fail if the lower bound on the matching set M(x)

dips. For since the value function is increasing, we have s2(0, y) = f2(0, y)−
v′(y) = 0 − v′(y) < 0. Thus, the “ideal partner” of type 0 (who gives her
highest surplus) is 0. And since match payoffs are nonnegative, his matching
set must include 0. But as remarked, convex matching sets have a quasi-
convex lower bound θ(x). Since θ(x) is initially weakly increasing, it is
always weakly increasing. This completes the PAM proof.

4.2 Convex Matching Sets

The natural route to establishing convex matching sets is to prove that the
surplus function is quasi-concave in one’s partner’s type. To this end, let’s
toss aside some algebraic complexities, and simply assume that all types
match; this way changes in the matching set can be ignored.11 This reduces

10We show why this is needed in Figure....
11And let’s not be troubled by the fact that in this case, matching sets are trivially

convex, since the proof in Shimer and Smith (2000) shows that this difficulty is just an
annoyance.
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Figure 4: Complementarity and Nonsorting. This depicts matching
sets for f(x, y) = x + y + xy, ρ = 50r, δ = r/2, and L(x) = x on [0, 1].
Although production is supermodular (f12 > 0) and matching sets are con-
vex, NAM and not PAM arises — because f(0, 0) = 0 and f(0, y) > 0 for
y > 0 force 0 /∈M(0).

the implicit equation (15) for marginal value to v′(x) = γEY f1(x, Y ), for
a constant γ < 1 rising in the meeting rate ρ and falling in the interest
rate r.12

A. Convexity for High Types. The match surplus of type x has slope
s2(x, y) = f2(x, y)−v′(y) in his partner’s type y. Given symmetry f(x, y) ≡
f(y, x), the marginal value is also v′(y) ≡ γEY f2(X, y) when everyone
matches. Hence:

s2(x, y) = f2(x, y)− γEXf2(X, y) > EX [f2(x, y)− f2(X, y)] (16)

since γ < 1. An easy implication of supermodularity is that f2(1, y) −
f2(x

′, y) > 0 whenever x′ < 1, and so s2(1, y) > 0. Given continuity of
the marginal surplus, we have s2(x, y) > 0 for high enough types x < 1.
Namely, highest types see their match surplus rising in their partner’s type y,

12Specifically, γ = ρU(0 ≤ Y ≤ 1)/[r + ρU(0 ≤ Y ≤ 1)], which clearly lies between 0
and 1.
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Figure 5: Non-Convex Matching The left and right panels respectively
depict matching sets for the SPM production functions f(x, y) = (x+y−1)2

and f(x, y) = (x+y)2 with δ = r and a uniform type distribution. Matching
is easier at left than at right, with a meeting rate ρ = 100r versus ρ = 35r.

when production is supermodular. In this case, the matching set of any high
type is a convex upper set in [0, 1].

Figure 5 shows how matching sets of lower types may fail to be convex.
The right panel considers f(x, y) = (x+ y− 1)2. Types near x = 1/2 might
not even match with peer types in one case — for x = 1/2 produces nothing
when matched with her own type, and obviously receives no transfer. The
right panel finds a similar convexity failure with the monotonic function
f(x, y) = (x + y)2. In this case, the matching sets of types x ∈ [0.06, 0.18]

include low and high types, but not middle types on the diagonal.

B. Convexity for Low Types. The match surplus of lower types need
not always rise in their partner’s type: Very high types may require too
much compensation. Convexity can only be deduced from a quasiconcave
surplus function. Since the surplus function is smooth, an easy sufficient
condition for quasiconcavity is that its derivative obey a single-crossing
property: If s2(x, ȳ) = 0 for some ȳ, then s2(x, y) < 0 respectively for all
y > ȳ. Since s2(x, y) = f2(x, y) − γEX [f2(X, y)] by (16), this is equivalent
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to a level crossing property for a known function:13

EX [f2(X, y)]

f2(x, y)
≷ 1/γ for y ≷ ȳ (17)

The ideal partner y of type x is the one with whom match surplus is
maximal, and thus for which the marginal value equals the own marginal
product: v′(y) = f2(x, y). Our log-supermodularity assumption guarantees
a unique ideal partner, since higher partners yield lower match surplus.

We must prove inequality (17) for all types x lower than those included
in part A. We can prove it for the lowest type x = 0, showing that the left
side of (17) rises in y. Emulating the logic used in the NTU model after the
critical equation (7), this level crossing property holds when f2(x, y)/f2(0, y)
is rising in y. Since X > 0 with probability one, it suffices that the marginal
product f2 be log-supermodular. And by continuity, this holds for types
near x = 0. So far, we have seen that if the marginal product of production
is log-supermodular, then the least types have convex matching sets.

Immediately, we see the problem with the sorting failures in Figure 5 —
for when f(x, y) = (x+ y)2, the ratio f2(x, y)/f2(0, y) = 1+x/y falls in the
partner’s type y, since log f(x, y) = 2 log(x+ y) is strictly submodular. Not
surprisingly, we found a failure of matching set convexity for type x = 0.

C. A Single-Crossing Property for Gambles. To finish the argument,
we must take a detour. We formulate and prove a useful lemma, that is the
basic building block for the preservation of monotonicity under uncertainty.
Notably, this turns out to be a famous result in information economics.

Lemma 1 (SCP for Gambles) Define h(x, y) > 0 on [0, 1], and let the
partial derivative h1(x, y) > 0 be log-supermodular. Fix an arbitrary density
for x on [0, 1]. For any y ∈ [0, 1], let x̄ be the “certainty equivalent” of X
solving h(x̄, y) = EX [h(X, y)], then h(x̄, z) ≥ EX [h(X, z)] for all z ≥ y.
Further, the opposite inequality follows if h1(x, y) is log-submodular.

For a classic application, consider Diamond and Stiglitz’s (1974) analysis
of increasing risk and risk aversion. Their main result, Theorem 3, proved

13When the level to be crossed through is zero, then this is known as a single-crossing
property (SCP), and is commonly exploited in comparative statics analysis in economics.
Any SCP is an ordinal property — and holds under weaker conditions. We will eventually
need a SCP to finish our proof, but for now, we require this stronger cardinal property.
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that if a (thrice smooth) utility function U(x, y) is increasing in wealth x,
and the Arrow-Pratt coefficient of risk aversion −Uxx/Ux = −(log(Ux))x

increases in the parameter y, then the certainty equivalent x̄ of any wealth
gamble X rises in y.

To see how this follows from Lemma 1, observe that the coefficient of
risk aversion can be written as −(log(Ux))x. Hence, it weakly increases in
y iff −(log(Ux))xy ≥ 0. This says that the marginal utility of income Ux is
log-submodular in (x, y). In words, marginal utility of income decrements
grow proportionately larger at greater levels of risk aversion. This is the
intuitive reason why the certainty equivalent of any gamble rises in y, since
the utility gains from more favorable gamble outcomes are worth less.

Because of its importance, we will now explain why Lemma 1 is true.
Define

H(z) ≡ EX (ϕ(X)[h(X, z)− h(x̄, z)])

where

ϕ(t) ≡ h(t, y)− h(x̄, y)

h(t, z)− h(x̄, z)
=

∫ t

x̄
h1(x, y)dx∫ t

x̄
h1(x, z)dx

Since h(x̄, y) = EX [h(X, y)] and ϕ(x) ≡ 1 when y = z, we have H(y) = 0.
It suffices to show that H(z) ≤ 0. To do this, we return to the ratio
inequality in (8). Intuitively, the ratio in (8) was increasing in t when
[a(t)/b(t)]′ > 0 and decreasing when [a(t)/b(t)]′ < 0 (indeed, we can just
differentiate). In this context, since z ≥ y, we must have ϕ′(t) ≤ 0 when
h1 is log-supermodular and ϕ′(t) ≥ 0 when h1 is log-submodular. Now,
the covariance of an increasing function ϕ(x) and a decreasing function
x 7→ h(x, z)− h(x̄, z) is negative. In other words, we have:

H(z) ≤ EX [ϕ(X)]EX [h(X, z)− h(x̄, z)] = 0

D. Convexity for All Types. Our twin application of monotone meth-
ods has fallen short of deducing a convex matching set for “middling types”.
Is it true that every type is either high enough for supermodular produc-
tion to yield a rising surplus function, or low enough for log-supermodular
marginal products to suffice? We now finish the proof of convexity, empow-
ered by the single-crossing property for gambles.

Let’s recall the earlier sufficient condition for a quasi-concave function.
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We need to show that for all types x ∈ [0, 1]:

f2(x, y)− v′(y) = 0 ⇒ f2(x, z)− v′(z) ≤ 0 whenever z > y (18)

We reinterpret our earlier analysis as checking assertions (a) and (b) below.

(a) The premise of (18) fails for high types x < 1, since surplus is rising.

(b) The implication (18) holds for low types x > 0.

(c) Every type x ∈ (0, 1) is “low” or “high”.

Now, since f12 > 0, there is a unique cut-off x̄ so that f2(x̄, y) =

EXf2(X, y). Define the partial derivative function h ≡ f2. Differenti-
ating, we find that h1 = f12 > 0 by strict production supermodular-
ity. We now must introduce one final assumption on production — that
the cross partial f12 is log-supermodular. In this case, Lemma 1 asserts
f2(x̄, z) ≥ EXf2(X, z) for all z ≥ y. So if x = x̄, then:

f2(x, z)

f2(x, y)
≤ v′(z)

v′(y)
=
EXf2(X, z)

EXf2(X, y)
whenever z ≥ y (19)

It turns out that the threshold x̄ is the critical type separating the
high types in case (a) for whom the surplus function rises in the partner’s
type, and the low types in case (b) with single-peaked preferences. For if
x ≥ x̄, then by (16), the surplus s(x, y) has strictly positive slope in y,
and thus (18) is a valid syllogism. On the other hand, the left side of (19)
rises in x since the marginal product f2 is log-supermodular. Thus, the
inequality (19) holds if x < x̄. And we have shown that all types have
convex matching sets. This gives a flavor of the essence of the proof of the
following assortative matching characterization:

Theorem 2 (PAM with TU) If matched types x and y produce flow out-
put f(x, y) > 0, where f is symmetric, then the equilibrium TU matching
obeys strict PAM if f is supermodular, f1 and f12 are log-supermodular, and
f2(0, ·) ≡ 0.

An interesting open problem is to prove that log-supermodularity of f12
is needed, or to dispense with this proof ingredient altogether. It clearly
plays a subtle role in the proof — essentially acting as a SCP that itself
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sends us to one of two cases. In principle, if it fails, we should find for some
level of search frictions a hole in the middle of the search set, for middling
types. Shimer and Smith were not able to produce such an example.

An interesting benchmark to consider is the the simplest model with
two types of agents, low and high, and thus match payoffs c > b > a, as
described below:

L H
H b c
L a b

The frictionless Walrasian world explored by Becker (1973) yields PAM
whenever the supermodular inequality holds: a + c > 2b. Burdett and
Coles (1999) found that in the TU search model, PAM occurs when this
holds, and as long as a match between two low types produces at least
2/3 as much as a high-low match: a > 2b/3. Deducing this offers some
nontrivial practice with the search analysis.

This restriction on the two type setting can only be understood in light
of the boundary condition in Theorem 2. For the log-supermodularity of
the marginal products only binds on a model with three or more types —
for which there is a 2 × 2 array of marginal products (output differences).
Writing the log-supermodularity condition in its product form, it requires
that this matrix have a non-negative determinant. By the same token, the
log-supermodular cross partial derivative is only restrictive in a model with
four or more types.

5 Existence of Search Equilibrium
A Walrasian equilibrium is a pair of prices and allocations, such that the
allocations are optimal given prices, and prices clear markets, given the al-
locations. The existence proof method developed in Debreu (1952) and Ar-
row and Debreu (1954) parallelled Nash’s (1950) proof: They first deduced
conditions that delivered an upper hemicontinuous and convex-valued map
from prices to prices (where Nash mapped strategies to strategies); they next
applied Kakutani’s Fixed Point Theorem (1941) to secure a fixed point.

In the frictional world, an equilibrium is both conceptually and tech-
nically a more complicated object. A search equilibrium is now a triple
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values -TM matching sets -TU unmatched measures

TV
66?

Figure 6: Big Picture of Search Existence Proof Logic. Search equilib-
rium requires that the three maps TM (optimality), TU (implied unmatched
density), and TV (value accounting) be both well-defined and continuous.

(v,M, u) — namely, the value function v, the matching set function M ,
and the new equilibrium object is the unmatched measure u (simply, here
a density). So the value function acts like a wage function (the “price”),
since it represents the outside options, while the matching set M(·) is the
allocation. The unmatched density u captures the friction.

Existence no longer follows from the logic of Nash (1950). For now we
must keep track not only of the mass of realized trades, but also of the mass
of unmatched traders. We have so far suppressed the unmatched density
u(x) from all integrals, since its exact form did not affect any proofs. For
this existence proof discussion, we now introduce it. The unmatched density
u(x) ≤ ℓ(x) obeys the implicit equation:

δ[ℓ(x)− u(x)] = ρu(x)

∫
M(x)

u(y)dy (20)

So motivated, search equilibrium turns on three maps TM , TV , TU . First,
given any value function v, write the optimal matching set as M = TM(v),
as defined by (10) in the TU setting, for example. Next, the matching set M
yields a density of unmatched agents u = TU(M), implied by (20). Finally,
the triple of unmatched density u, matching set function M , and value
function v yields a new value function v = TV (v,M, u). Each map must
be well-defined and continuous in some fashion for us to apply a suitable
fixed point theorem, and secure a fixed point of the composite map v 7→
TV (v, TM(v), TU(TM(v))) — as schematically depicted in Figure 6.

Showing that TM is continuous — namely, nearby value functions lead to
nearby matching sets is not too hard in the TU model — since the matching
set is an upper contour set of the surplus function, via (10).14 Equally well,

14It is somewhat trickier in the NTU case, since value functions are discontinuous.
Smith (2006) uses a bounded variation norm to deal with this richer space of value
functions.
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the map TV yielding continuation value functions is intuitively continuous,
since it is defined by an integral. That u = TU(M) exists and is continuous,
is absent from the Walrasian analysis, and is the toughest.15

For this reason, Bloch and Ryder (2000) made a clever and obviously
false assumption that matched pairs are replaced instantaneously by un-
matched “clones”. Many papers have since made this assumption, and it
is obviously an innocuous sin for any result that holds for all unmatched
densities.

Since it is novel to the frictional matching world, we now explore why TU
is continuous. Consider the finite n-type case, with a symmetric matrix of
matching chances M = [mij]. With n = 2 types, we can see that the steady-
state equation (20) reduces to the vector equation δℓ = δu+ρA(m,u), where

A(m,u) =

[
m11u

2
1 +m12u1u2

m21u1u2 +m22u
2
2

]

We want to invert this, and express u as a function of M . Differentiating,
we discover the directional derivative:

DuA(m,u) =

[
2m11u1 +m12u2 m12u1

m21u2 m21u1 + 2m22u2

]

Towards inverting this, observe that DuA(m,u) is a positive definite matrix.
For if we consider any x′ = (x1, x2) ∈ R2, since m21 = m12 and m,u ≥ 0,
we have:

x′DuA(m,u)x = (2u1x
2
1)m11+(u2x

2
1+(u1+u2)x1x2+u1x

2
2)m12+(2u2x

2
2)m22 ≥ 0

exploiting symmetry mij ≡ mji, because:

u2x
2
1 + (u1 + u2)x1x2 + u1x

2
2 = (

√
u2x1 +

√
u1x2)

2 +4x1x2(
√
u2 −

√
u1)

2 ≥ 0

So the derivative DuA(m,u) is positive definite, and thus so too is the sum
δI + ρDuA(m,u). Finally, any positive definite matrix is invertible. Then
by the Implicit Function Theorem, the steady-state equation (20), written

15Shimer and Smith call this the “fundamental matching lemma”. In a clever piece of
sleuthing (personal communication), Georg Noldeke has since found that this also arises
in chemical reaction networks (Craciun and Feunberg, 2005). Noldeke claims that Martin
Feinberg has lecture notes from 1979 which cover the quadratic matching technology.
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B(m,u) = 0, implicitly well-defines a smooth function u = TU(M) since the
derivative Bu(m,u) ≡ δI + ρDuA(m,u) is smooth and invertible.

The above existence proof logic suggests the algorithm for computing
the equilibrium — use tatonnement via value adjustment, analogous to
Walrasian wage adjustment

6 Explicitly Costly Search
There are two traditional search friction stories that one might entertain.
On the one hand, one might imagine that search takes a while, and thus the
cost of search is foregone match payoffs. This is what we have explored —
the time cost of search story. But the original price search model imagined
that the act of search was critical cost, as happens when searching for a
low gas price. This is explicitly costly search. It is best modeled in discrete
time, and arguably not the most plausible description of search for match
partners. This is fundamentally an easier model to analyze, since the cost
of search is the same for all partners.

Table 1: Summary of the Assortative Matching Literature. The
left columns owe to Becker (1973), where TU means that wages are com-
petitively set. The top middle entry is found in Morgan (1995), while Alp
(2006) is the middle bottom entry. The right bottom entry is Shimer and
Smith (2000). Smith (2006) derives the top right entry.

No Search Fixed Cost Search Opportunity Time Cost Search
NTU f2 > 0 f2 > 0, f12 > 0 f2 > 0, (log f)12 > 0
TU f12 > 0 f12 > 0 f12>0, (log f1)12>0, (log f12)12>0

This table ignores the boundary conditions.
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