
10/13/18

1

Assortative Matching and Search

• We explore two cases: 
1. NTU (nontransferable utility) where payoffs are exogenously fixed
2. TU (transferable utility) where payoffs are reflect an endogenous 

surplus split

Matching
• flow payoffs f(x, y) 
• Acceptable types A(x) ⊆ [0,1]
• inverse opportunity set Ω(x) = {y | [0,1]|x ∈ A(y)} 
• mutually agreeable matches M(x) = A(x) ∩ W(x)
• Everyone is both consumer and consumption good alike in a matching 

model  
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Search Frictions 

• potential partners arrive at some fixed rendezvous rate ρ > 0 
è with chance ρ dt in any infinitesimal length dt interval
• Interest rate r>0 
• To secure a steady state, maybe matches dissolve at fixed rate ! > 0 
è chance ! dt in any small dt interval
• The model is the same if we multiple (ρ,r,!) by any k>0

Bellman Values

• expected present value V(x) of payoffs to x when unmatched
• expected present value V(x|y) of payoffs to x when matched with y
• acceptable types y in A(x) obey V(x|y) ≥ V(x) 
• expected surplus s(x|y) = V(x|y) - V(x) to x of matching withy in A(x) 
• U(y) is the stationary cdf of unmatched individuals
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• average present values
• v(x) = rV(x) 
• v(x|y) = rV(x|y)

• v(x|y) weights 
• An initial flow payoff f(x, y) 
• An arrival rate ! of a capital loss of v(x) - v(x|y)

Bellman Equations

Assortative Matching: PAM vs NAM
• PAM / NAM = negative / positive assortative matching 
• PAM: If mixed high & low types are matched, (x1, y2) and (x2, y1), 

with x1 < x2 and y1 < y2, then so are likes (x1, y1) and (x2, y2)
• NAM is the opposite 
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PAM or NAM è Convex Matching Sets

• This insight now offers us a simpler way to establish sorting 
• For convex matching sets imply M(x) = [θ(x), ψ(x)], with a quasi-

convex lower bound θ(x), and quasi-concave upper bound ψ(x). 
• So PAM iff the lower and upper bounds are weakly increasing
• This gives a direct recipe for deducing PAM

NTU matching

• Assume monotone preferences, with f2 > 0, so that in a frictionless 
setting, the Gale-Shapley stable outcome is PAM. 
• With search frictions, intuitively, the acceptance set is A(x) = [θ(x),1] 

for some cutoff partner θ(x) reminiscent of a reservation wage
• The opportunity set is therefore W(x) = {y | [0,1]|x ≥ θ(y)}
• PAM iff θ(x) is nondecreasing (higher types are “choosier”) 
• Optimal matching requires that inside option pays the expected 

outside option: f(x,θ(x)) = v(x) 
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Block Segregation

• Assume the unmatched status has flow payoff zero

• If either f(x, y)=h1(x)h2(y), such as when f(x, y) = y, then f(x’, y) = 
[h1(x’)/h1(x)]f(x, y) and thus utility  of x and x’ are 
• Everyone wishes to match with the highest type x = 1. 
• Faced with search frictions, her optimal reservation partner is θ(1)< 1

• Then everyone in the interval [θ(1), 1] 
• shares type 1’s opportunity set
• Has the same cardinal preferences. 
• Ipso facto, they will choose the same cutoff partner type θ(1)

Preferences Leading to Block Segregation
• iterating, what unfolds is a unique partition of [0,1] with class 

boundaries θ(1)> θ(2)>…
• There are finitely many boundaries exactly when f(0, 0) > 0
• Notice that f(x, y) = h1(x)h2(y) iff f is log-modular
• What if we consider strictly LSPM functions?
• Assume a differentiable threshold θ(x). 
• Differentiating the optimality equation log v(x) = log f(x,θ(x)) in x yields
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Optimal Choosiness

• ! = 0 implies v(x|y) = f(x,y)
• The policy value vθ(x) solves the recursion equation  

• The partial derivative of the policy value vθ(x) in θ vanishes at θ = θ(x)
• Differentiating log v(x) = log vθ(x)(x) in x, the Envelope Theorem gives:
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How Choosiness Varies in Type

• The inequality 3/4 < 5/6 implies 3/4 < (3 + 5)/(4 + 6) < 5/6
• Similarly, if a(t), b(t) > 0 are smooth functions, and [a(t)/b(t)]’ > 0, 

then 1
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Theorem 1 (PAM and NTU): Assume x earns f(x, y) > 0 in a match 

with y, where f2(x, y) > 0. Then the equilibrium matching is block 

segregation if f is log-modular and is strict PAM if f is strictly LSPM.

Sorting in the Marriage Model with 
Transferable Utility and Search Frictions

PAM with f(x,y)=exy and no PAM with f(x,y)=x+xy+y
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Transferable Utility Matching 
• Match surplus clearly determines a mutual matching decision with TU:

• Equal surplus division (“Nash bargaining solution”)

• Unmatched surplus can be rewritten as an integral of match surplus 
(recall time scale invariance of parameters): 
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• The TU search model turns on solving functional equations like those 
for “potentials”:

• Since surplus vanishes at the edge of the matching set: 
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Value and Marginal Value with TU



10/13/18

9

Solution Recipe

Claim 1: If matching sets are convex, then SPM implies PAM if f2(0, y) º 0.

Claim 2: Matching sets are convex when own-marginal products f1 are LSPM, 
and cross partials f12 are LSPM

Convex Matching and Supermodularity è PAM

• If PAM fails then y(x1) > y(x2) for some x2 > x1
• Since surplus is supermodular, as s12 = f12 > 0, type x1 sees her 

match surplus rise more slowly in her partner’s type than does x2. 
• Integrating s2(x, y) down from any given y=y(x1), the surplus of type 

x1 is lower with every partner than the surplus of type x2. 
• But x1 has a higher upper partner (yielding zero surplus) than type x2.
• Hence, v(x1) > v(x2)
• Contradiction to f increasing
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Using the Zero Marginal Product Condition
• Since s2(0, y) = f2(0, y) – v’(y) = 0 – v’(y) < 0, the highest surplus 

partner of x = 0 is zero.
• So the lower bound θ(x) is initially weakly increasing 
• Convex matching sets have a quasi-convex lower bound function θ(x)
• Hence, the lower bound is everywhere weakly increasing

SPM è Convexity for high types

• The match surplus of type x has slope s2(x, y) = f2(x, y) – v’(y)
• Assume all types match, so that matching set changes can be ignored
• v’(x) = γ EY f1(x, Y), for some γ<1 
• γ rises in the rendezvous rate ρ and falls in the interest rate r

• By SPM, f2(1, y) - f2(x’, y) > 0 whenever x’ < 1, so s2(1, y) > 0
• So the highest types match surplus rises in their partner’s type y
è Their matching set is a convex upper set in [0, 1]

2 2 2 2 2( , ) ( , ) ( , ) [ ( , ) ( , )]X Xs x y f x y E f X y E f x y f X yg= - > -
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SPM Need Not Guarantee PAM

• f(x,y)=(x+y)2. and f(x,y)=(x+y-1)2. 

1( )M x

• Now assume low types x
• An easy sufficient condition for quasi-concavity of match surplus is that 

its derivative downcrosses
• This would also ensure that the “ideal partner” for type x (maximal 

surplus, i.e. with v’(y) = f2(x, y)) increases
• But s2(x, y) = f2(x, y) – v’(y) downcrosses if γEY f2(X,y)/f2(x, y) increases
• This holds when f2(x, y)/f2(0, y) increases in y, i.e. LSPM
• Notice how this explains the failure for f(x,y)=(x+y)2.

• For f2(x, y)/f2(0, y) = 1+x/y falls in y, since log f(x,y)=2 log(x+y) is LSBM

LSPM of Marginal Products è Convexity for Low Types
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The Final LSPM Condition

• Observe that

• The first logic argues the premise fails for high types
• The second logic argues the implication holds for low types
• Is every type high enough for first logic, or low enough for second logic?
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A Single Crossing Property for Gambles
• Lemma: If h(x,y)>0 and h1>0 is LSPM. Assume E[h(X,y)]= h(x*,y). Then 

E[h(X,z)] ≥ h(x*,z) for all z ≥ y.
• This implies Diamond-Stiglitz (1973): A global increase in the Arrow Pratt 

risk aversion coefficient lowers the certainty equivalence of any gamble. 
• If greater y lowers risk aversion u(x,y) for money, then u is LSPM. 
• By the lemma, someone who is indifferent about a gamble at low y, is 

strictly willing to gamble at a higher y.  
• In our search setting, set h=f2 . Then h1>0 is and h1= f12 is LSPM. 
• The lemma asserts that if the denominators coincide, then numerators 

are ordered: 2 2
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Theorem 2 (PAM with TU): If x and y jointly produce symmetric output 

f(x, y) > 0, then the equilibrium TU matching obeys strict PAM if f is 

supermodular, f1 and f12 are log-supermodular, and f2(0, y) = 0 for all y.

PAM in TU Search and Matching Models 

Search Equilibrium Existence

• A search equilibrium is a triple (v, M, u)—namely, 
• the value function v
• the matching set function M
• the unmatched density u

• It obeys three functional equations: the last one is this steady-state 
condition, that the unemployment inflow balances the newly matching:
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( , )u A m ud d r= +!

Two Type Illustration of Logic

2
11 1 12 1 2

2
21 1 2 22 2
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• With n = 2 types, the steady-state equation reduces to

where

• By the Implicit Function Theorem, there is a unique and continuous solution 
y(x) to F(x,y)=0 if Fy is invertible. Thus, there is a continuous map màu(m) 
provided I +  ρ DuA(m, u) is invertible

• This holds because DuA(m, u) is a positive definite matrix, since

• and                                                                                                                     ≥0, as:

11 1 12 12 1

21 2 21 1 22 2
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Frictional vs Frictionless Sorting
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Steady State Dynamics in Chemistry Resemble 
those in a Search Model:


