Assortative Matching and Search

- We explore two cases:

1. NTU (nontransferable utility) where payoffs are exogenously fixed
2. TU (transferable utility) where payoffs are reflect an endogenous surplus split

Matching

- flow payoffs $f(x, y)$
- Acceptable types $A(x) \subseteq[0,1]$
- inverse opportunity set $\Omega(x)=\{y|[0,1]| x \in A(y)\}$
- mutually agreeable matches $M(x)=A(x) \cap \mathrm{W}(x)$
- Everyone is both consumer and consumption good alike in a matching model

Search Frictions

- potential partners arrive at some fixed rendezvous rate $\rho>0$
\rightarrow with chance $\rho d t$ in any infinitesimal length $d t$ interval
- Interest rate r>0
- To secure a steady state, maybe matches dissolve at fixed rate $\delta>0$
\rightarrow chance $\delta d t$ in any small $d t$ interval
- The model is the same if we multiple (ρ, r, δ) by any $k>0$

Bellman Values

- expected present value $V(x)$ of payoffs to x when unmatched
- expected present value $V(x \mid y)$ of payoffs to x when matched with y
- acceptable types y in $A(x)$ obey $V(x \mid y) \geq V(x)$
- expected surplus $s(x \mid y)=V(x \mid y)-V(x)$ to x of matching withy in $A(x)$
- $U(y)$ is the stationary cdf of unmatched individuals

$$
r V(x)=\rho \int_{y \in M(x)}[V(x \mid y)-V(x)] U^{\prime}(y) d y
$$

Bellman Equations

- average present values
- $v(x)=r V(x)$
- $v(x \mid y)=r V(x \mid y)$
- $v(x \mid y)$ weights
- An initial flow payoff $f(x, y)$
- An arrival rate δ of a capital loss of $v(x)-v(x \mid y)$

$$
\begin{aligned}
& v(x \mid y)=f(x, y)+(\delta / r)[v(x)-v(x \mid y)] . \\
& v(x)=(\rho / r) \int_{y \in M(x)}[v(x \mid y)-v(x)] U^{\prime}(y) d y .
\end{aligned}
$$

Assortative Matching: PAM vs NAM

- PAM / NAM = negative / positive assortative matching
- PAM: If mixed high \& low types are matched, $\left(x_{1}, y_{2}\right)$ and $\left(x_{2}, y_{1}\right)$, with $x_{1}<x_{2}$ and $y_{1}<y_{2}$, then so are likes (x_{1}, y_{1}) and (x_{2}, y_{2})
- NAM is the opposite

PAM or NAM \rightarrow Convex Matching Sets

- This insight now offers us a simpler way to establish sorting
- For convex matching sets imply $M(x)=[\theta(x), \Psi(x)]$, with a quasiconvex lower bound $\theta(x)$, and quasi-concave upper bound $\psi(x)$.
- So PAM iff the lower and upper bounds are weakly increasing
- This gives a direct recipe for deducing PAM

NTU matching

- Assume monotone preferences, with $f_{2}>0$, so that in a frictionless setting, the Gale-Shapley stable outcome is PAM.
- With search frictions, intuitively, the acceptance set is $A(x)=[\theta(x), 1]$ for some cutoff partner $\theta(x)$ reminiscent of a reservation wage
- The opportunity set is therefore $\mathrm{W}(x)=\{y|[0,1]| x \geq \theta(y)\}$
- PAM iff $\theta(x)$ is nondecreasing (higher types are "choosier")
- Optimal matching requires that inside option pays the expected outside option: $f(x, \theta(x))=v(x)$

Block Segregation

- Assume the unmatched status has flow payoff zero
- If either $f(x, y)=h_{1}(x) h_{2}(y)$, such as when $f(x, y)=y$, then $f\left(x^{\prime}, y\right)=$ $\left[h_{1}\left(x^{\prime}\right) / h_{1}(x)\right] f(x, y)$ and thus utility of x and x^{\prime} are
- Everyone wishes to match with the highest type $x=1$.
- Faced with search frictions, her optimal reservation partner is $\theta(1)<1$
- Then everyone in the interval $[\theta(1), 1]$
- shares type 1's opportunity set
- Has the same cardinal preferences.
- Ipso facto, they will choose the same cutoff partner type $\theta(1)$

Preferences Leading to Block Segregation

- iterating, what unfolds is a unique partition of $[0,1]$ with class boundaries $\theta(1)>\theta(2)>. .$.
- There are finitely many boundaries exactly when $f(0,0)>0$
- Notice that $f(x, y)=h_{1}(x) h_{2}(y)$ iff f is log-modular
- What if we consider strictly LSPM functions?
- Assume a differentiable threshold $\theta(x)$.
- Differentiating the optimality equation $\log v(x)=\log f(x, \theta(x))$ in x yields

$$
\frac{v^{\prime}(x)}{v(x)}=\frac{f_{1}(x, \theta(x))}{f(x, \theta(x))}+\theta^{\prime}(x) \frac{f_{2}(x, \theta(x))}{f(x, \theta(x))} .
$$

Optimal Choosiness

- $\delta=0$ implies $v(x \mid y)=f(x, y)$
- The policy value $v_{\theta}(x)$ solves the recursion equation
$v_{\theta}(x)=(\rho / r) \int_{y \geq \theta}\left[f(x, y)-v_{\theta}(x)\right] U^{\prime}(y) d y=\frac{\rho \int_{y \geq \theta} f(x, y) U^{\prime}(y) d y}{r+\rho[1-U(\theta)]}$.
- The partial derivative of the policy value $v_{\theta}(x)$ in θ vanishes at $\theta=\theta(x)$
- Differentiating $\log v(x)=\log v_{\theta(x)}(x)$ in x, the Envelope Theorem gives:

$$
\frac{v^{\prime}(x)}{v(x)}=\frac{\int_{y z \theta(x)} f_{1}(x, y) U^{\prime}(y) d y}{\int_{y \geq \theta(x)} f(x, y) U^{\prime}(y) d y} .
$$

How Choosiness Varies in Type

$\frac{f_{1}(x, \theta(x))}{f(x, \theta(x))}+\theta^{\prime}(x) \frac{f_{2}(x, \theta(x))}{f(x, \theta(x))}=\frac{\int_{y \geq \theta(x)} f_{1}(x, y) U^{\prime}(y) d y}{\int_{Y \geq \theta(x)} f(x, y) U^{\prime}(y) d y}$.

- The inequality $3 / 4<5 / 6$ implies $3 / 4<(3+5) /(4+6)<5 / 6$
- Similarly, if $a(t), b(t)>0$ are smooth functions, and $[a(t) / b(t)]^{\prime}>0$, then

$$
\frac{a\left(t_{0}\right)}{b\left(t_{0}\right)}<\frac{\int_{t_{0}}^{t_{1}} a(t) d t}{\int_{t_{0}}^{t_{1}} b(t) d t}<\frac{a\left(t_{1}\right)}{b\left(t_{1}\right)} \quad \forall t_{0}<t_{1} .
$$

Sorting in the Marriage Model with Transferable Utility and Search Frictions

Theorem 1 (PAM and NTU): Assume x earns $f(x, y)>0$ in a match with y, where $f_{2}(x, y)>0$. Then the equilibrium matching is block segregation if f is log-modular and is strict PAM if f is strictly LSPM.

PAM with $f(x, y)=e^{x y}$ and no PAM with $f(x, y)=x+x y+y$

Transferable Utility Matching

- Match surplus clearly determines a mutual matching decision with TU:

$$
s(x, y) \equiv f(x, y)-v(x)-v(y) \geq 0 \quad \Leftrightarrow \quad y \in M(x) .
$$

- Equal surplus division ("Nash bargaining solution")

$$
v(y \mid x)-v(x)=v(x \mid y)-v(y)
$$

- Unmatched surplus can be rewritten as an integral of match surplus (recall time scale invariance of parameters):

$$
v(x)=\frac{1}{2} \frac{\rho}{\delta+r} \int_{y \in M(x)}(f(x, y)-v(x)-v(y)) U^{\prime}(y) d y
$$

Value and Marginal Value with TU

- The TU search model turns on solving functional equations like those for "potentials":
$v(x)=\beta \int \max \langle 0, f(x, y)-v(x)-v(y)\rangle U^{\prime}(y) d y$.
- Since surplus vanishes at the edge of the matching set:

$$
\begin{aligned}
v^{\prime}(x) & =\beta \int\left(\max \left\langle 0, f_{1}(x, y)-v^{\prime}(x)\right\rangle\right) U^{\prime}(y) d y \\
& =\frac{\beta \int_{y \in M(x)} f_{1}(x, y) U^{\prime}(y) d y}{1+\beta \int_{y \in M(x)} U^{\prime}(y) d y} .
\end{aligned}
$$

Solution Recipe

Claim 1: If matching sets are convex, then SPM implies PAM if $f_{2}(0, y) \underline{o} 0$.

Claim 2: Matching sets are convex when own-marginal products f_{1} are LSPM, and cross partials f_{12} are LSPM

Convex Matching and Supermodularity \rightarrow PAM

- If PAM fails then $\psi\left(x_{1}\right)>\psi\left(x_{2}\right)$ for some $x_{2}>x_{1}$
- Since surplus is supermodular, as $s_{12}=f_{12}>0$, type x_{1} sees her match surplus rise more slowly in her partner's type than does x_{2}.
- Integrating $s_{2}(x, y)$ down from any given $y=\psi\left(x_{1}\right)$, the surplus of type x_{1} is lower with every partner than the surplus of type x_{2}.
- But x_{1} has a higher upper partner (yielding zero surplus) than type x_{2}.
- Hence, $v\left(x_{1}\right)>v\left(x_{2}\right)$
- Contradiction to fincreasing

Using the Zero Marginal Product Condition

- Since $s_{2}(0, y)=f_{2}(0, y)-v^{\prime}(y)=0-v^{\prime}(y)<0$, the highest surplus partner of $x=0$ is zero.
- So the lower bound $\theta(x)$ is initially weakly increasing
- Convex matching sets have a quasi-convex lower bound function $\theta(x)$
- Hence, the lower bound is everywhere weakly increasing

SPM \rightarrow Convexity for high types

- The match surplus of type x has slope $s_{2}(x, y)=f_{2}(x, y)-v^{\prime}(y)$
- Assume all types match, so that matching set changes can be ignored
- $v^{\prime}(x)=\gamma E_{Y} f_{1}(x, Y)$, for some $\gamma<1$
- γ rises in the rendezvous rate ρ and falls in the interest rate r
$s_{2}(x, y)=f_{2}(x, y)-\gamma E_{X} f_{2}(X, y)>E_{X}\left[f_{2}(x, y)-f_{2}(X, y)\right]$
- By SPM, $f_{2}(1, y)-f_{2}\left(x^{\prime}, y\right)>0$ whenever $x^{\prime}<1$, so $s_{2}(1, y)>0$
- So the highest types match surplus rises in their partner's type y
\rightarrow Their matching set is a convex upper set in $[0,1]$

SPM Need Not Guarantee PAM

- $f(x, y)=(x+y)^{2}$ and $f(x, y)=(x+y-1)^{2}$.

LSPM of Marginal Products \rightarrow Convexity for Low Types

- Now assume low types x
- An easy sufficient condition for quasi-concavity of match surplus is that its derivative downcrosses
- This would also ensure that the "ideal partner" for type x (maximal surplus, i.e. with $\left.v^{\prime}(y)=f_{2}(x, y)\right)$ increases
- But $s_{2}(x, y)=f_{2}(x, y)-v^{\prime}(y)$ downcrosses if $\gamma E_{y} f_{2}(X, y) / f_{2}(x, y)$ increases
- This holds when $f_{2}(x, y) / f_{2}(0, y)$ increases in y, i.e. LSPM
- Notice how this explains the failure for $f(x, y)=(x+y)^{2}$.
- For $f_{2}(x, y) / f_{2}(0, y)=1+x / y$ falls in y, since $\log f(x, y)=2 \log (x+y)$ is LSBM

The Final LSPM Condition

- Observe that
$f_{2}(x, y)-v^{\prime}(y)=0 \Rightarrow f_{2}(x, z)-v^{\prime}(z) \leq 0 \quad$ whenever $z>y$.
- The first logic argues the premise fails for high types
- The second logic argues the implication holds for low types
- Is every type high enough for first logic, or low enough for second logic?

A Single Crossing Property for Gambles

- Lemma: If $h(x, y)>0$ and $h_{1}>0$ is LSPM. Assume $E[h(X, y)]=h\left(x^{*}, y\right)$. Then $E[h(X, z)] \geq h\left(x^{*}, z\right)$ for all $z \geq y$.
- This implies Diamond-Stiglitz (1973): A global increase in the Arrow Pratt risk aversion coefficient lowers the certainty equivalence of any gamble.
- If greater y lowers risk aversion $u(x, y)$ for money, then u is LSPM.
- By the lemma, someone who is indifferent about a gamble at low y, is strictly willing to gamble at a higher y .
- In our search setting, set $h=f_{2}$. Then $h_{1}>0$ is and $h_{1}=f_{12}$ is LSPM.
- The lemma asserts that if the denominators coincide, then numerators are ordered:

$$
\frac{f_{2}(x, z)}{f_{2}(x, y)} \leq \frac{v^{\prime}(z)}{v^{\prime}(y)}=\frac{E_{X} f_{2}(X, z)}{E_{X} f_{2}(X, y)} \quad \text { whenever } \quad z \geq y .
$$

PAM in TU Search and Matching Models

Theorem 2 (PAM with TU): If x and y jointly produce symmetric output $f(x, y)>0$, then the equilibrium TU matching obeys strict PAM if f is supermodular, f_{1} and f_{12} are \log-supermodular, and $f_{2}(0, y)=0$ for all y.

Search Equilibrium Existence

- A search equilibrium is a triple (v, M, u)-namely,
- the value function v
- the matching set function M
- the unmatched density u
- It obeys three functional equations: the last one is this steady-state condition, that the unemployment inflow balances the newly matching:

$$
\delta[\ell(x)-u(x)]=\rho u(x) \int_{M(x)} u(y) d y
$$

Two Type Illustration of Logic

- With $n=2$ types, the steady-state equation reduces to

$$
\delta \ell=\delta u+\rho A(m, u) \quad \text { where } \quad A(m, u)=\left[\begin{array}{l}
m_{11} u_{1}^{2}+m_{12} u_{1} u_{2} \\
m_{21} u_{1} u_{2}+m_{22} u_{2}^{2}
\end{array}\right]
$$

- By the Implicit Function Theorem, there is a unique and continuous solution $y(x)$ to $F(x, y)=0$ if F_{y} is invertible. Thus, there is a continuous map $m \rightarrow u(m)$ provided $I+\rho D_{u} A(m, u)$ is invertible
- This holds because $D_{u} A(m, u)$ is a positive definite matrix, since

$$
D_{u} A(m, u)=\left[\begin{array}{cc}
2 m_{11} u_{1}+m_{12} & m_{12} u_{1} \\
m_{21} u_{2} & m_{21} u_{1}+2 m_{22} u_{2}
\end{array}\right]
$$

- and $x^{\prime} D_{u} A(m, u) x=\left(2 u_{1} x_{1}^{2}\right) m_{11}+\left(u_{2} x_{1}^{2}+\left(u_{1}+u_{2}\right) x_{1} x_{2}+u_{1} x_{2}^{2}\right) m_{12}+\left(2 u_{2} x_{2}^{2}\right) m_{22} \geq 0$, as:

$$
u_{2} x_{1}^{2}+\left(u_{1}+u_{2}\right) x_{1} x_{2}+u_{1} x_{2}^{2}=\left(\sqrt{u_{2}} x_{1}+\sqrt{u_{1}} x_{2}\right)^{2}+4 x_{1} x_{2}\left(\sqrt{u_{2}}-\sqrt{u_{1}}\right)^{2} \geq 0
$$

Frictional vs Frictionless Sorting

	No Search	Fixed Cost Search	Opportunity Time Cost Search
NTU	$f_{2}>0$	$f_{2}>0, f_{12}>0$	$f_{2}>0,(\log f)_{12}>0$
TU	$f_{12}>0$	$f_{12}>0$	$f_{12}>0,\left(\log f_{1}\right)_{12}>0,\left(\log f_{12}\right)_{12}>0$

Steady State Dynamics in Chemistry Resemble those in a Search Model:

6 NYAS
"Life is an equilibrium state of synthesis and degration of proteins" - Yoshinori Ohsumi @tokyotech_en \#DPJAward

