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Abstract

We create a general and tractable theory of increasing sorting in pairwise
matching models with monetary transfers. The positive quadrant dependence
partial order subsumes Becker (1973) as the extreme cases with most and least
sorting, and implies increasing regression coefficients.

Our theory turns on synergy the cross partial difference or derivative of match
production. This reflects basic economic forces: diminishing returns, technolog-
ical convexity, insurance, and learning dynamics.

We prove sorting increases if match synergy globally increases, and is cross-
sectionally monotone or single-crossing. We use our results to derive sorting
predictions in major economics sorting papers and in new applications.
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1 Introduction

This paper considers optimal pairwise matching, as in Becker’s 1973 “marriage” model.

Becker uses this metaphor for the economics of actual marriages, and allegorical ones

like employment, partnerships, optimal assignment, pairwise trade, and other matches

with monetary transfers. In this reduced form model, each side of the market has a

scalar type and payoffs solely depend on the matched individuals’ types. Becker showed

that positive assortative matching (PAM) emerges when partner types are complemen-

tary (or more formally, the match payoff function is supermodular): So the highest

“man” pairs with the highest “woman”, the next highest man with the next highest

woman, and so on. Also, when match types are substitutes (submodular payoffs),

negative assortative matching (NAM) arises — highest man with lowest woman, etc.

Little is known about matching models with neither supermodular nor submodular

payoffs. This paper targets this gap with a tractable general theory on how match pay-

off function changes impact equilibrium sorting patterns. To do so, we first identify a

simple economically meaningful partial order that captures increasing sorting: positive

quadrant dependence (PQD). We ask when the output-maximizing matching under one

production function entails more sorting in the PQD order than under another pro-

duction function with “higher” synergy. We derive this comparative static conclusion

under many notions of “higher”, and assuming a cross-sectional synergy restriction.

Since agents are described by scalar types, a matching describes which types from

each side are paired together; and thus, is a cdf on R2. One matching cdf is higher than

another in the positive quadrant dependence (PQD) order if it has more mass weakly

below any pair of types (x, y) (i.e. in every southwest quadrant). For example, consider

the PQD partial order over the six possible pure matchings among three men (1, 2, 3)

and three women (1, 2, 3) in Figure 1. Negative assortative matching (NAM) pairs the

highest types with the lowest types, while positive assortative matching (PAM) pairs

the two highest types, the two middle types, and the two lowest types. NAM1 also

pairs the two lowest types, but pairs middle types with highest types. PAM is strictly

higher than NAM1 in the PQD order, since it has more matches weakly below any

pair (x, y) and strictly more matches weakly below (2, 2). But notice that NAM1 and

NAM3 are not PQD ranked, as NAM1 pairs (1, 1), while NAM3 has more matches

weakly below (2, 2). The PQD order for all six matchings is:

PAM ≻PQD [NAM1, NAM3] ≻PQD [PAM2, PAM4] ≻PQD NAM (1)

Lemma 1 argues that increases in the PQD order imply all of: (i) the average dis-

tance between matched types falls, (ii) the correlation of matched types increases, and
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Figure 1: Pure Matchings with 3 Types. The possibilities are: negative and
positive assortative matching (NAM and PAM), negative sorting in quadrants 1 and 3
(NAM1 and NAM3), and positive sorting in quadrants 2 and 4 (PAM2 and PAM4).

therefore (iii) the regression coefficient of women on their partners’ types increases. In

other words, increases in the PQD order imply that commonly used measure of sorting

rise. By contrast, we show that no coherent sorting theory can emerge premised on

increasing covariance, correlation, or falling average distance between match partners.

We next introduce a partial order on match production functions that connects

submodularity and supermodularity. Our building block is a local complementarity

measure: Synergy is the cross partial difference of production with finitely many types,

and the cross partial derivative with continuous types. Synergy is everywhere positive

for supermodular functions, and everywhere negative for submodular functions. To

highlight its central role, we show how to express total match output as a constant

plus an average of all match synergies weighted by the matching distribution. This

means that any matching characterization must turn on synergy. For instance, Becker

(1973) deduces positive sorting with all synergies positive, and negative sorting with

all synergies negative. We subsume intermediate cases, where synergy changes sign.

Since globally positive synergy implies assortative matching, is sorting greater with

more synergistic production? A three-type example refutes this conjecture — the

optimal matching oscillates between the two non-PQD comparable matchings NAM1

and NAM3 as synergy rises in Figure 3. While increasing synergy is not enough for

increasing sorting, Proposition 1 finds that sorting cannot fall in the PQD order when

synergy globally weakly rises. This exhausts the strength of monotone comparative

statics logic, and allows unranked oscillations, like NAM1 to NAM3, as synergy rises.

To secure increasing sorting, we need stronger assumptions. We add in cross-

sectional restrictions on synergy. Our easiest to state such result is Proposition 2

— sorting increases if synergy weakly increases for all pairs, and if synergy is cross-

sectionally monotone, i.e. monotone across pairs of types before and after the shift in

production. But these monotonicity assumptions may be too demanding, since synergy

is not monotone in many matching applications.

Our most general sorting result Proposition 3 replaces monotonicity conditions in

Proposition 2 with sign change provisos. The new assumption across matching markets

is that total synergy aggregated on unions of rectangular partner sets changes sign only
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from negative to positive. The new cross-sectional premise is that the total synergy on

rectangular sets changes sign just once as it shifts toward higher types.

Next, Proposition 4 replaces the cross-sectional premise of Proposition 3 with

an assumption on marginal rectangular synergy. Finally, to subsume continuum types

matching papers, Proposition 5 formulates an increasing sorting result solely in terms

of local synergy. It posits that synergy changes sign only from negative to positive,

with the same sign change cross-sectionally. But this is not enough, as single crossing

is not preserved under addition. We therefore also assume that synergy is the product

of an increasing and log-supermodular function. This ensures that positive synergy

rises proportionately more than absolute negative synergy.

Finally, the logical arc of the paper is that Proposition 3 implies Proposition 4

implies Proposition 5 implies Proposition 2. We prove Proposition 3 for finitely many

types. The proof in §C.2 by induction on the number of types is a key contribution of

the paper. Notably, it never solves for an optimum. Rather it chases down failures of

the comparative static to the possible shift from the n-type version of NAM3 to NAM.

For our final general results, we deduce comparative statics for distributional shifts,

such as an increase in the mass of high types of women. We show that a distributional

shift can be reinterpreted as a change in the match payoff function, and then apply

our previous results to show that first order shifts in type distributions increase sorting

when synergy is cross-sectionally increasing (Corollary 1).

Economic Applications of Our Theory. Our theory is targeted at applica-

tions. We show how our conditions on synergy can be readily derived in many standard

economic problems, where our theory makes immediate predictions. We show that:

1. The typical economic force of diminishing returns lowers synergy and so sorting.

2. Match synergy is greater for “weakest link” technologies and lesser for “strongest

link” technologies — where the lesser/higher type matters more, respectively.

3. In the principal-agent matching model of Serfes (2005) NAM obtains — more

risk averse agents with safer projects — when the disutility of effort is below

a lower bound, while PAM obtains when disutility crosses an upper threshold.

Our theory shows that sorting rises between these two thresholds, provided types

(risk aversion and project variance) are not too far apart.

4. Our theory also speaks to dynamic matching with evolving types. In a model of

mentor-protege workplace learning, matching with a better mentor improves the

protege’s future type. This strongest link technology lowers match synergy.1

1Bayesian updating need not inherit supermodularity in Anderson and Smith (2010). Supermod-
ularity is often not preserved in our work with evolving human capital (Anderson and Smith, 2012).
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Our model properly is a transportation problem, whose literature dates back over

two centuries (see Villani (2008)). Notably, it is not solved, except in special cases like

Becker’s. But we provide comparative statics predictions without ever deriving the op-

timal solution. We also build on a math literature on the PQD order. Lehmann (1966)

introduced the PQD order, and showed that several common correlation measures are

weakly positive for any matching that is PQD higher than uniform random matching.

Cambanis, Simons, and Stout (1976) found that total output weakly rises when the

matching shifts up in the PQD order whenever synergy is everywhere non-negative.

Our Proposition 1 is a corollary of this result. Techen (1980) showed that non-negative

synergy is necessary for total output to rise for any upward shift in the PQD order.

Longer proofs and new monotone comparative statics results are in Appendices.

2 Becker’s Marriage Model and Planner’s Result

Our model is standardly adapted from Becker and the pairwise matching literature with

two groups (men and women, firms and workers, buyers and sellers) or one (partnership

model). To subsume both finite and continuum type models, we posit a unit mass of

“women” and “men” with respective types x, y ∈ [0, 1] and cdfs G and H. We assume

absolutely continuous type distributions G and H, and for the finite type model, G and

H are discrete measures with equal weights on female types 0 ≤ x1 < x2 < · · · < xn ≤ 1

and male types 0 ≤ y1 < y2 < · · · < yn ≤ 1 for n ≥ 2. In the finite types case, we

relabel women and men as i, j ∈ {1, 2, . . . , n}, respectively.
We assume a C2 production function ϕ > 0, so that types x and y jointly produce

ϕ(x, y). In the finite type model, the output for match (i, j) is fij ≡ ϕ(xi, yj) ∈ R.
Production is supermodular or submodular (SPM or SBM) if for all x′ < x′′ and y′ < y′′:

ϕ(x′, y′) + ϕ(x′′, y′′) ≥ (≤) ϕ(x′, y′′) + ϕ(x′′, y′) (2)

Strict supermodularity (respectively, strict SBM) asserts globaly strict inequality in (2).

Since output is positive, everyone matches — even if allowed not to. A matching

is a bivariate cdf M ∈ M(G,H) on [0, 1]2 with marginals G and H. A finite matching

is a nonnegative matrix [mij], with cdf Mi0j0 =
∑

1≤i≤i0,1≤j≤j0
mij, and unit marginals∑

imij0 = 1 =
∑

j mi0j for all men i0 and women j0. In a pure matching, [mij] is a

matrix of 0’s and 1’s, with everyone matched to a unique partner.

There are two perfect sorting flavors. In positive assortative matching (PAM), any

woman type of x at quantile G(x) pairs with a man of type y at the same quantile H(y),

and thus the match cdf isM(x, y) = min(G(x), H(y)). In negative assortative matching

(NAM), complementary quantiles match, and so M(x, y) = max(G(x) +H(y)− 1, 0).
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Matched types are uncorrelated given uniform matching, and so M(x, y) = G(x)H(y).

The partnership (or unisex) model is a special case where types x and y share a

common distribution, G = H, and the production function ϕ is symmetric (ϕ(x, y) =

ϕ(y, x)). In this case, PAM is simply matching with the same type, y = x.

A social planner maximizes total match output, namely
∑n

i=1

∑n
j=1 fij(θ)mij with

finite types, or more generally
∫
[0,1]2

ϕ(x, y|θ)M(dx, dy), where we index output ϕ(x, y|θ)
by a (often suppressed) state θ ∈ Θ, a partially ordered set. The optimal matchings

M∗(θ) solves:

M∗(θ) ≡ arg max
M∈M(G,H)

∫
[0,1]2

ϕ(x, y|θ)M(dx, dy) (3)

Gretsky, Ostroy, and Zame (1992) prove existence and show that M∗ is the core of

the matching game among women x and men y, or workers x and capital y. They also

show that solutions can be decentralized as a competitive equilibrium.2 So, our theory

applies to equilibrium sorting in such markets.

Problem (3) has been solved in just three general cases: All feasible matchings are

optimal with additive production, while Becker solved for SBM and SPM production:

Becker’s Sorting Result. Given SPM (SBM) production ϕ, PAM (NAM) is an op-

timal matching. Given strict SPM (SBM), these pairings are uniquely optimal.

For an intuition, assume finitely many types and SPM (2). A maximum of (3)

obviously exists. To see uniqueness, note that if ever women x′ < x′′ and men y′ < y′′

are negatively sorted into matches (x′, y′′) and (x′′, y′), then total output is raised by

rematching them as (x′, y′) and (x′′, y′′). A proof for any number of types is in §3.
Without SBM or SPM, solving the general social planner’s problem (3) is a hard

open question. We bypass this, and ask how the optimal set M∗(θ) changes in θ.

We derive its comparative statics in θ when output ϕ(x, y|θ) is neither SPM or SBM.

Hereafter, a time series property suggestively refers to changes in the state θ,3,4 and a

cross-sectional property to production changes over the type space. We then apply our

finding in several matching models across economics, without SPM or SBM output.

Throughout the paper, we present finite type and continuum type results together,

as synergy is a common theme. We draw both intuition and our overall inductive proof

logic from the finite type case, and derive the continuum type results by taking limits.

2Villani (2008) states that existence “has probably been known from time immemorial” and his
Theorem 4.1 provides existence for very general type spaces. Koopmans and Beckmann (1957) decen-
tralize the finite type solution as a competitive equilibrium. Legros and Newman (2007) show that
some nontransferable utility models can be mapped into the transferable utility paradigm.

3The term time-series is used to distinguish variation across matching markets from changes across
types within a market. The state could also represent geographic differentiation in matching markets.

4Equivalently, our theory compares sorting for two production functions ϕ1 and ϕ2 (i.e. θ1 < θ2).
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Figure 2: PQD Order. Left: PQD increases for cdfs on [0, 1]2 raise the probability
mass on all lower left rectangles (corners (0, 0) and (x0, y0)), and so on all upper right
rectangle (corners (x0, y0) and (1, 1)). Right: The best fit regression line is steeper
(thick black line and • vs. thin black line and ◦) after a PQD increase (Lemma 1(c)).

3 Sorting Measurement and Synergy

This section introduces the building blocks of our theory. First, we define and discuss

the partial order that we use to measure sorting. We then define a property of payoff

functions called synergy, and show that optimal matching only depends on synergy.

3.1 The Positive Quadrant Dependence Order

The positive quadrant dependence (PQD) order is a binary partial order on bivariate

probability distributionsM,M ′∈M(G,H). Matching measureM ′ is PQD higher than

M , or M ′ ⪰PQD M , if M ′(x, y) ≥ M(x, y) for all types x, y. So M ′ puts more weight

than M on all lower (southwest) orthants. As M and M ′ share marginals, M ′ puts

more weight than M on all upper (northeast) orthants too (Figure 2).

As noted in the introduction, PQD only partially orders the six possible pure match-

ings on three types. In terms of Becker’s bounds, match cdf’s are sandwiched above

NAM and below PAM:

max(G(x) +H(y)− 1, 0) ≤M(x, y) ≤ min(G(x), H(y)) (4)

The second inequality says that the mass of matched men and women in [0, x]× [0, y]

is at most the total mass of men or women. The first inequality — rewritten as

1−M(x, y) ≤ min(1−G(x)+1−H(y), 1), says the mass of matches not in [0, x]× [0, y]

is at most the total mass of women above x plus the mass of men above y.

The PQD sorting measure implies typical economically relevant measures for mea-

sured traits u(x) and v(y) of women x and men y, increasing in x and y:
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Lemma 1. Fix non-decreasing functions u and v. Given a PQD order upward shift:

(a) the average distance E[|u(X)−v(Y )|γ] for matched types weakly falls, if γ ≥ 1;

(b) the covariance EM [u(X)v(Y )]−E[u(X)]E[v(Y )] across matched pairs weakly rises;

(c) The linear regression coefficient of v(y) on u(x) across matched pairs weakly rises.

PQD is an ordinal sorting ranking, like PAM — not dependent on type scaling. So

if educational sorting PQD rises, then this holds regardless of whether it is measured in

highest degree, schooling years, etc. But for non-PQD comparable matching changes,

the sorting conclusion can reverse if the choice of cardinal measure changes. This

highlights why we use the stronger ordinal PQD sorting order.

To see this, assume three types, and consider a non-PQD comparable NAM1 to

NAM3 change. If x ∈ {1, 2, 3} and y ∈ {0.5, 1.8, 3}, then the covariance between

matched types and average distance between partners both fall, i.e. sorting falls if mea-

sured by type correlation, but rises if measured by average distance between matched

types. But if y ∈ {0.5, 2.5, 5}, match type correlation rises, and average distance be-

tween matched types falls. Both sorting measures fall if y∈{0.5, 2.5, 3} and both rise

if y∈{0.5, 2.5, 3}. So any sign pattern is consistent with a NAM1 to NAM3 shift.

If we convert to quantile space, then the covariance and the average distance ranking

coincides for (NAM1,NAM3) and (PAM2,PAM4). But equivalence fails with four types.

For example, let M ′ be the four type matching {(1, 4), (2, 2), (3, 3), (4, 1)} and M ′′ be

the PQD incomparable matching {(1, 3), (2, 4), (3, 1), (4, 2)}. Then covariance-based

sorting statistics deem M ′′ more sorted (e.g. a higher correlation coefficient) than M ′,

while M ′ is more sorted than M ′′ by the average distance between partners.

3.2 Synergy

We now introduce a local measure of Becker’s supermodularity assumption. In finite

type models, we suggestively call the cross partial difference of output synergy :

sij(θ) ≡ fi+1j+1(θ) + fij(θ)− fi+1j(θ)− fij+1(θ)

Synergy is the net change in output from positively sorting pairs (i, j) and (i+1, j+1)

vs. negatively sorting as (i, j+1) and (i+1, j). Equivalently, it is the difference between

the gain in output that woman i + 1 gets when matching with the next higher man,

fi+1j+1 − fi+1j and this same change for the next lower woman i, fij+1 − fij.

The central importance of synergy is revealed by expressing match output as a

weighted sum of match synergies. Appendix §A proves the following identity by double
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Match Payoffs
x1 x2 x3

y3 9 14 18
y2 5 2 14
y1 1 5 9

→
x1 x2 x3

y3 9 16 24
y2 5 3 16
y1 1 5 9

→
x1 x2 x3

y3 9 20 30
y2 5 6 20
y1 1 5 9

→
x1 x2 x3

y3 9 22 36
y2 5 7 22
y1 1 5 9

Cross Partial Differences of Match Payoffs

x1x2 x2x3
y2y3 8 −8
y1y2 −7 8

→
x1x2 x2x3

y2y3 9 −5
y1y2 −6 9

→
x1x2 x2x3

y2y3 10 −4
y1y2 −3 10

→
x1x2 x2x3

y2y3 11 −1
y1y2 −2 11

Figure 3: Sorting Need Not Rise in Synergy. Top: the unique efficient matching
alternates between NAM1 and NAM3. Bottom: match synergies (cross payoff differ-
ences) strictly increase as we move right, but sorting does not PQD rise. Sorting by two
common cardinal measures can move contrarily. If x ∈ {1, 2, 3} and y ∈ {0.5, 1.8, 3},
NAM1 to NAM3 shifts reduce both covariance and average distance between partners.

summation of match output by parts:5∑n
i=1

∑n
j=1 fijmij =

∑n
i=1 fin −

∑n−1
j=1 [fnj+1 − fnj] j +

∑n−1
i=1

∑n−1
j=1 sijMij (5)

In other words, any two production functions with identical synergies share the

optimal matching. For instance, if production is linear, then synergy vanishes, and all

match distributions yield the same output.

Becker’s Result follows immediately from the bounds (4) and the summation by

parts formula (5). For example, output is SPM when sij ≥ 0, and so by (5) output

is highest when the cdf M(x, y) is maximal: PAM dominates all other matchings.

Similarly, if output is SBM, then sij ≤ 0, and thus output is highest when the match

cdf M(x, y) is minimal, namely, for NAM. More generally, the PQD and SPM orders

coincide in R2, i.e. increases in the PQD order increase (reduce) the total output for

any SPM (SBM) function ϕ:6

M ′ ⪰PQD M ⇔
∫
ϕ(x, y)M ′(dx, dy) ≥

∫
ϕ(x, y)M(dx, dy) ∀ϕ SPM (6)

4 What Happens When Synergy Rises?

Since Becker shows that globally negative synergy leads to NAM, and globally positive

synergy leads to PAM, one might surmise that sorting increases if synergy increases

5Lemma 3 in §D.2 derives the analog for types on a continuum.
6Lehmann (1966) introduces the PQD order, and Cambanis, Simons, and Stout (1976) prove that

the SPM order implies the PQD ranking in R2. Techen (1980) proves the converse.
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everywhere. This natural conjecture fails: In Figure 3, synergy strictly increases at

each step, and yet the uniquely optimal matching oscillates between the non PQD-

comparable NAM1 and NAM3. What goes wrong?

The synergy sign is all that matters for determining whether NAM or PAM is

optimal for any pair of couples, but the magnitude of synergy impacts global sorting

patterns. For example, one can verify that NAM1 yields a higher payoff than NAM3

iff synergy is larger in the lower left rectangle, s11 than in the upper right rectangle,

s22. This makes sense of the sorting monotonicity failure in Figure 3: synergy strictly

increases in θ, but the difference s11(θ) − s22(θ) changes sign for every increase in θ.

Consequently, the optimal matching oscillates between NAM1 and NAM3.

Technically, our objective function is single crossing in (M, θ) by (5). But standard

monotone comparative statics results do not apply, because the domain of matching

cdf’s is not a lattice with the PQD order (Müller and Scarsini, 2006). Indeed, NAM1

and NAM3 in (1) are both pure upper bounds for PAM2 and PAM4, but neither is

least. More strongly, there is no mixed least upper bound for PAM2 and PAM4.

While the optimal matching oscillates in Figure 3, it never falls in the PQD order.

We show in Appendix D that this is the comparative statics conclusion for our case

with a single crossing condition, but not on a lattice domain. Specifically, for our

matching context, say that sorting is nowhere decreasing in θ if the matching never

falls in the PQD order. So for all θ′′ ⪰ θ′, if M ′ ∈ M∗(θ′) and M ′′ ∈ M∗(θ′′) are

ranked M ′ ⪰PQD M ′′, then we have M ′′ ∈ M∗(θ′) and M ′ ∈ M∗(θ′′).

Proposition 1. Sorting is nowhere decreasing in θ if synergy is non-decreasing in θ.7

Proof: By match payoff formulation (5), the payoff gain moving from matchingM ′′ to

matchingM ′ is
∑n−1

i=1

∑n−1
j=1 sij(θ)(M

′
ij−M ′′

ij). SinceM
′ ⪰PQD M ′′ (namely,M ′ ≥M ′′),

if θ′′ ⪰ θ′, then the Planner’s objective function obeys increasing differences in (M, θ):

n−1∑
i=1

n−1∑
j=1

sij(θ
′′)(M ′

ij −M ′′
ij) ≥

n−1∑
i=1

n−1∑
j=1

sij(θ
′)(M ′

ij −M ′′
ij)

Assume that M ′ is optimal at θ′ and M ′′ at θ′′. Then

n−1∑
i=1

n−1∑
j=1

sij(θ
′)(M ′

ij −M ′′
ij) ≥ 0 ≥

n−1∑
i=1

n−1∑
j=1

sij(θ
′′)(M ′

ij −M ′′
ij)

But then equality holds everywhere: Hence, M ′ is optimal at θ′′ and M ′′ at θ′. □
7 For completeness, an online Appendix D.1 generalizes Proposition 1, deriving a more general

theory of comparative statics on posets. We thank a referee for the proof of the following special case
of this general theory. He derived it as a corollary of Cambanis, Simons, and Stout (1976).
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Figure 4: Matching Example for Proposition 2. We numerically depict the match-
ing support for the synergy function α − βmin{xi, xj}. All matching plots depict op-
timally matched pairs (dots) for a uniform distribution on a finite 100× 100 matching
array. In each graph, synergy is positive (negative) on the shaded (unshaded) regions.
Left to right plots assume (α, β) = (0.4, 1.3), (0.4, 1), and (0.6, 1.3).

5 Increasing Sorting

We now provide conditions that guarantee that matching is increasing in the PQD

order. To preclude the increasing sorting failures as in Figure 3, we cross-sectionally

restrict how synergy evolves across types.

5.1 Strictly Monotone Synergy in Types

First consider the simplest case: synergy is (strictly) monotone in types if synergy is

either non-decreasing (increasing) or non-increasing (decreasing) in (x, y), i.e. synergy

is monotone to the “north and east”, or “south and west” in the type space.8

Proposition 2. Let synergy be non-decreasing in θ. If M ′′ and M ′ are respectively

optimal for θ′′ ≻ θ′, then M ′′ ⪰PQD M ′ in (a) generic finite type models for synergy

monotone in types; (b) continuum type models for synergy strictly monotone in types.

To illustrate this first sorting result, consider the production function ϕ = αxy +

β(xy)2. If αβ < 0 then Becker’s Sorting Result does not apply. But since synergy ϕ12 =

α+2βxy strictly increases in (α, β), sorting rises in both parameters, by Proposition 2.

Assuming that synergy is monotone in types rules out either NAM1 or NAM3 in

three type models. But with more types this cross-sectional assumption still allows

for rich matching patterns. For example, assume the synergy function ϕ12(x, y) =

8This cross-sectional assumption is not so strong that it eliminates the partialness of the PQD
order. For instance, PAM2 and PAM4 can both emerge as optimal matchings when synergy is strictly
monotone in types (Figure 5, left).
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α − βmin{x, y} (recall that synergy fully determines the optimal matching by (5)).

Synergy is monotone in types — non-decreasing or non-increasing as β ≶ 0. Synergy is

increasing in α and decreasing in β. Thus, by Proposition 2, sorting increases in α and

falls in β. Figure 4 illustrates this comparative static with 100 equally spaced types on

each side of the market. Notice that the matching alternates between locally positive

and locally negative sorting for fixed α and β. Furthermore, these finite type plots

also suggest that the optimal matching will not be pure (one-to-one) with continuum

types. In fact, none of our continuum type sorting results require purity.

5.2 One-Crossing Rectangular Synergy in Types

The conditions in Proposition 2 are quick to check, but do not hold in many applica-

tions. We now prove a sorting result with a weaker premise, which we apply to several

applications in §7. Let (T,⪰) be a partially ordered set. A function Υ : T 7→ R is

upcrossing in t9 if Υ(t) ≥ (>)0 implies Υ(t′) ≥ (>)0 for all t′ ⪰ t, downcrossing in t

if −Υ is upcrossing, and one-crossing in t if it is upcrossing or downcrossing. Strict

versions of these conditions require that weak inequalities imply strict inequalities. For

example, Υ is strictly upcrossing if Υ(t)≥0 implies Υ(t′)>0, for all t′ ≻ t.

The rectangle r ≡ (i1, j1, i2, j2) ∈ N4 denotes two women i1 < i2 and men j1 < j2.

Rectangular synergy S(r|θ) : N4 → R sums synergies sij(θ) inside the rectangle r:

S(r|θ) ≡
i2−1∑
i=i1

j2−1∑
j=j1

sij(θ) = fi1j1(θ) + fi2j2(θ)− fi1j2(θ)− fi2j1(θ) (7)

This is the gain on rectangle r to positively sorting (creating couples (i1, j1) < (i2, j2))

versus negatively sorting (creating couples (i1, j2) and (i2, j1)). For a type continuum,

rectangular synergy is the integral of synergy over a rectangle, namely, S(R|θ) ≡∫ y2
y1

∫ x2

x1
ϕ12(x, y|θ)dxdy for any R = (x1, y1, x2, y2). Our next result requires summed

rectangular synergy — namely, the sum
∑

k S(rk|θ) on a finite set of disjoint rectangles

{rk} with finite types, or
∑

k S(Rk|θ) on finite disjoint set {Rk} with continuum types.10

Since rectangular synergy is the net gain to positively rematching the negatively

sorted pair of couples (i1, j2) and (i2, j1), summed rectangular synergy is the net gain

to a sequence of such positive couple swaps. When summed rectangular synergy is

upcrossing in θ, any such a sequence of positive swaps increases aggregate output at all

θ′ ⪰ θ, whenever this sequence increase aggregate output at θ. This ordinal assumption

9 The “single crossing property” usually implies a two dimensional functional domain. To avoid this
confusion, and clarify the direction, we instead use the suggestive terms upcrossing and downcrossing.

10The proof only needs this assumption for sums of rectangles sharing a common northeast corner.
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Figure 5: The Role of our Cross-Sectional Synergy Assumption. At left, we
show that even strictly monotone synergy in types still allows PAM2 and PAM4, and so
PQD is still a partial order on allowable matchings. At right, is a schematic illustrating
our logic precluding a PAM2 to PAM4 change when synergy is also upcrossing in θ.

weakens the time-series assumption in Proposition 2, since summed rectangular synergy

is upcrossing in θ if synergy is non-decreasing in θ

Our first ordinal cross-sectional assumption uses the northeast partial order on

rectangles: r ⪰NE r′, if diagonally opposite corners of r are weakly higher than r′.

Rectangular synergy is one-crossing in types if S(r|θ) is upcrossing (downcrossing) in

r, for all θ. This assumption demands that the sign of the change in output from any

positive swap can only change once as we increase types. For example, if rectangular

synergy is upcrossing in types and positively rematching the negatively sorted pair of

couples (i1, j2) and (i2, j1) increases output, then any positive swap involving couples

with higher type indices must also increase output. This is an ordinal weakening of the

cross-sectional assumption in Proposition 2, since rectangular synergy is one-crossing

in types when synergy is monotone in types.

Proposition 3 (Increasing Sorting Theorem). Assume summed rectangular synergy is

upcrossing in θ and rectangular synergy is one-crossing in types. If M ′′ and M ′ are

uniquely optimal for respectively θ′′ ≻ θ′, then M ′′ ⪰PQD M ′.

Proposition 3 is our most general result. Since its time series premise is weaker

than monotone synergy, we cannot deduce it from Proposition 1.11 Proposition 3

applies to output functions with a unique optimal matching, but optimal matchings

are generically unique in finite type models by Koopmans and Beckmann (1957). We

prove uniqueness for continuum models with a stronger cross-sectional proviso in §5.4.

5.3 Logic of the Proof of the Increasing Sorting Theorem

To held build intuition, we show how our cross-sectional and time-series assumptions

work together to rule out a PAM2 to PAM4 shift as θ rises. Toward a contradiction,

11In fact, the time series assumption in Proposition 3 is weaker than the robustly necessary condition
for nowhere decreasing sorting as seen in Theorem 4 in §D.2.
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assume PAM2 uniquely optimal at θ′ and PAM4 uniquely optimal at θ′′ ≻ θ′, as

illustrated in Figure 5 (right). Local optimality implies the synergy signs given in Step

A. Then since synergy is upcrossing in θ, s12(θ
′) > 0 implies s12(θ

′′) > 0 as indicated

in Step B. Now notice that PAM4 involves negatively sorting couples (1, 3) and (3, 2);

and thus, the synergy sum across the top row obeys s12(θ
′′) + s22(θ

′′) < 0. But then

since s12(θ
′′) > 0 (Step B), we conclude in Step C that s22(θ

′′) < 0. Likewise, PAM4

negatively sorts pairs couples (1, 3) and (2, 1), implying the synergy sum in the first

column satisfies s11(θ
′′)+ s12(θ

′′) < 0. But then since s12(θ
′′) > 0 (Step B), we can also

sign s11(θ
′′) < 0. Notice that the sign pattern in Step C violates synergy one-crossing

in types. Altogether, PAM2 optimal at θ′ and PAM4 optimal at θ′′ is impossible.

Symmetric logic rules out PAM4 optimal at θ′ and PAM2 optimal at θ′′.

The preceding logic rules out one non-PQD comparable shift. We now trace the

logic of our induction proof in Appendix §C.2 for 3-type models with rectangular

synergy upcrossing in types. Assume M ′ and M ′′ are uniquely optimal for θ′′ ≻ θ′. As

shown in §C.2 uniqueness implies purity for finite type models: M ′ and M ′′ are pure.

▷ Step (i): Sorting rises in θ in 2-type models if rectangular synergy upcrosses in θ.

▷ Step (ii): If rectangular synergy upcrosses in types, then NAM1 is impossible. Indeed,

rectangular synergy upcrossing in types precludes s11 + s12 > 0 > s22 (Figure 6), as

required if NAM1 is uniquely optimal. Notice that this step rules out the monotone

sorting counterexample in Figure 3. We use the fact that this holds for any 3×3 subset

of n× n types throughout our proof in the Appendix.

▷ Step (iii). Partners of woman 1 and man 1 each rise by one if the matching does

not weakly rise. This corresponds to Step 3 in §C.2. Indeed, shifting from θ′ to θ′′:

Case 1 of Step (iii). The partner of woman 1 cannot rise by 2. Since there are only

three types, the only way the partner of woman 1 can rise by 2 is if woman 1 is matched

to man 1 at θ′ and man 3 at θ′′. Which implies that man 3 is paired with a woman i > 1

at θ′, while woman i is matched to a man j < 3 at θ′′. Now, remove matched couples

(i, 3) at θ′ and (i, j) at θ′′ and consider the induced matching among the remaining

two women and men. By Fact 2 in §C.2 synergy will be upcrossing in θ in this 2-type

model, since we have removed the same woman and a weakly higher man at θ′. So

the matching in the induced two type model must be PQD higher at θ′′ than θ′, by

Step (i). But by assumption woman 1 pairs with man 1 at θ′, and woman 1 pairs with

(the new) man 2 at θ′′, i.e. the induced two type model is PAM at θ′ and NAM at θ′′.

Case 2 of Step (iii). The partner of woman 1 strictly rises. Assume instead that her

partner weakly falls from k to j. As in Case 1, synergy must be upcrossing in θ in the

induced the two type model, if we remove couple (1, k) at θ′ and couple (1, j) at θ′′.

Thus, the induced 2-type matching is PQD higher at state θ′′ than θ′ by Step (i).
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Step II

s11

s22

+s21•

•
•

NAM1

s21

•
•

•
NAM

⇒
s21

•

•
•

PAM4

Step V

s12+s22
•

•
•

PAM4

⇒ s12+s22•
•

•

NAM3

Figure 6: Illustrations for 3-type version of Proposition 3 Proof. Step II shows
that NAM1 (left) for any 3×3 subset of types is impossible when synergy is upcrossing
in types. Mapping from NAM to PAM4 changes the payoff by s21 (Step E, left), while
mapping from PAM4 to NAM3 changes the payoff by s12 + s22 (Step V, right).

But adding couple (1, k) and couple (1, j) to the optimal two type matchings under θ′

and θ′′ preserves the PQD ordering by k ≥ j and Fact 5 in §C.2. So if the matching

fails to weakly rise in the PQD order, then woman 1’s partner cannot weakly fall.

Combining Cases 1 and 2 of Step (iii), woman 1’s partner increases by one. Sym-

metric arguments establish that man 1’s partner also increases by 1.

▷ Step (iv). If matching does not weakly PQD rise, then it falls from NAM3 to NAM.

By Step (iii), woman 1 cannot pair with man 3, nor man 1 with woman 3, at θ′. E.g.,

in the first case, by Step (iii), woman 1 matches with nonexistent man 4 under θ′′.

But woman 1 and man 1 cannot match at θ′. For if so, there are only two possible

matchings for M ′: either types 2 and 3 positively sort, and so M ′ = PAM, or they do

not, whence M ′ = NAM1. Since Step (ii) precludes NAM1, assume M ′ = PAM. As

the lowest two types match at θ′, by Step (iii), woman 1 pairs with man 2 and man 1

with woman 2 at θ′′. All told, the lowest two types positively sort at θ′ and negatively

sort at θ′′ — violating rectangular synergy upcrossing in θ.

Now consider the remaining case: woman 1 pairs with man 2, and man 1 with

woman 2, at θ′. Having matched the two lowest men and women, woman 3 must

match with man 3. Altogether, M ′ is NAM3 — namely, couples {(1, 2), (2, 1), (3, 3)}.
By Step (iii), woman 1 matches with man 3, and man 1 with woman 3 at θ′′. But

then, the remaining man 2 and woman 2 match, i.e. M ′′ is NAM: {(1, 3)(2, 2), (3, 1)}.
Step (iv) captures Steps 4–7 in the n type proof, although the logic is significantly

more involved with many types. The next item distills Step 8 in the n type proof:

▷ Step (v). The matching cannot fall from NAM3 to NAM. As in Figure 6, one can

switch from NAM to NAM3, by first moving to PAM4, then to NAM3. The first

shift rematches couples (2, 2) and (3, 1), into (2, 1) and (3, 2), changing output by

synergy s21. The second switch to NAM3 rematches couples (1, 3) and (3, 2) into (1, 2)

and (3, 3), changing output by the synergy sum s21 + s22. Combining these two swaps,

we see that the NAM3 payoff exceeds the NAM payoff by synergy sum s12 + s21 + s22.

Since NAM3 is uniquely optimal for θ′, and NAM uniquely optimal for θ′′, we have
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x1 x2 x3
y3 6 6 11
y2 4 6 6
y1 0 4 6

→
x1 x2 x3

y3 7 6 11
y2 4 6 6
y1 0 4 7

x1x2 x2x3
y2y3 −2 5
y1y2 −2 −2

→
x1x2 x2x3

y2y3 −3 5
y1y2 −2 −3

Figure 7: Falling Matching with Rectangular Synergy Upcrossing in Types
and θ. The unique efficient matching falls from NAM3 to NAM as θ′ shifts up to θ′′.
The sorting premium S is upcrossing in rectangles r for each θ, and the signs of S(r|θ′)
and S(r|θ′′) coincide for all r; thus, S is upcrossing from θ′ to θ′′. But Proposition 3
does not apply, as total synergy falls from 1 to −1 for the set that only excludes s11.

s12(θ
′′) + s21(θ

′′) + s22(θ
′′) < 0 < s12(θ

′) + s21(θ
′) + s22(θ

′)

This contradicts summed rectangular synergy upcrossing in θ.

Steps (iv) and (v) together imply that the matching weakly rises from θ′ to θ′′.

Only in Step (v) did we use summed rectangular synergy upcrossing in θ. Absent

this assumption, sorting can fall in θ. For example, in Figure 7, rectangular synergy is

upcrossing in types and θ, and yet the uniquely optimal matching falls from NAM3 to

NAM as θ rises. We generalize Steps (iv) and (v) in C.2, with an n type generalization

of NAM3; namely, couple (n, n) matched, and lower types matched according to NAM.

5.4 One-Crossing Marginal Rectangular Synergy in Types

We now provide a stronger, but easier to check, cross-sectional assumption to deliver

increasing sorting. Specifically, the x-marginal rectangular synergy ∆i(i|j1, j2) is the

sum of synergy between woman i and men in the interval [j1, j2−1] and the y-marginal

rectangular synergy ∆j(j|i1, i2) is sum of synergy between man j and women in the

interval [i1, i2 − 1], i.e.:

∆i(i|j1, j2, θ) ≡
j2−1∑
j=j1

sij(θ) and ∆j(j|i1, i2, θ) ≡
i2−1∑
i=i1

sij(θ) (8)

Equivalently, the x- marginal rectangular synergy is the difference between the gain in

output that woman i+ 1 gets when matching with a higher index man, fi+1j2 − fi+1j1

and this same change for the next lower woman i, fij2 − fij1 .

Marginal rectangular synergy is upcrossing in the finite types case if the left sum

in (8) is upcrossing in i and the right sum is upcrossing in j. In the continuum types

case, we require the integrals ∆x(x|y1, y2, θ) ≡
∫ y2
y1
ϕ12(x, y|θ)dy upcrossing in x for all

y2 > y1 and ∆y(y|x1, x2, θ) ≡
∫ x2

x1
ϕ12(x, y|θ)dx upcrossing in y for all x2 > x1. Finally,
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marginal rectangular synergy is one-crossing if it is either upcrossing or downcrossing.

Notably, one-crossing marginal rectangular synergy is an ordinal implication of

monotone synergy. To see this, notice that synergy ϕ12 is non-decreasing in x iff

ϕ1(x, y2|θ) − ϕ1(x, y1|θ) is non-decreasing in x for all y2 > y1, i.e. if x- marginal rect-

angular synergy ∆x(x|y1, y2, θ) is non-decreasing in x.

Proposition 4. Assume summed rectangular synergy is upcrossing in θ. If M ′′ and

M ′ are optimal for respectively θ′′ ≻ θ′, then M ′′ ⪰PQD M ′ in (a) generic finite type

models if marginal rectangular synergy is one-crossing and (b) continuum type models

if marginal rectangular synergy is strictly one-crossing.

The proof in §C.4 shows that these conditions imply those of Proposition 3. These

propositions share the same time series assumption. The cross sectional assumption in

Proposition 4 implies Proposition 3’s cross sectional assumption. To verify this, recall

that a function f : Rk 7→ R is log-supermodular (LSPM) if f ≥ 0 and ∀ a, b ∈ Rk

f(max(a, b))f(min(a, b)) ≥ f(a)f(b) (9)

Now, rewrite rectangular synergy as:

S(x1, x2, y1, y2|θ) =
∫ x2

x1
∆x(x|y1, y2, θ)dx =

∫ 1

0
∆x(x|y1, y2, θ)1x∈[x1,x2]dx (10)

We show in §C.4 that the indicator function 1x∈[x1,x2] is LSPM in (x, x1, x2). Thus, by

the classic result of Karlin and Rubin (1956) on upcrossing preservation in integrals,

S is upcrossing in (x1, x2) whenever ∆x is upcrossing in x. Likewise, S is upcrossing

in (y1, y2) whenever y-marginal rectangular synergy is upcrossing in y. Loosely, log-

supermodularity of a kernel is the key way to ensure that upper portions of the domain

are proportionately weighted more and thus upcrossing is preserved.

To apply Proposition 3, we also need the optimal matching to be unique. This is

generically true for finite type models. Fortuitously, strictly one-crossing marginal rect-

angular synergy implies a known sufficient condition in the optimal transport literature

for uniqueness in our continuum types model.

5.5 Purely Local Assumptions on Synergy

In this section we give a theory of increasing sorting based on synergy alone, rather

than summed synergy. A natural conjecture is that sorting is increasing in θ whenever

synergy is upcrossing in θ and one-crossing in types. But in Figure 7 sorting falls in θ,

despite the fact that synergy is both upcrossing in θ and in types. The reason for this
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failure is that summed rectangular synergy is not upcrossing in θ, since it falls from 1

to −1 for the set that only excludes s11.

This example illustrates the fact that sums of upcrossing functions need not be

upcrossing. We need additional assumptions to ensure that summed synergy inherits

the upcrossing assumptions required by our earlier theory. Appendix C.5 presents

our most general increasing sorting result based on synergy assumptions alone. Here

we pursue a robust special case that generalizes Proposition 2, which we apply to a

class of applications in §7.1. Specifically, assume that synergy has a product structure,

sij(θ) = ζ(xi, yj|θ)κ(xi, yj|θ) in the discrete case and ϕ12(x, y|θ) = ζ(x, y|θ)κ(x, y|θ) for
continuum types with κ non-negative. We say ζ is (strictly) monotone in types if it is

either non-decreasing (increasing) or non-increasing (decreasing) in (x, y).

Proposition 5. Assume synergy is the product ζθ, where ζ is monotone in types and

non-decreasing in θ, and κ is LSPM. If M ′′ and M ′ are optimal for respectively θ′′ ≻ θ′,

then M ′′ ⪰PQD M ′ in (a) generic finite type models and (b) continuum type models if

ζ is also strictly monotone in types and κ > 0.

By setting κ ≡ 1, this result trivially generalizes Proposition 2.

To prove Proposition 5, we show it implies Proposition 4’s premise. For example,

we show that marginal rectangular synergy is strictly upcrossing when ζ is strictly

increasing in (x, y) and κ > 0 is LSPM. Consider y-marginal rectangular synergy

∆y(y) =
∫ x2

x1
ζ(x, y|θ)κ(x, y|θ)dx, suppressing arguments (x1, x2, θ). Intuitively, κ

LSPM ensures that the integral weights the positive parts of the increasing function ζ

proportionately more than the negative parts, as θ increases. The general theory in §C.5
dispenses with the product structure, but retains this key implication of LSPM.

6 Increasing Sorting and Type Distribution Shifts

Our analysis thus far focused on differences in production functions. We now ask, what

if we fix the production function and vary the type distributions? It turns out that

our results readily apply, because changes in the distribution can be reinterpreted as

changes in the production function. In particular, we can deduce sorting predictions for

changes in the type distributions G(·|θ) and H(·|θ) by analyzing sorting by quantiles

(rather than types). We say that X types shift up (down) in θ if G(·|θ) stochastically
increases (decreases) in θ, i.e. G(·|θ′) ≤ G(·|θ) if θ′ ⪰ θ. Similarly, Y types shift up

(down) in θ if H(·|θ) stochastically increases (decreases) in θ.

We need to adapt our notion of sorting, since PQD in §3 only ranks match-

ing distributions with the same marginals G and H. Instead, we consider sort-

ing in quantile space. First, label every type by its quantile in the distribution, so
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Figure 8: Distribution Shift Example. We plot optimally matched quantile pairs
(dots) for quadratic production xy − (xy)2 and exponential distributions on types
G(x|θ) = 1 − e−x/θ and H(y|θ) = 1 − e−y/θ, for θ = 1, 2/3, 1/3 at left, middle, and
right. By Corollary 1, quantile sorting increases as θ falls, since synergy falls in types.

p ≡ G(G−1(p|θ)|θ) and q ≡ H(H−1(q|θ)|θ). The bivariate copula defines the sorting

by quantiles C(p, q) = M(G−1(p|θ), H−1(q|θ)). Say that quantile sorting is higher at

M ′′ than M ′ when the associated copulas are ranked C ′′ ⪰PQD C ′; i.e. C ′′ has more

mass than C ′ in all lower and upper orthants in (p, q) space. This order generalizes the

PQD order. For if M ′′ and M ′ share the same marginals, then C ′′ ⪰PQD C ′ if and only

if M ′′ ⪰PQD M ′. And since all copulas have uniform marginals by definition, we can

compare two copulas in the PQD order even if the associated matching distributions

do not share marginals.

By Lemma 1, greater quantile sorting reduces the average geometric distance be-

tween matched quantiles, and raises the covariance across matched quantile pairs, and

the coefficient in linear regression of male on female match partner quantiles.

Corollary 1. Assume types shift up (down) in θ. If C ′′ and C ′ are optimal copulas,

respectively for θ′′ ≻ θ′, then C ′′ ⪰PQD C ′:

(a) generically with finite types, if synergy is non-decreasing (non-increasing) in types;

(b) given G and H absolutely continuous, if synergy is increasing (decreasing) in types.

For some insight into the proof in §C.6, consider the quantile production function

φ(p, q|θ)≡ϕ(G−1(p|θ), H−1(q|θ)) with quantile synergy :

φ12(p, q|θ) ≡
ϕ12(G

−1(p|θ), H−1(q|θ))
g(G−1(p|θ))h(H−1(q|θ))

(11)

For concreteness, assume synergy ϕ is increasing in types, and that θ stochastically

shifts up types. Then ϕ12(G
−1(p|θ), H−1(q|θ)) is increasing in quantiles p, q and θ. But

we cannot conclude that quantile synergy is increasing in q and θ since (11) includes

g and h, which need not be monotone in q or θ. Nonetheless, quantile synergy is
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Figure 9: Increasing Sorting with Diminishing Returns. These graphs de-
pict optimally matched pairs (dots) with ϕ(x, y) = ψ(q(x, y)|θ) for q(x, y) = xy and
ψ(q|θ) = (xy − 1)1−θ. In all cases synergy is upcrossing in types, which follows from
relative risk aversion −qψ′′/ψ′ falling in q. Sorting rises from left to right as the risk
aversion parameter θ falls from θ = 0.58, 0.5, 0.25. In order to ensure that ϕ increases
in types, we assume types are uniform on [1, 2] and depict matches by quantiles.

upcrossing in types and θ. We verify in §C.6 that the premise of Corollary 1 implies

that of Proposition 4. Figure 8 depicts this result for quadratic production.

7 Economic Applications

7.1 Diminishing Returns

Assume that matched pairs produce an intermediate output within a firm. In this case,

the overall match synergy will depend on synergies in intermediate output production,

and the returns to intermediate outputs. In this section we fix the intermediate output

production function and focus on the returns to intermediate outputs. As we will see,

diminishing returns reduces match synergies, and increasing returns amplifies them.

We then explore how sorting changes as the returns to intermediate outputs change.

Specifically, assume that a type x worker on a type y machine has an increasing

intermediate putput q(x, y). Assume the monetary value of q is given by the increasing

revenue function ψ. The match payoff is then ϕ(x, y|θ) = ψ(q(x, y)|θ), and synergy

ϕ12 = ψ′(q|θ)q1q2
[
q12
q1q2

+
ψ′′(q|θ)
ψ′(q|θ)

]
(12)

rises in complementarity q12 and falls in the Arrow-Pratt risk aversion measure −ψ′′/ψ′.

By Becker’s Sorting Theorem, if ψ is convex and q is SPM, then perfect sorting

arises, whereas if ψ is concave and q is SBM, then perfect negative sorting arises. But

perhaps the most natural case is ψ concave (diminishing returns to q) and q SPM
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(complementarity in intermediate output production). For concreteness, consider the

special case q(x, y) = xy. Then by (12), synergy is negative if the “relative risk

aversion” −qψ′′(q|θ)/ψ′(q|θ) exceeds one. If relative risk aversion is falling in q, then

we have negative synergies at low types and positive synergies at high types, and so

sorting failures occur for low types. The opposite arises for rising risk aversion.

Figure 9 depicts the first result. Appendix E shows that if relative risk aversion

falls in q, but rises in a parameter θ, then synergy is the product of a function that

is increasing in x, y, and t = 1 − θ and a positive function that is LSPM in (x, y, t).

Thus, by Proposition 5, sorting falls as the risk aversion parameter θ rises.

As a quick application, we compare sorting in the manufacturing and service sec-

tors of the economy. Assume q(x, y) = xy is the effective labor of matched workers

(x, y) and ψ(q|κ) = (qη + κη)1/η, where κ is the exogenous capital requirement of

the tasks performed by workers in the industry. When η < 1, effective labor and

capital are complements, and also ψ is concave. In this case, relative risk aversion

−qψ′′(q|κ)/ψ′(q|κ) = (1− η)κη/(κη + qη) falls in q and rises in κ; and so sorting falls in

capital intensity κ. Hence, sorting is higher in the service than manufacturing sector.

7.2 From Weakest to Strongest Link Technologies

We now consider a complementary thought experiment: fixing the revenue function ψ

and varying the intermediate output function q(x, y). The CES technology q(x, y) =

(x−ρ + y−ρ)−1/ρ is a helpful tractable class for this exercise. It is SPM when ρ ≥ −1,

and otherwise SBM. Thus, by Becker’s Sorting Result, the optimal sorting is PAM

for ρ ≥ −1 and NAM for ρ ≤ −1, when ψ is linear. To avoid this knife-edged result

and explore how sorting varies in the CES parameter ρ, we again assume diminishing

returns to output q. To keep things simple, assume increasing quadratic payoffs ψ(q) =

αq − βq2, so that α, β > 0 and α > 2βq(1, 1), where all types (x, y) ∈ [0, 1]2. Then

output is ϕ(x, y) = αq(x, y)−βq(x, y)2, and its synergy is continuous in ρ, and synergy

tends to −2β < 0 as ρ ↓ −1. By Appendix E, its synergy is also upcrossing in ρ

and strictly positive for ρ sufficiently large; also, there exist ρ̄ > ρ > −1 such that

production is SBM (yielding NAM) for all ρ < ρ and SPM (giving PAM) for ρ > ρ̄.

We then use Proposition 4 to prove that sorting is increasing in ρ, for all ρ ∈ [0, ρ].

For additional economic insight, notice that whenever ψ is increasing, the ρ → ∞
limit yields a SPM function ψ(min(x, y)), and ρ → −∞ yields the SBM function

ψ(max(x, y)). Intuitively, for any increasing ψ, we get PAM for high ρ, i.e. when q

is close to the “weakest link” technology, min(x, y). Equally shared tasks, like jointly

lifting a couch, have this flavor: output is more responsive to the lower type. But

when q is close the “strongest link” technology max(x, y), we get NAM. Here, output
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Figure 10: Kremer-Maskin Synergies and Matching. These graphs depict opti-
mal matchings for production (13) with ϱ = −20 and a uniform distribution on 100
types. In the left graph θ = 0.4 and rises to θ = 0.45 in the middle. Synergy is positive
on the shaded region, and is not one-crossing in types. So our sorting monotonicity
theory is silent here. Indeed, the matching for θ = 0.45 has more (circle) couples in the
dark rectangle in the right graph, while the matching for θ = 0.4 has more (triangle)
couples in the light rectangle. Appendix E proves sorting is nowhere decreasing in θ.

is more responsive to the higher type, such as for mutually insured matched pairs.

Altogether, match synergies are higher with weak link technologies, and lower with

strong link technologies.

Kremer and Maskin (1996) explore a famous strong link technology arises with role

assignment. Agents can be assigned either to the manager or deputy roles. Fixing

θ ∈ [0, 1/2), their output is xθy1−θ if x is the manager and y the deputy. As a unisex

model, match output is then the maximum of two SPM functions max{xθy1−θ, x1−θyθ},
which is neither SPM nor SBM (maximization preserves SBM, but not SPM).

To apply our theory, we introduce a smooth production function:

ϕ(x, y|θ, ρ) = xθyθ
(
x−ρ + y−ρ

) 2θ−1
ρ (13)

that converges to the Kremer-Maskin production function as ϱ → −∞. The x, y

cross partial of the smooth function ϕ(x, y|θ, ρ) in (13) is +,−,+ as types increase

(Figure 10). Thus, the essential assumption of Proposition 3 that rectangular synergy

is one-crossing in types fails, and sorting is not monotone in either θ or ρ (Figure 10

illustrates the non-monotonicity in θ).

Furthermore, synergy is not monotone in θ or ρ for the “smooth” production

function (13), nor is finite synergy monotone in θ for the limit case ϕ(x, y|θ) =

max{xθy1−θ, x1−θyθ}. So Proposition 1 does not imply nowhere decreasing sorting.

But we show in Appendix E that synergy (13) obeys a weaker one-crossing assumption

in Theorem 4 (which generalizes Proposition 1), and that sorting cannot fall in (θ, ρ).
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Figure 11: Increasing Sorting in the Principal-Agent Model. These graphs
depict optimal matched pairs (dots) for a uniform distribution on 100 types of principals
and agents. Sorting rises from left to right as θ rises on {0.65, 0.72, 0.82}.

7.3 Moral Hazard with Endogenous Contracts

Serfes (2005) explores pairwise matching among principals and agents. He assumes

project output is the sum of the agent’s unobservable effort e and a mean zero Gaussian

error. The risk neutral principal’s project variance y is their type; this varies in [y, y].

Agents have constant absolute risk aversion utility function 1−ex(w−θe2), given wage w,

effort e, and a monetary cost of effort θe2. Agents share the same disutility of effort

parameter θ > 0, but differ in their types — namely, the risk aversion coefficient x

in [x, x]. After a principal and agent match, the principal makes a take-it-or-leave-

it contract offer, specifying the agent’s wage as a function of realized output. Serfes

derives (in his equation (2)) the equilibrium expected output of an (x, y) match:

ϕ(x, y|θ) = 1

2θ (1 + θxy)
⇒ ϕ12(x, y|θ) =

θxy − 1

2 (1 + θxy)3
(14)

Serfes observes that synergy is globally negative for θx̄ȳ < 1 and globally positive

for θxy > 1. Thus, by Becker’s Sorting Result, NAM obtains for θ < (x̄ȳ)−1 and

PAM obtains for θ > (xy)−1. This result reflects two counterveiling forces for sorting.

First, if all contracts were the same, then efficient insurance across principal-agent pairs

favors NAM: less risk averse agents work on higher variance projects. But the slope of

the equilibrium wage contract is (1+ θxy)−1; and thus, the incentives to provide effort

are SPM for high types. The sign of synergy (14) implies that the insurance effect

dominates for low types, and the incentive effect dominates for high types.12

12Ackerberg and Botticini (2002) investigate matching between landowners (principals) and tenants
(agents) in 15th century Tuscany. Matched crop-tenant pairs exhibit positive covariance in crop types
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Serfes is silent when θx̄ȳ > 1 ≥ θxy: our theory partly fills this gap. We claim:

Sorting is increasing in the disutility of effort parameter θ when types are not too far

apart; namely, when x̄ȳ ≤ 2xy (‡). To see this, assume θ′ > θ. If θx̄ȳ < 1, then

synergy (14) is globally negative at θ, and so NAM is uniquely optimal. If θ′xy > 1,

then synergy is globally positive at θ′, and so PAM is uniquely optimal. In both

cases, sorting is weakly higher at θ′ than θ. Now assume θ′xy ≤ 1 < θx̄ȳ. Then

θ′x̄ȳ ≤ 2θ′xy ≤ 2 by (‡) and θ′xy ≤ 1. Thus, θxy < θ′xy ≤ 2 for all (x, y), and so

synergy (14) is increasing in θxy — for (t − 1)/(1 + t)3 is increasing for t ∈ (0, 2].

Altogether, sorting increases in θ by Proposition 2, as in Figure 11. Since synergy

increases in types when PAM is suboptimal, quantile sorting increases when types

shift up (i.e. when projects become more variable or agents become more risk averse),

by Corollary 1.

The big picture is that the higher is the disutility of effort θ, the greater are the

incentive difficulties of matching, as reflected in the lower slope of the wage contract.

7.4 Mentor-Protégé Learning Dynamics

Dynamic matching with evolving types can be understood through the lens of match

synergies. Let’s assume a two period model, with pairwise matching in periods one

and two. Let ϕ0(x, y) be the increasing and SPM match output of types x and y.

We capture learning dynamics by the increasing transition function τ . Specifically,

after producing output in period one, types x and y evolve to new types x′ = τ(x, y)

and y′ = τ(y, x) in period two. For matching between workers within a firm, τ describes

learning from co-workers. In a neighborhood sorting application, τ may reflect peer

influences on children. Or in a procreation context, couple (x, y) produces offspring

of type τ(x, y). In this latter case, τ(x, y) = max(x, y) and τ = min(x, y) formalize

the respective extremes of dominant and recessive type transmission — namely, one or

both high achieving parent suffices for high achieving children.

Matching must be statically optimal in period two, and thus PAM occurs.13 For

instance, in the partnership model, the social planner has period one payoff:

ϕ(x, y) = (1− δ)ϕ0(x, y) + δ
2
[ϕ0(τ(x, y), τ(x, y)) + ϕ0(τ(y, x), τ(y, x))]

given discount factor δ. So synergy ϕ12 is a (1−δ, δ) weighted average of static synergy

(project variance y) and tenant wealth (risk aversion x). But since match sorting is imperfect (not
PAM), our theory provides a framework for analyzing changes in crop-tenant matching across markets.

13Anderson and Smith (2010) consider an infinite horizon with stochastic type transitions. In a
special case of the model where types are the common knowledge chance that an agent is high (vs.
low) productivity, they show that synergy is negative for (x, y) close to (0, 0) or (1, 1) with sufficient
patience. Thus, PAM cannot be optimal given sufficient patience.
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Figure 12: Increasing Sorting with Peer Learning. These graphs depict optimally
matched pairs with static output ϕ0(x, y) =

√
xy and transitions τ = x+ 0.7(y − x) +

0.5(x2 − xy) and a uniform distribution on 100 types. Sorting falls as the discount
factor rises from δ = 0.4 (left) to δ = 0.45 (middle) to δ = 0.5 (right).

ϕ0
12 > 0 and dynamic synergy — namely, if τ is twice differentiable, the first term is[

ϕ0(τ(x, y), τ(x, y))
]
12

=
(
ϕ0
11 + 2ϕ0

12 + ϕ0
22

)
τ1τ2 +

(
ϕ0
1 + ϕ0

2

)
τ12 (15)

Since τ is increasing, the first term in (15) is positive when ϕ0(x, x) is convex, but

negative when ϕ0(x, x) is concave. That is, convexity pushes toward positive synergy

and concavity toward negative synergy, as in §7.1. But in this evolving type world,

negative synergy may also reflect a submodular transition function τ . This arises in

learning environments, where the lower type learns from the higher, as a protege from

a mentor. In particular, given the normalization τ(x, x) = x, strictly SBM τ implies:

τ(x, y) + τ(y, x) > τ(x, x) + τ(y, y) ⇔ τ(x, y)− x > y − τ(y, x)

So when unequal types match, the higher partner pulls up the lower more than the

latter pulls him down — as in a workplace when skilled co-workers pass on insights.

In particular, Herkenhoff, Lise, Menzio, and Phillips (2018) find negative dynamic

synergy in such a setting.14 Our model affords comparative statics in the discount

factor. Since synergy is increasing in 1 − δ, the time-series premise of each of our

increasing sorting results is met. But, stronger assumptions are required for the cross-

sectional assumptions. The most transparent case is when static synergy and dynamic

synergy (15) are both monotone in types in the same direction. Then sorting falls in δ,

by Proposition 2. Figure 12 shows this comparative static in a parametric example.

14They estimate a matching model with search frictions and find SPM static production, but neg-
ative dynamic synergy. Synergy is positive for low types and negative for high types.
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8 Conclusion

Becker’s finding that complementarity (or supermodularity) yields positive sorting

launched the immense literature on pairwise matching. While perfect sorting does

not emerge in many economic settings, an impassable wall of mathematical complexity

has stopped any general predictive matching theory. This paper develops a theory

linking changes in the pairwise production function to changes in the PQD stochastic

sorting order, without solving for an optimal matching.

Showing that total match output is a weighted average of synergy, we center our

theory on this local complementarity notion. Our easiest result is that sorting increases

when synergy increases, provided that synergy is monotone in types. We then weaken

the assumptions on how synergy rises and prove more general comparative statics.

We apply our theory to several applications in the matching literature, deriving

new predictions. We hope this offers a tractable foundation for future theoretical and

empirical analysis of matching. A subtle and valuable direction for future work is a

multidimensional extension of our theory (Lindenlaub, 2017).

We assumed an equal mass of men and women, like Becker. If types are imagined

as quality, this is WLOG: lowest men are queued out if men are in surplus. Extending

our increasing sorting results to a horizontal model of types is an open question.

We considered the planner’s sorting exercise, and are silent on transfers. Future

research could characterize the behavior of wage changes as sorting increases.

A Match Output Reformulation: Derivation of (5)

Proof : Summing
∑n

i=1

∑n
j=1 fijmij by parts in j and then i yields an expression for

total match output in terms of synergy:

∑n
i=1

[∑n
j=1 fijmij

]
=

n∑
i=1

[
fin

n∑
j=1

mij −
n−1∑
j=1

[fi,j+1 − fij]

j∑
k=1

mik

]

=
n∑

i=1

fin −
n−1∑
j=1

n∑
i=1

[fi,j+1 − fij]

j∑
k=1

mik

=
n∑

i=1

fin −
n−1∑
j=1

(
[fn,j+1 − fn,j]

n∑
ℓ=1

j∑
k=1

mℓk −
n−1∑
i=1

sij

i∑
ℓ=1

j∑
k=1

mℓk

)

=
n∑

i=1

fin −
n−1∑
j=1

(
[fn,j+1 − fnj] j −

n−1∑
i=1

sijMij

)
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B Integral Preservation of Upcrossing Properties

B.1 Integral Preservation of Upcrossing Functions on Lattices

Given a real or integer lattice Z ⊆ RN and poset (T ,⪰), the function σ : Z × T → R
is proportionately upcrossing15 if ∀z, z′ ∈ Z and t′ ⪰ t.

σ−(z ∧ z′, t)σ+(z ∨ z′, t′) ≥ σ−(z, t′)σ+(z′, t) (16)

Theorem 1. Let σ(z, t) be proportionately upcrossing. Then Σ(t) ≡
∫
Z
σ(z, t)dλ(z) is

weakly upcrossing in t, and upcrossing in t if σ(z, t) is upcrossing in t.

This result is stronger than needed,16 as it applies to general lattices; we just need

it for R2. It generalizes an information economics result by Karlin and Rubin (1956): If

σ0(z) is upcrossing in z ∈ R, and log(σ1) is SPM, then
∫
σ0(z)σ1(z, t)dλ(z) is upcross-

ing. Our result subsumes theirs when n = 1 and σ=σ0σ1 is proportional upcrossing.

Proof: Karlin and Rinott (1980) prove the following: If functions ξ1, ξ2, ξ3, ξ4 ≥ 0 obey

ξ3(z ∨ z′)ξ4(z ∧ z′) ≥ ξ1(z)ξ2(z
′) for z ∈ Z ⊆ RN , then for all positive measures λ:17∫

ξ3(z)dλ(z)
∫
ξ4(z)dλ(z) ≥

∫
ξ1(z)dλ(z)

∫
ξ2(z)dλ(z) (17)

Now, if t′ ⪰ t, then (16) reduces to ξ3(z ∨ z′)ξ4(z ∧ z′) ≥ ξ1(z)ξ2(z
′) for the functions:

ξ1(z) ≡ σ+(z, t), ξ2(z) ≡ σ−(z, t′), ξ3(z) ≡ σ+(z, t′), ξ4(z) ≡ σ−(z, t)

Thus, by (17):∫
σ+(z, t′)dλ(z)

∫
σ−(z, t)dλ(z) ≥

∫
σ+(z, t)dλ(z)

∫
σ−(z, t′)dλ(z) (18)

This precludes
∫
σ+(z, t)dλ(z) >

∫
σ−(z, t)dλ(z) and

∫
σ+(z, t′)dλ(z) <

∫
σ−(z, t′)dλ(z),

simultaneously. And thus, Σ(t) > 0 implies Σ(t′) ≥ 0, proving weakly upcrossing.

We now argue Σ upcrossing. First assume Σ(t) > 0. Then
∫
σ+(z, t)dλ(z) >∫

σ−(z, t)dλ(z). By (18), either
∫
σ+(z, t′)dλ(z) >

∫
σ−(z, t′)dλ(z), or

∫
σ+(z, t′)dλ(z) =

15Proportionately upcrossing implies weakly upcrossing ; namely, σ(z, t) > 0 implies σ(z′, t′) ≥ 0 for
all (z′, t′) ⪰ (z, t). To see this, fix t = t′ and suppress t. If z′ ⪰ z, inequality (16) is an identity. If
z ≻ z′, inequality (16) becomes σ−(z′)σ+(z) ≥ σ−(z)σ+(z′), which precludes σ(z) < 0 < σ(z′).

16This result is related to Theorem 2 in Quah and Strulovici (2012). They do not assume (16).
Rather, they assume σ is upcrossing in (z, θ), and a time a series condition: signed ratio monotonicity.
Our results are independent, but overlap more closely for our smoothly LSMP condition in §B.2.

17The proof for the integer lattice requires that λ be a counting measure. Also true: if λ does not
place all mass on zeros of σ, then Σ(t) ≡

∫
Z
σ(z, t)dλ(z) is upcrossing in t.
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∫
σ−(z, t′)dλ(z) = 0. But the latter is impossible, since

∫
σ+(z, t′)dλ(z) = 0 implies∫

σ+(z, t)dλ(z) = 0, as σ(z, t) is upcrossing in t— contradicting Σ(t) > 0. So Σ(t′) > 0.

Next, posit Σ(t) = 0, then
∫
σ+(z, t)dλ(z) =

∫
σ−(z, t)dλ(z). By (18), either∫

σ+(z, t′)dλ(z) ≥
∫
σ−(z, t′)dλ(z), and so Σ(t′) ≥ 0. Or, we have

∫
σ+(z, t)dλ(z) =∫

σ−(z, t)dλ(z) = 0, whereupon
∫
σ−(z, t′)dλ(z) = 0 — as σ(z, t) is upcrossing in t, and

so σ−(z, t) is downcrossing. Thus,
∫
σ+(z, t′)dλ(z) ≥

∫
σ−(z, t′)dλ(z), or Σ(t′) ≥ 0. □

B.2 Proportionately Upcrossing and Log-supermodularity

Let θ ∈ R, z ∈ RN , and abbreviate w = (z, θ) ∈ RN+1. The function σ : RN+1 7→ R is

smoothly log-supermodular (LSPM) if all of its pairwise derivatives obey σijσ ≥ σiσj.

Theorem 2. If σ(z, θ) is upcrossing and smoothly LSPM, then σ obeys (16).

▷ Step 1: Ratio Ordering. Assume ŵ ≥ w, sharing the i coordinate wi = ŵi, with

σ(x̄, w−i) < 0 < σ(ŵ) for some x̄ > wi. Then we prove:

σi(x,w−i)σ(x, ŵ−i) ≥ σi(x, ŵ−i)σ(x,w−i) ∀ x ∈ [wi, x̄] (19)

Since σ is upcrossing, σ(x,w−i) < 0 < σ(x, ŵ−i) for all x ∈ [wi, x̄]. If (19) fails, then

for some x′ ∈ [wi, x̄]:
σi(x

′, w−i)

σ(x′, w−i)
>
σi(x

′, ŵ−i)

σ(x′, ŵ−i)

This contradicts smoothly LSPM, as (σi/σ)j ≥ 0 for all σ ̸= 0 and i ̸= j. So (19) holds.

Given σ(x, ŵ−i) ̸= 0, the ratio σ(x,w−i)/σ(x, ŵ−i) is non-decreasing in x on [wi, x̄], so

that:
σ(w)

σ(ŵ)
≤ σ(x̄, w−i)

σ(x̄, ŵ−i)
(20)

▷ Step 2: σ obeys (16). By assumption θ′ ≥ θ (now a real). So if (z, θ′) ≤ (z∧ z′, θ),
we have z ≤ z′ and θ′ = θ, in which case (16) is an identity. If not (z, θ′) ≤ (z ∧ z′, θ),
then let i1 < · · · < iK be the indices with (z, θ′)ik > (z ∧ z′, θ)ik for k = 1, . . . , K. Let’s

change w0 ≡ (z ∧ z′, θ) into wK ≡ (z, θ′) in K steps, w0, . . . , wK , one coordinate at a

time, and likewise ŵ0 ≡ (z′, θ) into ŵK ≡ (z ∨ z′, θ′), changing coordinates in the same

order. Notice that wk−1
ik

= ŵk−1
ik

= (z′, θ)ik < (z, θ′)ik and ŵk ≥ wk for all k.

Now, inequality (16) holds if its RHS vanishes. Assume instead the RHS of (16) is

positive for some θ′ ≥ θ, so that σ(z, θ′) < 0 < σ(z′, θ); and so, replacing ŵ0 = (z′, θ)

and wK = (z, θ′), we get σ(wK) < 0 < σ(ŵ0). But then since the sequences {wk}
and {ŵk} are increasing and σ is upcrossing, we have σ(wk) < 0 < σ(ŵk−1) for all k.
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Altogether, we may repeatedly apply inequality (20) to get:

σ(z ∧ z′, θ)
σ(z′, θ)

≡ σ(w0)

σ(ŵ0)
≤ σ(wk)

σ(ŵk)
≤ · · · ≤ σ(wK)

σ(ŵK)
≡ σ(z, θ′)

σ(z ∨ z′, θ′)

So given σ(z ∧ z′, θ), σ(z, θ′) < 0 < σ(z′, θ), σ(z ∨ z′, θ′), inequality (16) follows from:

σ−(z ∧ z′, θ)
σ+(z′, θ)

≥ σ−(z, θ′)

σ+(z ∨ z′, θ′)
□

C Omitted Proofs

C.1 Proof of Lemma 1

Part (a): By inequality (6) it suffices that |u(x)− v(y)|γ is SBM for all γ ≥ 1. Since

−ψ(u − v) is SPM for all convex ψ, by Lemma 2.6.2-(b) in Topkis (1998), we have

−|u− v|γ SPM for all γ ≥ 1. So, |u(x)− v(y)|γ is SBM for all increasing u and v.

Part (b): Since the marginal distributions on X and Y are the same for all M ∈
M(G,H), and u(x)v(y) is supermodular for all increasing u and v, the covariance

EM [XY ]− E[X]E[Y ] between matched types increases in the PQD order by (6).

Part (c): The coefficient c1 = cov(u(X)v(Y ))/var(v(X)) in the univariate match

partner regression v(y) = c0 + c1u(x) increases in the PQD order, by part (b). □

C.2 Proof of Proposition 3: Increasing Sorting for Finite Types

Lemma 2. An optimal matching is generically unique and pure for finite types.

Proof: The optimal matching is generically unique, by Koopmans and Beckmann

(1957). A non-pure matching M is a mixture M =
∑L

ℓ=1 λℓMk over L ≤ n + 1 pure

matchings M1, . . . ,Mn, with λℓ > 0 and
∑

ℓ λℓ = 1.18 As the objective function (3) is

linear, if the non-pure matching M is optimal, so is each pure matching Mℓ, contra-

dicting uniqueness. □
For a big picture, we show that matching models in some domain D̂n obey our

sorting conclusion for all n. Our induction argues the stronger claim that it holds on

a larger recursively convenient domain D∗
n ⊃ D̂n. Our proof building blocks are:

(a) Consider the generic case with unique optimal pure matchings µ, described by

men partners (µ1, . . . , µn) of women, or women partners ω = (ω1, . . . , ωn) of men.

18This follows from Carathéodory’s Theorem. It says that a non-empty convex compact subset
X ⊂ Rn is a weighted average of extreme points of X . The extreme points here are the pure matchings.
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(b) To emphasize the dependence on the number of types n, write rectangular

synergy as Sn(r|θ), and the summed rectangular synergy as Sn(K|θ) ≡
∑

k S
n(rk|θ) for

any finite set of non-overlapping rectangles K ≡ {rk}.
(c) We consider the summed rectangular synergy dyad (Sn(K|θ′),Sn(K|θ′′)) for

generic θ′′ ⪰ θ′. Let domain Dn be the space of summed rectangular synergy dyads

(Sn(K|θ′),Sn(K|θ′′)) that are each upcrossing in K on rectangles R and upcrossing

in θ on {θ′, θ′′} for any K ∈ R. The domain D̂n ⊆ Dn further insists that they be

upcrossing in θ for finite sets of non-overlapping rectangles K. Proposition 3 assumes

that summed rectangular synergy dyads are in D̂n for all n.

(d) Removing couple (i, j) from an n-type market induces rectangular synergy Sn−1
ij

among the remaining n− 1 types, satisfying the natural formula:

Sn−1
ij (r|θ) ≡ Sn(r + Iij(r)|θ) for Iij(r) ≡ (1r1≥i,1r2≥j,1r3≥i,1r4≥j) (21)

where Iij(r) increments by one the index of the women i′ ≥ i and men j′ ≥ j, where

the type indices refer to the original model whenever removing types henceforth.

(e) To avoid ambiguity when changing the number n of types, we denote by (in, jn)

the ith highest woman and the jth highest man. Now, consider the sequence of models

with κ = n + k, n + k − 1, . . . , n types induced by removing couple (i′κ, j
′
κ) at θ′ and

(i′′κ, j
′′
κ) at θ

′′ from the κ type model. We say the sequence of couples has higher partners

at θ′ than θ′′ if (i′κ, j
′
κ) ≥ (i′′κ, j

′′
κ) and i

′
κ = i′′κ or j′κ = j′′κ.

(f)DomainD∗
n is the set of summed rectangular synergy dyads (Sn(K|θ′),Sn(K|θ′′))

induced by sequentially removing k optimally matched couples with higher partners at

θ′ than θ′′ from dyads (Sn+k(K|θ′), Sn+k(K|θ′′)) ∈ D̂n+k, for some k ∈ {0, 1, . . .}.

Key Properties of our Domains and Pure Matchings.

Fact 1. Fix a summed rectangular synergy dyad in D∗
n+1. Removing couple (i′, j′) at θ′

and (i′′, j′′) at θ′′ induces such a dyad in D∗
n if (i′, j′)≥(i′′, j′′) and i′= i′′ or j′=j′′.

Fact 2. Given a summed rectangular synergy dyad in Dn+1, removing couple (i′, j′) at

θ′ and (i′′, j′′) at θ′′ induces a summed rectangular synergy dyad in Dn if ⟨i′ = i′′ and

j′ ≥ j′′⟩ or ⟨j′ = j′′ and i′ ≥ i′′⟩.

Proof: We prove this for i′ = i′′ and j′ ≥ j′′. For any θ, rectangular synergy Sn
ij(r|θ) is

upcrossing in r, needing fewer inequalities. To see that summed rectangular synergy is

upcrossing in θ on rectangular sets in Z2
n−1, assume Sn

ij′(r|θ′) ≥ (>)0 for some r. Then

Sn+1(r + Iij′(r)|θ′) ≥ (>)0 ⇒ Sn+1(r + Iij′′(r)|θ′) ≥ (>) 0

⇒ Sn+1(r + Iij′′(r)|θ′′) ≥ (>) 0 ⇒ Sn
ij′′(r|θ′′) ≥ (>) 0
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respectively, as (i) Sn+1(r|θ) is upcrossing for rectangles r, non-increasing Iij in j, and

j′′ ≤ j′, and (ii) Sn+1(r|θ) is upcrossing in θ for rectangles r, and (iii) by (21). □

Fact 3. The domains are nested: D̂n ⊆ D∗
n ⊆ Dn.

Proof: Trivially, D̂n ⊆ D∗
n, since we may set k = 0 in the definition of D∗

n.

To get D∗
n ⊆ Dn, pick (Sn(K|θ′),Sn(K|θ′′)) ∈ D∗

n. This dyad is induced by re-

moving k optimally matched couples with higher partners at θ′ than θ′′ from a dyad

(Sn+k(K|θ′),Sn+k(K|θ′′)) ∈ D̂n+k ⊆ Dn+k, where k ≥ 0. For ℓ = 1, . . . , k, induce

dyads (Sn+k−ℓ(K|θ′), Sn+k−ℓ(K|θ′′)), sequentially removing optimally matched couples.

So (Sn+k−ℓ(K|θ′),Sn+k−ℓ(K|θ′′)) ∈ Dn+k−ℓ for ℓ = 1, . . . , k, as removed couples are

ordered, as Fact 2 needs. So (Sn(K|θ′),Sn(K|θ′′)) ∈ Dn. □

Fact 4. If M ̸=M̂ are pure n-type matchings, µ̂i>µi at some i and ω̂j>ωj at some j.

Proof: Since M ̸= M̂ , there is a highest type man j matched with woman ω̂j > ωj.

Logically then, woman i = ω̂j is matched to a lower man under M , i.e. j = µ̂i > µi. □
Adding a couple (i0, j0) to a matching µ creates a new matching µ̂ with indices of

women i ≥ i0 and men j ≥ j0 renamed i + 1 and j + 1, respectively. Equivalently,

this means inserting a row i and column j into the matching matrix m — with all 0’s

except 1 at position (i, j) — and shifting later rows and columns up one.

Fact 5. Adding respective couples (1, m̂) ≤ (1,m), or (ŵ, 1) ≤ (w, 1), to the n-type

matchings µ̂ ⪰PQD µ preserves the PQD order for the resulting n+ 1 type matchings.

Proof: We just consider adding couples (1, m̂) ≤ (1,m), as the analysis for (ŵ, 1) ≤
(w, 1) is similar. For pure matchings µ, let Cµ(i0, j0) count matches by women i ≤ i0
with men j ≤ j0, and so call Cµ(0, j) = Cµ(i, 0) = 0. So µ̂ ⪰PQD µ iff C µ̂ ≥ Cµ.

By adding a couple (1,m), the new count is:

Cµ
m(i, j) ≡ Cµ (i− 1, j − 1j≥m) + 1j≥m for all i, j ∈ {1, 2, . . . , n+ 1}

To prove the step, we must show that if µ̂ ⪰PQD µ, then Cµ̂
m̂ ≥ Cµ

m for all m̂ ≤ m.

By assumption µ̂ ⪰PQD µ and thus, C µ̂ ≥ Cµ. So since m̂ ≤ m:

.Cµ̂
m̂(i, j)− Cµ

m(i, j) =


C µ̂(i− 1, j)− Cµ(i− 1, j) ≥ 0 for j < m̂

C µ̂(i− 1, j − 1) + 1− Cµ(i− 1, j) ≥ 0 for m̂ ≤ j < m

C µ̂(i− 1, j − 1)− Cµ(i− 1, j − 1) ≥ 0 for j ≥ m

To understand the middle line, note that this match count can be written as

C µ̂(i− 1, j − 1)− Cµ(i− 1, j − 1)− [Cµ(i− 1, j)− Cµ(i− 1, j − 1)− 1]
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As Cµ(i−1, j)−Cµ(i−1, j−1)≤1, this is at least C µ̂(i−1, j−1)−Cµ(i−1, j−1)≥0. □

The Induction Proof: Detailed Steps. Let M ′
n and M ′′

n be uniquely optimal n

type matchings at θ′ and θ′′. Proposition 3 assumes summed rectangular synergy dyads

in D̂n. Until Step 8, we work on the larger domain D∗
n.

Premise Pn: Summed rectangular synergy dyad is in D∗
n ⇒ M ′′

n ⪰PQD M ′
n.

Step 1. Base Case P2: Summed rectangular synergy dyad is in D∗
2 ⇒ M ′′

2 ⪰PQD M ′
2.

Proof: If not, then NAM is uniquely optimal at θ′′ and PAM at θ′. Since D∗
2 ⊆ D2

by Fact 3, rectangular synergy is upcrossing in θ. This precludes negative rectangular

synergy at θ′′ (NAM) and positive rectangular synergy at θ′ (PAM). □

• A pair refers to two couples, such as (i1, j1) and (i2, j2).

• A pair is a PAM pair if (i1, j1) < (i2, j2), and a NAM pair if i1 < i2 and j1 > j2.

Step 2. If the summed rectangular synergy dyad is in D∗
n+1, then neither M ′

n+1 nor

M ′′
n+1 includes a subset of types that match according to NAM1.

Proof: We prove the stronger conclusion that neither M ′
n+1 nor M ′′

n+1 includes a

matched NAM pair above a matched PAM pair. Indeed, by Fact 3, D∗
n+1 ⊆ Dn+1.

So Sn+1(r|θ) is upcrossing in rectangles r for θ′ and θ′′. Also, PAM (NAM) is optimal

for a pair iff Sn+1(r|θ) ≥ (≤)0 on rectangle r. As the optimal matching is unique,

Sn+1(r|θ) ̸= 0 for all optimally matched pairs. □
Steps 3–8 impose premises P2, . . . ,Pn. We then supposed by contradiction that

Pn+1 is not satisfied. Equivalently, we suppose by contradiction:

(‡‡): In a model with summed rectangular synergy dyads in D∗
n+1, the generically

uniquely optimal matchings at θ′′ ≻ θ′ are not ranked µ′′ ⪰PQD µ′ (ω′′ ⪰PQD ω′).19

Our cross-sectional assumption rules out NAM1 for any three type subset of agents.

Steps 3–7 show this restriction along with the inductive hypothesis and (‡‡) implies

that the optimal matching for θ′′ must be NAM for some subset of types {1, 2, . . . ,m}
and a multi-type generalization of NAM3 under θ′ for this same subset of types that

we call NAM∗; namely, (m,m) matched and the remaining types {1, 2, . . . ,m − 1}
matched according to NAM. Step 8 then applies the cross sectional and time series

properties of the space D∗
n+1 to rule out such NAM to NAM∗ transitions as θ rises.

Step 3. At states θ′ and θ′′, the matchings obey µ′′
1 = µ′

1 +1 ≥ 2 and ω′′
1 = ω′

1 +1 ≥ 2.

19We cannot apply Theorem 4 to rule out µ′ ⪰PQD µ′′, since the time-series premise of Theorem 4
is stronger than the time-series assumption in Proposition 3.
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We establish the first relationship. Symmetric steps would prove the second.

Proof of µ′′
1 > µ′

1: If not, then µ′′
1 ≤ µ′

1. In this case, remove couple (1, µ′
1) at θ′,

and couple (1, µ′′
1) at θ

′′. The remaining matching is PQD higher at θ′′, by Induction

Premise Pn and Fact 1. By Fact 5, if we add back the optimally matched pairs (1, µ′
1)

and (1, µ′′
1), then the PQD ranking still holds with n+ 1 types, given µ′′

1 ≤ µ′
1, namely

µ′′ ⪰PQD µ′. This contradiction to (‡‡) proves that µ′′
1 > µ′

1. □

Proof of µ′′
1 < µ′

1 + 2. If not, then µ′′
1 ≥ µ′

1 + 2. By Fact 4, choose a woman i > 1 with

µ′′
i < µ′

i. Remove couples (i, µ′
i) at θ′, and (i, µ′′

i ) at θ′′. Since µ′′
i < µ′

i, the resulting

matching is PQD higher at θ′′ than θ′, by Fact 1 and Premise Pn. In the resulting

model, woman 1 is not matched to a higher man at θ′′ than θ′. This is impossible if

µ′′
1 ≥ µ′

1+2, as µ′′
1 −µ′

1 falls by at most 1 when removing man µi at θ
′ and µ′′

i at θ′′. □

Step 4. The couple (ω′′
1 , µ

′′
1) is matched at θ′, namely, µ′

ω′′
1
= µ′′

1 and ω′
µ′′
1
= ω′′

1 .

In words: the man matched to the lowest woman under θ′′ and the woman matched

to the lowest man under θ′′ must match together under θ′.

Proof of µ′
ω′′
1
≥ µ′′

1 and ω′
µ′′
1
≥ ω′′

1 : We prove the first inequality. If not, then µ′
ω′′
1
< µ′′

1.

As man µ′
1 = µ′′

1 − 1 is matched at θ′ by Step 3, µ′
ω′′
1
< µ′′

1 − 1 = µ′
1. Removing couple

(ω′′
1 , µ

′
ω′′
1
) at θ′ and (ω′′

1 , 1) at θ
′′, induces and n type matching that is PQD higher at

θ′′, by Pn and Fact 1. Since man µ′
ω′′
1
removed at θ′ and man 1 removed at θ′′ are below

µ′
1 = µ′′

1 − 1, the match count at (1, µ′
1 − 1) is unchanged at θ′′ and θ′. By Step 3, this

count is higher at θ′ than θ′′, contradicting the n type matching PQD higher at θ′′. □

Proof of µ′
ω′′
1
= µ′′

1 and ω′
µ′′
1
= ω′′

1 : Just one strict inequality is impossible, as it over-

matches some type: ω′
µ′′
1
> ω′′

1 and µ′
ω′′
1
= µ′′

1 or ω′
µ′′
1
= ω′′

1 and µ′
ω′′
1
> µ′′

1. Next

assume two strict inequalities. As µ′
ω′′
1
> µ′′

1, the θ
′ matching includes the PAM pair

(1, µ′
1) < (ω′′

1 , µ
′
ω′′
1
) — by Step 3 — and the higher NAM pair (ω′′

1 , µ
′
ω′′
1
) and (ω′

µ′′
1
, µ′′

1).

NAM pairs above PAM pairs violate Step 2 (left panel of Figure 13). □

The middle panel of Figure 13 depicts the takeout of Steps 3–4. We iteratively use

this matching patter to show how (‡‡) greatly restricts the matching at θ′ and θ′′.

Step 5. µ′
1 ≥ µ′

i = µ′′
i − 1 for i = 1, . . . , ω′

1 and ω′
1 ≥ ω′

j = ω′′
j − 1 for j = 1, . . . , µ′

1.

Proof: We proved this for i = 1 and j = 1, and now prove the claimed ordering

µ′
1 ≥ µ′

i = µ′′
i − 1 for i = 2, . . . , ω′

1. By symmetry, ω′
1 ≥ ω′

j = ω′′
j − 1 for j = 2, . . . , ω′

1.

Part (a): µ′
i < µ′

1 for i = 2, . . . , ω′
1. If not, then µ′

i ≥ µ′
1 for some 2 ≤ i ≤ ω′

1. And

since µ′
i = µ′

1 entails overmatching, we have µ′
i > µ′

1 for i = 2, . . . , ω′
1. Thus, µ

′ involves

a PAM pair (1, µ′
1) < (i, µ′

i). We claim that (i, µ′
i) and (ω′′

1 , µ
′′
1) constitutes a higher

NAM pair, violating the upcrossing of S(r|θ) in r, by Step 2. Indeed, i ≤ ω′
1 < ω′′

1 (by
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Figure 13: Steps 3–5 in the Induction Proof. In the counterfactual logic in Steps 3–
5, stars and circles denote respective proposed matched pairs at θ′ and θ′′, respectively.
Step 3 establishes that the index of partner for the lowest man (woman) under θ′′ must
be exactly one higher than the index for the lowest man (woman) under θ′. The left
panel depicts the NAM pair (dark gray) above the PAM pair (light gray) in Step 4.
The middle panel depicts the conclusion of Step 4: man µ′′

1 and woman ω′′
1 must match

under θ′. The right panel depicts the NAM pair above the PAM pair in Step 5-(a).

the premise above, and Step 3, respectively). Also, µ′
i > µ′′

1, since we have assumed

µ′
i > µ′

1, and deduced µ′
1 = µ′′

1 − 1 in Step 3, and, in Step 4, that µ′′
1 is matched to ω′′

1

at θ′, and we just showed ω′′
1 > i. (See the right panel of Figure 13.) □

Part (b): µ′
i < µ′′

i for i = 2, . . . , ω′
1. If not, then µ′

i ≥ µ′′
i for some 2 ≤ i ≤ ω′

1. Since

µ′
i ≥ µ′′

i , if we remove couple (i, µ′
i) at θ′ and couple (i, µ′′

i ) at θ′′, then the resulting

matching is PQD higher at θ′′, by Fact 1 and Pn. In the resulting matching, woman 1’s

partner is thus not higher at θ′′ than θ′. But µ′′
1 = µ′

1 + 1 by Step 3, and µ′
1 > µ′

i ≥ µ′′
i

by part (a) and the premise of (b). Both removed men µ′
i and µ′′

i are then strictly

below µ′
1. So, woman 1’s partner is still 1 higher at θ′′ than θ′. Contradiction. □

Part (c): µ′
i ≥ µ′′

i − 1 for i = 2, . . . , ω′
1. If not, then µ

′
i∗ < µ′′

i∗ − 1 for some 2 ≤ i∗ ≤ ω′
1.

Remove couple (ω′′
1 , µ

′′
1) at θ

′ (matched, by Step 4), and the couple (ω′′
1 , 1) at θ

′′. By

Fact 1 and Assumption Pn, the resulting matching is PQD higher at θ′′.

But since ω′′
1 > ω′

1 by Step 3, all women i = 1, . . . , ω′
1 remain. Each has a weakly

lower partner at θ′ than θ′′, since we started with µ′
i < µ′′

i for i = 1, . . . , ω′
1 by Step 3

for i = 1, and part (b) for i > 1. Also, woman i∗ ≤ ω′
1 has a strictly lower partner, as

µ′
i∗ < µ′′

i∗ − 1. The resulting matching cannot be PQD higher at θ′′. Contradiction. □

Step 6. The matching µ′′ is NAM among men and women at most ω′′
1 = µ′′

1 ≥ 2.

Proof of ω′′
1 = µ′′

1. By Steps 3 and 5, we get µ′′
1 = µ′

1+1 ≥ µ′′
i for i = 1, . . . , w′

1 = ω′′
1 −1

and µ′′
1 ≥ 2 > 1 = µ′′

w′′
1
. So in matching µ′′, women i ≤ ω′′

1 match with men j ≤ µ′′
1.

Hence, µ′′
1 ≥ ω′′

1 . Ditto, by Steps 3 and 5, ω′′
1 ≥ ω′′

j for j = 1, . . . , µ′′
1, and in matching

ω′′, men j ≤ µ′′
1 match with women i ≤ ω′′

1 . Hence, µ
′′
1 ≤ ω′′

1 . Thus, µ
′′
1 = ω′′

1 ≥ 2. □
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Proof of µ′′
i = µ′′

1 − i+ 1 for 1, . . . , ω′′
1 . This is an identity at i = 1 and true at i = ω′′

1

by ω′′
1 = µ′′

1 (just proven) and µ′′
ω′′
1
= 1. So, henceforth assume i ∈ {2, . . . , ω′′

1 − 1}. We

claim that for all such i, µ′
1 ≥ µ′′

i . Indeed, by Steps 3 and 5, µ′′
1 = µ′

1 + 1 ≥ µ′′
i ; and

since we do not over match, µ′′
1 ̸= µ′′

i for i ̸= 1. Since µ′
1 ≥ µ′′

i , Step 5 yields equality

ω′
j = ω′′

j − 1 at j = µ′′
i , and so ω′

µ′′
i
= ω′′

µ′′
i
− 1 = i− 1. But then since ω′

µ′
i−1

= i− 1 and

each woman has a unique partner, ω′
µ′′
i
= i− 1 implies µ′′

i = µ′
i−1. As µ

′
i−1 = µ′′

i−1 − 1

by Step 5 and i ≤ ω′′
1 − 1 = ω′

1 (by our premise and Step 3), we have µ′′
i = µ′′

i−1 − 1. □
An n-type pure matching µ is NAM∗ if µn = n and µi = n− i for i = 1, . . . , n− 1,

i.e. NAM among types 1, . . . , n− 1, so that NAM∗ = NAM3 when n = 3.

Step 7. The matching µ′ is NAM∗ among men and women at most ω′′
1 = µ′′

1 ≥ 2.

Proof: Steps 3, 5 and 6 imply µ′
i = µ′′

i − 1 = µ′′
1 − i for i = 1, . . . , ω′

1 = ω′′
1 − 1. Couple

(ω′′
1 , µ

′′
1) matches under µ′, by Step 4. So µ′ is NAM∗ for types 1, . . . , µ′′

1 = ω′′
1 . □

By Steps 6–7, µ′′ is NAM and µ′ is NAM∗ on types 1, . . . , ω′′
1 = µ′′

1 ≡ k ≥ 2. Since

NAM∗ ≻PQD NAM, if k < n + 1 then Premise Pk fails. Step 8 finishes the proof by

showing that NAM at θ′′ and NAM∗ at θ′ is also impossible for k = n+ 1 types.

NAM for men {i1, . . . , iℓ} and women {j1, . . . , iℓ} is {(i1, jℓ), (i2, jℓ−1), . . . , (iℓ, j1)}.
Rematching to NAM∗, {(i1, jℓ−1), (i2, jℓ−2), . . . , (iℓ, jℓ)} changes payoffs by∑ℓ−1

u=1(fiu,jℓ−u
−fiu,jℓ+1−u

)+fiℓ,jℓ−fiℓ,1 =
∑ℓ−1

u=1

[
(fiℓ,jℓ+1−u

− fiℓ,jℓ−u
)−(fiu,jℓ+1−u

− fiu,jℓ−u
)
]

So the payoff of NAM∗ less that of NAM on any subset of ℓ types equals (suppressing

the superscript on S) ∑ℓ−1
u=1 S(iu, jℓ−u, iℓ, jℓ+1−u) (22)

Step 8. NAM at θ′′ ⇒∼NAM∗ at θ′ for summed rectangular synergy dyads in D∗
n+1.

Part (a): Contradiction Assumption. For n + 1 types, posit NAM∗ and NAM

uniquely optimal at θ′ and θ′′ (Figure 14, left panel). Induce summed rectangular

synergy dyads in D∗
n+1 by removing k − 1 ≥ 0 optimally matched couples with higher

partners at θ′ than θ′′ (our earlier building block (f)) from a summed rectangular

synergy dyad (Sn+k(K|θ′), Sn+k(K|θ′′)) ∈ D̂n+k. The θ′ matching here is NAM∗ for

men i′ = (i′1, . . . , i
′
n+1) and women j ′ = (j′1, . . . , j

′
n+1), while the θ′′ matching with

these n + k types is NAM for men i′′ = (i′′1, . . . , i
′′
n+1) and women j ′′ = (j′′1 , . . . , j

′′
n+1),

with (i′, j ′) ≤ (i′′, j ′′) (Figure 14, middle panel).

Part (b): couple sets U ′, U ′′ with Sn+k(U ′′|θ′′) < 0 < Sn+k(U ′|θ′). For rectangles

r′u≡(i′u, j′n+1−u, i
′
n+1, j

′
n+2−u) and r

′′
u≡(i′′u, j

′′
n+1−u, i

′′
n+1, j

′′
n+2−u) define “upper sets”:
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Figure 14: Step 8 of Induction Proof. Left: NAM for θ′′ (circles) and NAM∗ for θ′

(stars) with n+1 types. Adding k−1 couples weakly higher at θ′ than θ′′ produces the
matches in the middle panel. Let KG, KL, KT , KR be the grey, light grey, top cross-
hatched, and right cross-hatched regions. By (22), the NAM∗ minus NAM difference is
Sn+k(KG ∪KL|θ′) > 0, as NAM∗ is optimal for θ′. But Sn+k(KL|θ′) < 0, as KL is the
union of rectangles, each below a NAM pair for θ′′. So Sn+k(KG|θ′) > 0. By (22), the
NAM∗ minus NAM difference is Sn+k(KG∪KR∪KT |θ′′) < 0, negative by NAM optimal
for θ′′. Finally, Sn+k(KT |θ′),Sn+k(KR|θ′) > 0, as each cross-hatched region lies above
a PAM pair for θ′. So Sn+k(KG|θ′′) < 0. But as Sn+k(KG|θ′) > 0, this contradicts
summed rectangular synergy upcrossing in θ. Right: Illustration for Step 8(c).

• U ′ ≡ ∪n
u=1r

′
u, the union of the grey and light grey rectangles in panel 2 of Figure 14

• U ′′ ≡ ∪n
u=1r

′′
u, the union of the grey and the two cross hatched regions

As NAM∗ is uniquely optimal for the subsets of men i′ and women j ′ at θ′, it payoff-

dominates NAM. Given linearity of summed rectangular synergy at ℓ = n+ 1 in (22),

Sn+k(U ′|θ′) =
∑n+1

u=1 S
n+k(r′u|θ′) =

∑n+1
u=1 S

n+k(i′u, j
′
n+1−u, i

′
n+1, j

′
n+2−u|θ′) > 0

Likewise, NAM uniquely optimal for subsets i′′ and j ′′ at θ′′ implies Sn+k(U ′′|θ′′) < 0.

Part (c): Sn+k(KG|θ′) > 0 for KG ≡ U ′∩U ′′. First, U ′ = ∪n
u=1(i

′
u, j

′
n+1−u, i

′
n+1, j

′
n+1),

i.e., a union of rectangles with fixed northeast (Figure 14, panel 3). Likewise, we have

U ′′ ≡ ∪n
u=1r

′′
u. Since (i

′, j ′) ≤ (i′′, j ′′) (part (a)), if (i, j) ∈ U ′ \U ′′ = U ′ \KG (light grey

in Figure 14, panel 2), then (i′u∗ , j′n+1−u∗) ≤ (i, j), and i ≤ i′′u∗ or j ≤ j′′n+1−u∗ , with at

least one strict, at some u∗. So couple (i, j) is below the meet of the θ′′ matched NAM

pair (i′′u∗ , j′′n+2−u∗) and (i′′u∗+1, j
′′
n+1−u∗). As rectangular synergy is upcrossing in types,

sij(θ
′′) < 0. Then sij(θ

′) < 0, as synergy is upcrossing in θ. Then Sn+k(U ′\KG|θ′) < 0,

as this holds for all (i, j) ∈ U ′ \KG. As summed rectangular synergy is additive and

Sn+k(U ′|θ′) > 0 (part (b)), Sn+k(KG|θ′) = Sn+k(U ′|θ′)− Sn+k(U ′ \KG|θ′) > 0.

Part (d): Sn+k(KG|θ′′) < 0. Since (i′, j ′) ≤ (i′′, j ′′) (part (a)), define rectangles

KT ≡ (i′′1, j
′
n+1, i

′
n+1, j

′′
n+1) and K

R ≡ (i′n+1, j
′′
1 , i

′′
n+1, j

′
n+1) (resp., top and right hatched
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regions, Figure 14, panel 2). Then U ′′ \ KG = KT ∪ KR. As summed rectangular

synergy is linear:

Sn+k(KG|θ) = Sn+k(U ′′|θ)− Sn+k(KT |θ)− Sn+k(KR|θ) (23)

RectangleKT is above the rectangle defined by the θ′ PAM pair (i′1, j
′
n) and (i′n+1, j

′
n+1).

So Sn+k(KT |θ′′) > 0, as summed rectangular synergy is upcrossing on rectangles and θ.

Likewise, KR is above the rectangle defined by the θ′ PAM pair (i′n, j
′
1) and (i′n+1, j

′
n+1).

So Sn+k(KR|θ′′) > 0. Then Sn+k(KG|θ′′) < 0, as Sn+k(U ′′|θ′′) < 0 (part (b)) and (23).

Since Sn+k(KG|θ′) > 0 (part (c)), we cannot have (Sn+k(K|θ′),Sn+k(K|θ′′))∈D̂n+k;

and thus, by part (a) we have contradicted dyads (Sn+1(K|θ′),Sn+1(K|θ′′))∈D∗
n+1, and

thus conclude that NAM at θ′′ and NAM∗ at θ′ is impossible.20 □

C.3 Proof of Proposition 3 for a Continuum of Types

Step 1. Uniquely optimal finite type matchings exist for a payoff perturbation with

summed rectangular synergy upcrossing in θ.

Proof: Let X n={xn1 , . . . , xnn} and Yn={yn1 , . . . , ynn} be equal quantile increments, with

G(xn1 )=H(yn1 )=1/n andG(xni )=G(x
n
i−1)+1/n andH(ynj )=H(ynj−1)+1/n. LetGn and

Hn be cdfs on [0, 1], stepping by 1/n at X n and Yn (resp.). Put fn
ij(θ) = ϕ(xni , y

n
j |θ).

The set Mn(θ) of pure optimal matchings is non-empty, by Lemma 2.

Since unique optimal matchings are pure, we restrict to pure matchings. These are

uniquely defined by the male partner vector µ = (µ1, . . . , µn). Call the pure match-

ing M̂ lexicographically higher than M iff its male partner vector µ̂ lexicographically

dominates µ. Let M̄n(θ) (resp. µ̄n(θ)) be the optimal pure matching highest in the

lexicographic order, and Mn(θ) (resp. µn(θ)) the lowest. Easily, each is well-defined.

Fix θ′′ ≻ θ′. Let ι(j) = µ̄n
j (θ

′)− 1 and pick ε > 0. Perturb synergy down at θ′:

snεij (θ
′) ≡ sij(θ

′)− εj1(i,j)=(ι(j),j) (24)

We prove that M̄n(θ′) is uniquely optimal at θ′ for any production function with ε-

perturbed synergy (24), for all small ε > 0. Similar logic will prove that Mn(θ′′) is

uniquely optimal at θ′′ with snεij (θ
′′) ≡ sij(θ

′′) + εj1(i,j)=(µn
j
(θ′′),j) for all small ε > 0.

Pick a matching M that is not optimal at ε = 0. Since M̄n(θ′) is optimal at ε = 0,

M̄n(θ′) yields a higher payoff than M for all small ε > 0.

20This last step assumes upcrossing synergy sums on connected join semi-lattices (sets that contain
the join of any pair of elements). All of our results only require this weaker time series assumption.
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As µ̄n(θ′) is the lexicographically highest optimal matching at θ′, another optimal µ

obeys (µ̄n
1 (θ

′), . . . , µ̄n
ℓ−1(θ

′)) = (µ1, . . . , µℓ−1), and first diverges at µ̄n
ℓ (θ

′) > µℓ, for some

woman ℓ < n. Using Mij =
∑j

k=1 1µk≤i, equation (5), and (24), the payoff M̄n(θ′)

exceeds that of M ∈ Mn(θ′) by
∑n−1

i=1

∑n−1
j=1 s

nε
ij (θ

′)
[
M̄n

ij(θ
′)−Mij

]
. This expands to:

n−1∑
j=1

εj
[
Mι(j)j − M̄n

ι(j)j(θ
′)
]

= εℓ +
n−1∑

j=ℓ+1

εj
j∑

k=ℓ+1

[
1µk≤ι(j) − 1µ̄n

k≤ι(j)

]
Altogether, limε→0 ε

−ℓ
∑n−1

i=1

∑n−1
j=1 s

nε
ij (θ

′)
[
M̄n

ij(θ
′)−Mij

]
= 1 > 0. □

Step 2. If θ′′ ≻ θ′, then M̄n(θ′′) ⪰PQD Mn(θ′) for all n.

Proof: Since Snε(r|θ) is continuous in ε, there exists ε̂n > 0 such that, for all r =

(i1, j1, i2, j2) and 0≤ε<ε̂n, if Sn0(r|θ) ≶ 0 then Snε(r|θ) ≶ 0. By the contrapositives:

Snε(r|θ) ≥ 0 ⇒ Sn0(r|θ) ≥ 0 and Snε(r|θ) ≤ 0 ⇒ Sn0(r|θ) ≤ 0. (25)

We claim that Snε(r|θ) is strictly upcrossing in r for all 0 < ε < ε̂n. For if not, then

Snε(r′′|θ) ≤ 0 ≤ Snε(r′|θ) for some r′′ ≻NE r′. But then Sn0(r′′|θ) ≤ 0 ≤ Sn0(r′|θ)
by (25), contradicting Sn0(r|θ) strictly upcrossing in r, as follows from Step 1.

Continuum summed rectangular synergy is upcrossing in θ by assumption; and thus,

finite summed rectangular synergy
∑

k=1 S
n0(rk|θ) for all finite approximations. Then,

perturbed summed rectangular synergy
∑

k=1 S
nε(rk|θ) is upcrossing in θ, since synergy

snεij (θ
′) is non-increasing in ε and snεij (θ

′′) is non-decreasing in ε by construction (24).

So for ε ∈ (0, ε̂n), rectangular synergy Snε(r|θ) is strictly upcrossing in r and

summed rectangular synergy
∑

k=1 S
nε(rk|θ) upcrossing in θ, for couple sets K ⊆ Z2

n.

Given M̄n(θ′),Mn(θ′′) uniquely optimal, Mn(θ′′)⪰PQD M̄
n(θ′) ∀n, by Proposition 3. □

Step 3. There exists a subsequence of matchings {Mnk(θ)} that converges to an optimal

matching in the continuum model.

Proof: Define step function ϕn(x, y|θ) = fnεn
ij (θ) for (x, y) ∈ [xni−1, x

n
i ) × [ynj−1, y

n
j ),

where εn = ε̂n/n. Then {Gn} and {Hn} weakly converge to G and H as n → ∞,

while ϕn uniformly converges to ϕ. By Theorem 5.20 in Villani (2008), their optimal

matching cdfs have a limit point M∞(θ) optimal in the continuum model.21 □

Step 4. M∞(θ′′) ⪰PQD M∞(θ′) for all θ′′ ⪰ θ′

21Namely: Fix a sequence {ϕk} of continuous and uniformly bounded production functions con-
verging uniformly to ϕ. Let {Gk} and {Hk} be cdf sequences and Mk an optimal matching for ϕ,
given Gk and Hk. If Gk and Hk weakly converge to G and H, then some subsequence of {Mk} weakly
converges to a matching M∗ optimal for ϕ, G, and H.
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Proof: Fix θ′′ ⪰ θ′, and let {nk} be a subsequence along which the sequence of finite

type matchings {Mnk(θ′)} converges to M∞(θ′), as defined in Step 3. Now, since cdfs

{Gnk} and {Hnk} weakly converge to G and H, and ϕnk(x, y|θ′′) converges uniformly to

ϕ(x, y|θ′′), there exists a subsequence {nkℓ} of {nk}, along which the sequence of finite

type matchings {Mnkℓ (θ′′)} converges to M∞(θ′′) by Theorem 5.20 in Villani (2008).

Further, by Step 2, Mnkℓ (θ′′) ⪰PQD Mnkℓ (θ′). But then, the limits must be ordered

M∞(θ′′) ⪰PQD M∞(θ′) by Theorem 9.A.2.a in Shaked and Shanthikumar (2007). □

C.4 Marginal Rectangular Synergy: Proof of Proposition 4

A non-negative function σ : Z 7→ R+ on lattice Z is log-supermodular (LSPM) if:

σ(z ∧ z′)σ(z ∨ z′) ≥ σ(z)σ(z′) ∀z, z′ ∈ Z (26)

Claim 1. The indicator function 1x∈[u(x1),u(x2)] is log-supermodular in (x, x1, x2) for all

non-decreasing functions u.

Proof: Define (ui, u
′
i) ≡ (u(xi), u(x

′
i)) for i ∈ {1, 2}. If both x ∈ [u1, u2] and

x′ ∈ [u′1, u
′
2], then x ∨ x′ ∈ [u1 ∨ u′1, u2 ∨ u′2] and x ∧ x′ ∈ [u1 ∧ u′1, u2 ∧ u′2]; and

thus, 1x∨x′∈[u1∨u′
1,u2∨u′

2]
1x∧x′∈[u1∧u′

1,u2∧u′
2]
= 1. □

Now, assume marginal rectangular synergy is upcrossing in types. The steps for

downcrossing marginal rectangular synergy are symmetric.

Step 1. If marginal rectangular synergy is strictly upcrossing, then rectangular synergy

is strictly upcrossing.

Proof: We prove the continuum case, which implies the finite type result. By Claim 1,

the function 1x∈[x1,x2] is log-supermodular function in (x, x1, x2). By Karlin and Rubin’s

classic 1956 result, if ∆x(x|y1, y2, θ) is upcrossing in x, then the last integral in (10)

is upcrossing in x1 and x2, and so in (x1, x2). Symmetrically, rectangular synergy

is upcrossing in (y1, y2) when the y-marginal rectangular synergy is upcrossing in y.

Altogether, rectangular synergy S is upcrossing in types if both MPIs are upcrossing.

Now assume ∆x(x|y1, y2) is strictly upcrossing; and so, if S(x′1, y1, x
′
2, y2) = 0 then

∆x(x
′
1|y1, y2) < 0 < ∆x(x

′
2|y1, y2). So Sx1(x

′
1, y1, x

′
2, y2) = −∆x(x

′
1|y1, y2) > 0 and

Sx2(x
′
1, y1, x

′
2, y2) = ∆x(x

′
2|y1, y2) > 0. Then S(x′′1, y1, x′′2, y2) > 0 for all (x′′1, x

′′
2) >

(x′1, x
′
2). By symmetric reasoning, S strictly upcrosses in (y1, y2). □

Step 2. The optimal matching is unique in the continuum type model.

Proof: By Theorem 5.1 in Ahmad, Kim, and McCann (2011), there is a unique optimal

matching when: (i) G is absolutely continuous, (ii) ϕ is C2, and (iii) the critical
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points of (what they call a “twist difference”) ϕ(x, y2) − ϕ(x, y1) include at most one

local max and one local min, for all y1, y2. Our continuum types model imposes (i)

and (ii). We claim that (iii) follows from marginal rectangular synergy ∆x(x|y1, y2) ≡
ϕ1(x, y2)− ϕ1(x, y1) strictly upcrossing in x, for y2 > y1. In particular, if y2 > y1, then

∆x(x|y1, y2) is upcrossing in x, and any critical point of the twist difference is a global

minimum. Similarly, then any critical point is a global maximum if y2 < y1. □

Step 3. Sorting increases in θ.

Proof: Propositions 3 and 4 share the time series assumption. By Step 1, the cross-

sectional premise of Proposition 4 implies the cross-sectional premise of Proposition 3.

Finally, the optimal matching is generically unique for any finite type model and is

unique for continuum type models by Step 2. By Proposition 3, sorting rises in θ. □

C.5 A Generalization of Proposition 5

With a continuum of types, synergy is proportionately upcrossing if:

ϕ−
12(z ∧ z′, θ)ϕ+

12(z ∨ z′, θ′) ≥ ϕ−
12(z, θ

′)ϕ+
12(z

′, θ) (27)

for z=(x, y), z′=(x′, y′), and θ′⪰θ, where meet ∧ and join ∨ assume the vector order.

For a finite number of types, synergy is proportionately upcrossing if sij(θ) obeys an

inequality analogous to (27) for arguments z = (i, j) and z′ = (i′, j′), and for θ′ ⪰ θ.

Synergy is proportionately upcrossing if it is increasing in θ and monotone in types.

Indeed, (z ∨ z′, θ′) ⪰ (z′, θ) ⇒ ϕ+
12(z ∨ z′, θ′) ≥ ϕ+

12(z
′, θ), and (z, θ′) ⪰ (z ∧ z′, θ) ⇒

ϕ−
12(z ∧ z′, θ)≥ϕ−

12(z, θ
′). And, easily, the product of a proportionately upcrossing and

LSPM function is proportionately upcrossing. All told, we generalize Proposition 5:

Proposition 6. Assume synergy is upcrossing in θ, synergy is one-crossing in types,

and proportionately upcrossing synergy. Sorting increases in θ in generic finite type

models, or with continuum types if synergy strictly one-crosses in types.

Finite Types Proof. We verify the premise of Proposition 3. By Theorem 1, total

synergy
∑n−1

i=1

∑n−1
j=1 sij(θ)1(i,j)∈Z on any set of couples Z ⊆ Z2

n is upcrossing in t = θ.

So summed rectangular synergy
∑

k S(rk|θ) is upcrossing in θ for any non-overlapping

set of rectangles {rk}. Next, rectangular synergy S(r|θ) =
∑n−1

i=1

∑n−1
j=1 sij(θ)1(i,j)∈r is

upcrossing in r by Theorem 1 with t = r ∈ R4. By Claim 1, the indicator function

1(i,j)∈r = 1i∈[i1,i2]1j∈[j1,j2] is LSPM in (i, j, r), since LSPM is preserved by multipli-

cation.22 Then sij(θ)1(i,j)∈r obeys inequality (27) in z = (i, j) and r, since sij(θ)

22Theorem 1 assumes t ∈ T , a poset. Here we exploit the fact that the space of rectangular sets of
couples is a sublattice of Z2, even though the PQD order on distributions over couples is not a lattice.
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obeys (27) for fixed θ. Rectangular synergy upcrosses in r, by Theorem 1. □

Continuum of Types Proof. We apply Proposition 4. By Theorem 1, total synergy∫
Z
ϕ12(x, y|θ)dxdy is upcrossing in t = θ for any measurable set Z ⊆ [0, 1]2. Thus,

summed rectangular synergy
∑

k S(Rk|θ) is upcrossing in θ for any non-overlapping

set of rectangles {Rk}. Next, the x-marginal rectangular synergy
∫
ϕ12(x, y)1y∈[y1,y2]dy

is strictly upcrossing in x. Let x′′>x′. Posit for a contradiction:∫
ϕ12(x

′′, y)1y∈[y1,y2]dy ≤ 0 ≤
∫
ϕ12(x

′, y)1y∈[y1,y2]dy (28)

As synergy ϕ12(x, y) is strictly upcrossing in x and y, by (28), there exist zeros y′, y′′ ∈
(y1, y2) such that ϕ12(x

′, y) ⋚ 0 for y ⋚ y′ and ϕ12(x
′′, y) ⋚ 0 for y ⋚ y′′. Easily, these

zeros are ordered y′′ < y′. But then inequalities in (28) are simultaneously impossible,

for:
0 ≤

∫
ϕ12(x

′, y)1y∈[y1,y2]dy <
∫
ϕ12(x

′, y)1y∈[y1,y′′]1y∈[y′,y2]dy

⇒ 0 <
∫
ϕ12(x

′′, y)1y∈[y1,y′′]1y∈[y′,y2]dy <
∫
ϕ12(x

′′, y)1y∈[y1,y2]dy

by Theorem 1, since
∫
ϕ12(x, y)λ(y)dy is upcrossing in t = x for any non-negative λ(y)

— because ϕ12(x, y) is proportionately upcrossing in types and upcrossing in y. □

C.6 Type Distribution Shifts: Proof of Corollary 1

Throughout, we WLOG assume types shift up in the parameter θ.

Step 1. Summed Rectangular Quantile Synergy is Upcrossing in θ.

For any finite disjoint set of rectangles {Rk} in [0, 1]2, let Z ≡ ∪kRk and define the pdf

λ(x, y|θ) ≡
1(G(x|θ),H(y|θ))∈Z∫ ∫
1(G(s|θ),H(t|θ))∈Zdsdt

.

We claim that the associated cdf Λ(x, y|θ) ≡
∫ y ∫ x

λ(s, t|θ)dsdt is non-increasing in θ.

Indeed, the indicator function 1(s,t)≤(x,y) is log-supermodular in (s, t, x, y) by Claim 1.

Recalling that rectangles Rk are defined by quantiles [p1, p2]× [q1, q2], we rewrite

1(G(s|θ),H(t|θ))∈Rk
= 1(s,t)∈[G−1(p1|θ),G−1(p2|θ)]×[H−1(q1|θ),H−1(q2|θ)]

which is log-supermodular in (s, t, θ) by G−1(p|θ), H−1(q|θ) non-decreasing in θ and

Claim 1. Thus, since log-supermodularity is preserved by multiplication, integration

(Karlin and Rinott, 1980), and summation (over Rk),
∫ ∫

1(G(s|θ),H(t|θ))∈Z1(s,t)≤(x,y)dsdt
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is log-supermodular in (x, y, θ). Consequently, (x, y) ≤ (x′, y′) implies that the ratio:∫ ∫
1(G(s|θ),H(t|θ))∈Z1(s,t)≤(x,y)dsdt∫ ∫
1(G(s|θ),H(t|θ))∈Z1(s,t)≤(x′,y′)dsdt

is non-increasing in θ

Finally, since Λ(x, y|θ) is this ratio evaluated at (x′, y′) equal to the highest types on

each side of the market, Λ is non-increasing in θ.

Now, define total quantile synergy (11) on the set Z in the continuum model:

Υ(θ) ≡
∫ ∫

φ12(p, q|θ)1(p,q)∈Zdpdq =
∫ ∫

ϕ12(x, y)1(G(x|θ),H(y|θ))∈Zdxdy

by the change of variables x = G−1(p|θ) and y = H−1(q|θ); and thus, dx = dp/g(G−1(p|θ))
and dy = dq/h(H−1(q|θ)). Then using the fact that the cdf Λ(x, y|θ) is first order in-
creasing in θ and ϕ12(x, y) is non-decreasing we find:

0 ≤ Υ(θ) ⇒ 0 ≤
∫ ∫

ϕ12(x, y)λ(x, y|θ)dxdy ≤
∫ ∫

ϕ12(x, y)λ(x, y|θ′)dxdy ⇒ 0 ≤ Υ(θ′)

Identical steps prove the result for models with finite types.

Step 2. Quantile Marginal Rectangular Synergy (Strictly) Upcrosses in Quantiles.

We prove case (b) (continuum types). Case (a) follows from symmetric logic.

Non-decreasing synergy is proportionately upcrossing; and thus ∆x(x|y1, y2) strictly
upcrosses in x as shown in §C.5. Given G(x|θ) absolutely continuous g > 0; and so,

∆p(p|q1, q2, θ) = ∆x(G
−1(p|θ)|H−1(q1|θ), H−1(q2|θ))/g(G−1(p|θ))

is strictly upcrossing in p. Similarly, ∆q(q|p1, p2, θ) is strictly upcrossing in q. All told,

we’ve seen that quantile sorting increases in θ, by Step 1 and Proposition 4. □
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Online Appendix

D Nowhere Decreasing Optimizers

The space of matching cdf’s is not a lattice, since the meet and the join are not defined

for arbitrary matchings.23 The matching problem (3) does not have a lattice constraint

or an objective function that is quasi-supermodular in the control: standard monotone

comparative static results (e.g. Milgrom and Shannon (1994)) do not apply. The next

section presents a general comparative static result for single-crossing functions on

partially ordered sets (posets) without assuming a well-defined meet or join.24 We

then apply this result to our sorting model to get a nowhere decreasing sorting result.

D.1 Nowhere Decreasing Optimizers for Arbitrary Posets

Let Z and Θ be posets. The correspondence ς : Θ → Z is nowhere decreasing if

z1 ∈ ς(θ1) and z2 ∈ ς(θ2) with z1 ⪰ z2 and θ2 ⪰ θ1 imply z2 ∈ ς(θ1) and z1 ∈ ς(θ2).

Notably, any partial order ⪰ induces a complete (nowhere decreasing) order ⪰∗

such that B ⪰∗ A if B = A or it is not true that A ⪰ B. Since the domain of any

complete order is a lattice, we can apply standard monotone logic, which we next do.

Theorem 3 (Nowhere Decreasing Optimizers). Let F : Z × Θ 7→ R, where Z and Θ

are posets, and let Z ′ ⊆ Z. If maxz∈Z′ F (z, θ) exists for all θ and F is single crossing

in (z, θ), then Z(θ|Z ′) ≡ argmaxz∈Z′ F (z, θ) is nowhere decreasing in θ for all Z ′. If

Z(θ|Z ′) is nowhere decreasing in θ for all Z ′ ⊆ Z, then F (z, θ) is single crossing.

(⇒): If θ2 ⪰ θ1, z1∈Z(θ1), z2∈Z(θ2), and z1 ⪰ z2, optimality and single crossing give:

F (z1, θ1) ≥ F (z2, θ1) ⇒ F (z1, θ2) ≥ F (z2, θ2) ⇒ z1 ∈ Z(θ2)

Now assume z2 /∈ Z(θ1). By optimality and single crossing, we get the contradiction:

F (z1, θ1) > F (z2, θ1) ⇒ F (z1, θ2) > F (z2, θ2) ⇒ z2 /∈ Z(θ2)

23As shown in Proposition 4.12 in Müller and Scarsini (2006): If M dominates PAM2 and PAM4,
then M(2, 1) ≥ 1/3 and M(1, 2) ≥ 1/3, but M(1, 1) = 0 if NAM1 and NAM3 dominate M . So then
M(2, 2) = 2/3, but then NAM1 cannot PQD dominate M .

24This may be a known result. We include it for completeness, and as we cannot find any reference.



(⇐): If F is not single crossing, then for some z2 ⪰ z1 and θ2 ⪰ θ1, either: (i) F (z2, θ1)≥
F (z1, θ1) and F (z2, θ2)<F (z1, θ2); or, (ii) F (z2, θ1)>F (z1, θ1) and F (z2, θ2)≤F (z1, θ2).
Let Z ′ = {z1, z2}. In case (i), z2 ∈ Z(θ1|Z ′) and z1 = Z(θ2|Z ′) precludes Z(θ|Z ′)

nowhere decreasing in θ, since z2 /∈ Z(θ2|Z ′). In case (ii), z2 = Z(θ1|Z ′) and z1 ∈
Z(θ2|Z ′) precludes Z(θ|Z ′) nowhere decreasing in θ, since z1 /∈ Z(θ1|Z ′). □

D.2 Nowhere Decreasing Sorting

Sorting is nowhere decreasing in θ if the matching never falls in the PQD order. So for

all θ2 ⪰ θ1, if M1 ∈ M∗(θ1) and M2 ∈ M∗(θ2) are ranked M1 ⪰PQD M2, then we have

M2 ∈ M∗(θ1) and M1 ∈ M∗(θ2). We say that weighted synergy is upcrossing25 in θ if

the following is upcrossing in θ:

•
∫
ϕ12(x, y|θ)λ(x, y)dxdy for all nonnegative (measurable)26 functions λ on [0, 1]2

•
∑n−1

i=1

∑n−1
j=1 sij(θ)λij for all positive weights λ ∈ R(n−1)2

+

We first present the continuum analogue of the finite match output formula (5).27

Lemma 3 (Continuum Types). Given type intervals I ≡ [0, 1] and J ≡ (0, 1], then:∫
I2 ϕ(x, y)M(dx, dy) =

∫
I ϕ(x, 1)G(dx)−

∫
J ϕ2(1, y)H(y)dy+

∫
J 2 ϕ12(x, y)M(x, y)dxdy

Proof: If ψ is C1 on [0, 1] and Γ is a cdf on [0, 1], integration by parts yields:∫
[0,1]

ψ(z)Γ(dz) = ψ(1)Γ(1)−
∫
(0,1]

ψ′(z)Γ(z)dz (29)

where the interval (0, 1] accounts for the possibility that Γ may have a mass point at 0.

Since M(dx, y) ≡M(y|x)G(dx) for a conditional matching cdf M(y|x), we have:

M(x, y) ≡
∫
[0,x]

M(y|x′)G(dx′) (30)

By Theorem 34.5 in Billingsley (1995) and then in sequence (29), (30) and Fubini’s

25Let Z be a partially ordered set. The function σ : Z 7→ R is upcrossing if σ(z) ≥ (>)0 implies
σ(z′) ≥ (>)0 for z′ ⪰ z, downcrossing if −σ is upcrossing. Similarly, σ is strictly upcrossing if σ(z) ≥ 0
implies σ(z′) > 0 for all z′ ≻ z, with strictly downcrossing defined analoguously.

26To save space, we henceforth assume measurable sets for integrals whenever needed.
27Equation (9) in Cambanis, Simons, and Stout (1976) reduces to our formula when output is C2.

We present our simpler proof for the C2 case for completeness.
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Theorem, (29), the objective function
∫
[0,1]2

ϕ(x, y)M(dx, dy) in (3) equals:∫
[0,1]

∫
[0,1]

ϕ(x, y)M(dy|x)G(dx)

=

∫
[0,1]

ϕ(x, 1)G(dx)−
∫
[0,1]

∫
(0,1]

ϕ2(x, y)M(y|x)dyG(dx)

=

∫
[0,1]

ϕ(x, 1)G(dx)−
∫
(0,1]

[
ϕ2(1, y)M(1, y)−

∫
(0,1]

ϕ12(x, y)M(x, y)dx

]
dy

which easily reduces to the desired expression, using M(1, y) = H(y). □

Theorem 4. Sorting is nowhere decreasing in θ if weighted synergy is upcrossing in θ,

and thus if synergy is nondecreasing in θ. Also, if sorting is nowhere decreasing in θ

for all type distributions G,H, then any rectangular synergy is upcrossing in θ.

Proof of (a): First, M ′⪰PQDM iff λ≡M ′−M ≥ 0. As weighted synergy upcrosses:∑n−1
i=1

∑n−1
j=1 sij(θ)(M

′
ij −Mij) ≥ (>) 0 ⇒

∑n−1
i=1

∑n−1
j=1 sij(θ

′)(M ′
ij −Mij) ≥ (>) 0∫

(0,1]2
ϕ12(·|θ)(M ′ −M) ≥ (>) 0 ⇒

∫
(0,1]2

ϕ12(·|θ′)(M ′ −M) ≥ (>) 0
(31)

Thus, match output is single crossing in (M, θ) by (5) (for finite types) and Lemma 3

for continuum types. Then the optimal matching M∗(θ) (in the space of feasible

matchings M(G,H)) is nowhere decreasing in the state θ, by Theorem 3.

Proof of (b): Assume two women (x1, x2) and men (y1, y2), and that S(R|θ) is

not upcrossing in θ, i.e. for some θ′′ ⪰ θ′ and rectangle R = (x1, y1, x2, y2), we have

S(R|θ′′) ≤ 0 ≤ S(R|θ′) with one inequality strict. These inequalities imply that NAM

optimal at θ′′ and PAM optimal at θ′, and either NAM is uniquely optimal at θ′′ or

PAM is uniquely optimal at θ′. Either case precludes nowhere decreasing sorting. □

Easily, weighted synergy is upcrossing in θ if synergy is non-decreasing in θ. Thus:

Corollary 2 (Cambanis, Simons, and Stout (1976)). Sorting is nowhere decreasing

in θ if synergy is non-decreasing in θ.

E Omitted Proofs for Economic Applications in §7
1. Diminishing Returns: Let R(z|θ) ≡ −zψ′′(z|θ)/ψ′(z|θ). Synergy is then:

ϕ12(x, y|θ) = ψ′(xy|θ)
[
ψ′′(xy|θ)xy
ψ′(xy|θ)

+ 1

]
≡ ψ′(xy|θ)(1−R(xy|θ)) (32)
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By assumption ψ′ > 0 and R(xy|θ) is decreasing in x, y, and t = 1− θ. Thus, synergy

strictly upcrosses in x, y, and t. Further, ψ′(xy|1− t) is LSPM in (x, y, t), since

[log (ψ′(xy|1− t))]x =
yψ′′(xy|1− t)

ψ′(xy|1− t)
= −x−1R(xy|1− t)

is increasing in y and t by R(z|θ) decreasing in z and increasing in θ. Altogether,

synergy (32) is the product of a strictly positive LSPM function and an increasing

function; and thus, sorting increases in t = 1− θ by Proposition 5, and so falls in θ.

2. Weakest to Strongest Link: We verify the premise of Proposition 4 to prove

that sorting sorting increases in ρ for ϕ(x, y) = ψ(q(x, y)) as in §7.2. Symmetric steps

generalize this result for any ψ′′ < 0 < ψ′, obeying 2ψ′′(q) + qψ′′′(q) ≤ 0.

ϕ12(x, y) =
q1(x, y)q2(x, y)

q(x, y)
[(1 + ρ)(α− 2βq(x, y))− 2βq(x, y)] (33)

Step 1. Marginal rectangular synergy is strictly downcrossing in types.

Proof: Since q(x, y) increases in (x, y) and falls in ρ, the bracketed term in (33) falls

in (x, y) and rises in ρ. Thus, synergy (33) is upcrossing in ρ and is strictly down-

crossing in (x, y). Further, since q1(x, y)q2(x, y)/q(x, y) is LSPM in (x, y) when ρ ≥ 0,

synergy is proportionately downcrossing in (x, y). So, marginal rectangular synergy is

downcrossing in types, by Theorem 1. Finally, marginal rectangular synergy is strictly

downcrossing in (x, y) by the proof logic after inequality (28) in Appendix C.5. □

Step 2. Summed rectangular synergy is upcrossing in ρ.

Proof: Since ϕ12(x, y) = ϕ12(y, x), weighted synergy
∫
[0,1]2

ϕ12λ̂ is upcrossing in ρ for all

weighting functions λ̂, iff
∫ 1

0

∫ x

0
ϕ12(x, y)λ(x, y)dxdy is upcrossing in ρ for all weighting

functions λ. Now use change of variable y = kx to get:∫ 1

0

∫ x

0
ϕ12(x, y)λ(x, y)dydx = 2

∫ 1

0

∫ 1

0
xϕ12(x, kx)λ(x, kx)dkdx

Let xϕ12(x, kx) = σA(k, ρ)σB(x, k, ρ), where σA ≡ xq1(x, kx)q2(x, kx)/q(x, kx) and

σB is the bracketed term in (33) evaluated at y = kx. Routine algebra yields σA(k, ρ)

LSPM in (k, ρ), while σB(x, k, ρ) is decreasing in (x, k) and increasing in ρ. Altogether,

σAσB is proportionately upcrossing in (x, k, ρ). As synergy is also upcrossing in ρ by

Step 1, so is weighted synergy, by Theorem 1 — as is summed rectangular synergy. □

3. Nowhere Decreasing Sorting in Kremer and Maskin (1996):

We prove (13): sorting is nowhere decreasing in θ and nowhere increasing in ϱ = −ρ.
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Step 1. PAM is not optimal if ϱ>(1−2θ)−1, and is uniquely optimal for ϱ<(1−2θ)−1.

Proof: In a unisex model, PAM is optimal iff the symmetric rectangular synergy

S(x, x, y, y) is globally positive. Its sign is constant along any ray y = kx, and propor-

tional to:

s(k) ≡ 2
1−2θ

ϱ (1 + k)− 2kθ(1 + kϱ)
1−2θ

ϱ (34)

Since s(1) = s′(1) = 0, s′′(1) ∝ (1+ ϱ(2θ− 1)), and θ ∈ [0, 1/2], we have s(k) < 0 close

to k = 1 precisely when ϱ > (1 − 2θ)−1 ≥ 1. In this case, the symmetric rectangular

synergy is negative in a cone around the diagonal, and PAM fails.

Conversely, posit ϱ < (1− 2θ)−1. Then s(k) > 0 for all k ∈ [0, 1]. Since S(x, x, y, y)

is symmetric about y = x, it is globally positive and PAM is uniquely optimal. □

Step 2. If ϱ≥(1− 2θ)−1 then weighted synergy is upcrossing in θ, downcrossing in ϱ.

Proof: Change variables y = kx. If ∆(k) =
∫ 1

0
λ(x, kx)dx, weighted synergy is∫ ∫

ϕ12(x, y)λ(x, y)dydx = 2
∫ 1

0

∫ 1

0
xϕ12(x, kx)λ(x, kx)dkdx =

∫ 1

0
σ(k, θ, ϱ)∆(k)dk

where σ = σAσB for σA ≡ 2kθ−1(1 + kϱ)
1−2θ−2ϱ

ϱ and σB ≡ θ(1− θ)(1 + k2ϱ) + (1− ϱ +

2θ(θ − 1 + ϱ))kϱ. As ϱ ≥ (1 − 2θ)−1, σA > 0 is LSPM in (k, θ, ϱ), σB is increasing in

(θ,−k,−ϱ) for k ∈ [0, 1]. So σ = σAσB is proportionately downcrossing in (k, θ) and

(k,−ϱ). Weighted synergy is upcrossing in θ, downcrossing in ϱ, by Theorem 1. □

Step 3. Sorting is nowhere decreasing in θ and nowhere increasing in ϱ.

Proof: Pick θ′′ > θ′. If ϱ < (1− 2θ′′)−1, then PAM is uniquely optimal at θ′′ (Step 1)

and sorting increases from θ′ to θ′′. If ϱ ≥ (1−2θ′′)−1, then ϱ > (1−2θ′)−1 and weighted

synergy is upcrossing on [θ′, θ′′] (Step 2) and sorting is non-decreasing (Proposition 4).

Now pick any θ and ϱ′′ > ϱ′. If ϱ′ < (1 − 2θ)−1, then PAM is uniquely optimal at

ϱ′ (Step 1) and sorting is decreasing from ϱ′ to ϱ′′. If, instead, ϱ′ ≥ (1 − 2θ)−1, then,

necessarily, ϱ′′ > (1 − 2θ)−1, weighted synergy is downcrossing from ϱ′ to ϱ′′ (Step 2)

and sorting is non-increasing in ϱ, by Proposition 4. □
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