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Summary. In the social learning model of Banerjee [1] and Bikhchandani,
Hirshleifer and Welch [2] individuals take actions sequentially after observ-
ing the history of actions taken by the predecessors and an informative
private signal. If the state of the world is changing stochastically over time
during the learning process, only temporary informational cascades ± situ-
ations where socially valuable information is wasted ± can arise. Further-
more, no cascade ever arises when the environment changes in a su�ciently
unpredictable way.

JEL Classi®cation Number: D83.

1 Introduction

Models of learning and experimentation typically predict that information
accumulation eventually stops. This prediction contrasts with the observa-
tion that information is repeatedly, if not continuously, collected and used.
In this paper we study the problem of information aggregation in a model of
observational learning by a society of individuals acting sequentially in a
changing environment. In this setting, new information is worth more than
old information and learning either never stops, or is at least sure to resume
after a long enough period of time.

The social learning model of Banerjee [1] and Bikhchandani, Hirshleifer
and Welch [2] (BHW) describes the decision problem faced by a sequence of
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exogenously ordered individuals each acting under uncertainty about the
state of the world. Everyone conditions his decision in a Bayes-rational
fashion on both a privately observed informative signal, and the ordered
history of all predecessors' decisions; he observes neither predecessors' re-
alized private signals, nor their realized payo�s. Private signals are assumed
to be drawn from an identically and independently distributed random
variable correlated with the state of the world. Thus, were all signals publicly
observable, their aggregation would eventually reveal the state almost surely,
by the Strong Law of Large Numbers. Instead, signals are private, and
individuals can only imperfectly infer information from actions.

The striking result in this setting is that with positive probability everyone
eventually settles on a common ine�cient action, and as BHW note, on a
single action regardless. Either outcome is occasioned by the lumpy way in
which information is ®ltered through actions. Suppose that the evidence
from the publicly observed action history su�ciently favors one state that it
swamps the private signals, as can initially happen by chance. Then private
information is perforce ignored, and one's action is dictated by history.
Successors then learn nothing from the action, and the system has reached a
steady-state where everyone rationally ``herds'' on the same (either good or
bad) action. In this ``informational cascade,'' socially valuable private signals
are lost.1

In this paper we consider a modi®ed but natural model where it is
common knowledge that the state of the world changes stochastically over
time. We then ask how robust are the above ®ndings to such an evolving
environment. We ®nd that because of the resulting information depreciation,
only temporary informational cascades can arise. BHW discuss at length the
fragility of cascades to the release of small amount of public information.
Here, we note that any cascade will eventually come to an end without new
informational input, but instead simply because of the fading relevance of
old information. Cascades on a single action arise only if the state of the
world is su�ciently persistent. When state changes are su�ciently unpre-
dictable no cascade ever arises, because past information depreciates so fast
that the belief can never be too extreme. Finally, for completeness more than
for economic relevance, cascades on alternating actions arise when the state
of the world is changing frequently enough, because here too information
depreciates slowly. We conclude that temporary cascades on single actions
arise when the environment changes slowly. In this sense, herding survives as
a temporary phenomenon only.

This model naturally encompasses many interesting economic situations,
like decision making in organizations and consumer choice, where social
learning induces inertia in the behavior given a discrete action space. This is
the natural extension of the never-ending herd idea of BHW and Banerjee to
a stochastic environment. Provided information does not depreciate too
quickly, such inertia still arises. BHW themselves brie¯y discuss the possi-

1 Smith and Sùrensen [7] show that this result holds i� the quality of private signals is bounded.
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bility of the state changing in a nonstationary fashion. They provide a spe-
ci®c numeric example where the state changes with 5% chance after 100
periods; they ®nd that cascade reversals are more likely than 5%. In this
paper, we feel that a stochastically evolving world is worthy of serious in-
vestigation on a par with other recent research on learning.

The problem of optimal experimentation in a changing environment has
already been addressed by Kiefer [4]. Recently Keller and Rady [3] have built
a tractable continuous-time version of the model. The complexity of the
optimization problem precludes a characterization of the long-run learning
outcome. In our simple model of social learning the optimization problem is
straightforward and the aggregation is simple. See Rustichini and Wolinsky
[6] for a manageable framework for long-run analysis in an individual ex-
perimentation problem. Intuitively, information depreciation in these con-
texts increases the immediate value of new information but diminishes its
long-term value. In a social learning context, since agents are myopic, only
the former e�ect is present, and the depreciation unambiguously discourages
the noninformative cascade stage.

The paper proceeds as follows. Section 2 describes our model of social
learning in a changing world. In Section 3 it is shown that only temporary
informational cascades can arise, and that cascades arise only if the change in
the state of the world is su�ciently predictable. Section 4 concludes.

2 Model

A countable number of individuals take sequentially one of two possible
actions, a0 and a1. Payo�s to actions are contingent on an unknown state of
the world, x0 or x1. Let q1 be the common prior belief that the state is
initially x1. Action a1 is more rewarding than action a0 in state x1, while the
opposite is true in state x0: the payo� of action ai in state is xj is 1 if i � j
and 0 if i 6� j, with i; j 2 f0; 1g. For example, action ai may be ``buy good i,''
and the state of the world xi: ``good i is better than the alternative good
j 6� i.''

After an individual's decision, the state of the world changes with chance
e, assumed for simplicity to be Markovian and independent of the current
state of the world:

Pr xn � xi j xnÿ1 � xj
ÿ � � Pr xn � xj j xnÿ1 � xi

ÿ � � e

for i; j 2 0; 1f g, i 6� j, and any n. Our results can be easily extended to a
general two-state Markov transition matrix.

Before choosing an action, individual n both observes a private signal
rn 2 r0; r1f g and the public history of action decisions of all preceding in-
dividuals 1; 2; . . . ; nÿ 1. He cannot see predecessors' signals. Private signals
are drawn from a state-dependent Bernoulli distribution, and are indepen-
dent conditional on the current state. The probability that the signal ri is
realized in state xj is a > 1=2 if i � j and 1ÿ a < 1=2 if i 6� j, with
i; j 2 f0; 1g. The quality of the private signal is assumed bounded, i.e. a < 1.
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For n � 2 let Hn � a0; a1f gnÿ1 be the space of all possible period n his-
tories of actions chosen by the nÿ 1 predecessors of individual n. Let hn

denote an element of Hn. Let qn � Pr x1jhn� � be the public probability belief
that the state is x1 in period n conditional on the publicly observed history of
actions chosen by the predecessors of individual n.

Similarly let rn
i � Pr x1jhn; ri� � be the posterior belief that the state is x1

conditional on both the public action history hn and the realization ri of the
private signal observed by individual n. A simple application of Bayes' rule
yields

rn
i �

Pr x1 \ rijhn� �
Pr rijhn� � � Pr rijhn;x1� �Pr x1jhn� �

Pr rijhn� � ;

so that

rn
0 � r0 qn� � � 1ÿ a� �qn

a 1ÿ qn� � � 1ÿ a� �qn �2:1�

rn
1 � r1 qn� � � aqn

aqn � 1ÿ a� � 1ÿ qn� � �2:2�

These posterior probabilities are used to compute the expected payo�s
from taking the two di�erent actions in the two states. The decision rule of
the agent n is to choose the action an which gives her the highest expected
payo�. Given our simple payo�s, if individual n receives the private signal
rn � r1, then it is optimal to take action an � a1 if and only if rn

1 � 1=2. After
substituting from (2.2), this becomes qn � 1ÿ a. The decision rule can be
summarized as:

if rn � 0; then an � a0 , qn � a, and an � a1 , qn > a

if rn � 1; then an � a0 , qn < 1ÿ a, and an � a1 , qn � 1ÿ a

where the action choice when indi�erent WLOG minimizes the possibility of
herding.

3 Informational cascades with a changing world

A. Belief dynamics

Were e equal to 0, as in the standard models referenced earlier, the public
prior belief of individual n� 1 equals the posterior belief that leads Mr. n to
act according to her signal rn � ri, i.e. qn�1 � rn

i . There is an informational
cascade (or cascade) on action ai at time n whenever action ai is taken by
individual n regardless of the individual's private signal rn. Thus, a cascade
on a1 (respectively a0) arises as soon as qk > a (respectively qk < 1ÿ a), for
then the public belief swamps either private signal. A cascade once started
would never end, because public belief would remain unchanged.

With e > 0, the dynamics change drastically; however, the cascade region
is una�ected by the state switching, since that event occurs only after the
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decision is made. When the possibility that the state of the world has changed
in the meantime is accounted for, the public prior belief of individual n� 1;
coming after individual n who chose an � ai according to her signal rn � ri;
satis®es qn�1 � 1ÿ e� �rn

i � e 1ÿ rn
i

ÿ �
, which can be rewritten by (2.1) and

(2.2) as

qn�1 � f0 qn� � � 1ÿe� � 1ÿa� �qn�ea 1ÿqn� �
1ÿa� �qn�a 1ÿqn� � if an � a0

f1 qn� � � 1ÿe� �aqn�e 1ÿa� � 1ÿqn� �
aqn� 1ÿa� � 1ÿqn� � if an � a1

(
�3:1�

Note that anyone can compute these probabilities. We will consider the
case qk > a, since the other case can be treated symmetrically. The action
chosen will be ak � a1, regardless of the signal rk. The next individual k � 1
knows that ak � a1 is uninformative, and computes the public prior belief
qk�1 � 1ÿ e� �qk � e 1ÿ qk

ÿ �
. In general the following individual n� 1, as

long as qn > a or qn < 1ÿ a, will update her prior belief during the cascade
in the same fashion, according to the (uninformative) cascade dynamics
below:

qn�1 � u�qn� � �1ÿ e�qn � e�1ÿ qn� �3:2�

The public belief dynamics are stochastic and determined by (3.1) as long
as 1ÿ a � qn � a (when not in a cascade) and are deterministic and follow
(3.2) when either qn > a or qn < 1ÿ a (during the cascade). These dynamics
are depicted in Figure 1.

Figure 1
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B. Cascades are temporary

Now we argue that any cascade will eventually stop.

Proposition 1. For any e 2 0; 1� �, if a cascade exists, then for some
k � k�e� <1, the cascade must end in k�e� periods.

Proof. When in a cascade, the dynamics of the system are described by (3.2).
The unique ®xed point of this ®rst order linear di�erence equation is �q � 1=2.

Global stability of �q exactly requires dqk�1
dqk

��� ��� � 1ÿ 2ej j < 1, i.e. 0 < e < 1. For

e 2 0; 1=2� � the convergence to the ®xed point is monotonic, and oscillatory
for e 2 1=2; 1� �. For e � 1=2 the convergence to �q is immediate. Since a > 1=2
then 1ÿ a; a� � has positive Lebesgue measure and contains �q � 1=2. There-
fore there exists k � k e� � such that qk 2 1ÿ a; a� �. (

This result is robust to many states. For during a cascade, public beliefs
are always drawn back to the ®xed point of the cascade dynamics, i.e. the
Markov steady state which exists if one can get from one state to any other
(formally if the Markov matrix M is regular, i.e. Mn > 0 for some n with
positive probability), as it is reasonable to assume in a truly changing envi-
ronment. Cascades are temporary provided that the Markov steady state lies
outside the (extremal) cascade set. Finally, the introduction of insurance
actions can expand the cascade set (see [7]); since cascades on insurance
actions may arise for strictly interior public beliefs, the ®xed point of the
cascade dynamics may well lie inside the cascade set.

One can also compute the maximum length of a cascade. The longest
possible cascade on a1 starts with a belief f1 a� �. After h periods in a cascade
the belief is

uh f1 a� �� � � e
Xhÿ1
i�0

1ÿ 2e� �i
" #

� 1ÿ 2e� �hf1 a� � :

This cascade terminates as soon as uh f1 a� �� � � a, or equivalently
�1ÿ 2e�h�1 � �1ÿ 2a�1ÿ a��, so that K�a; e� � log�1ÿ 2a�1ÿ a��=
log 1ÿ 2ej j is a tight upper bound on the length of a cascade. Since
@K a; e� �=@a < 0 and sign @K a; e� �=@e � sign 2eÿ 1� � for e 6� 1=2, the lower
the quality of private information and the more predictable the evolution in
the state of the world, the longer a cascade can possibly last.

C. Cascades arise

To show the possibility of temporary cascades, it su�ces to use (3.1) to prove
that there exists a ®xed point of f1 �� � and one of f0 �� � in the cascade region
(i.e. outside 1ÿ a; a� �), and that these ®xed points are global attractors.

Consider ®rst the case of cascades on a single action. They arise only if
the state of the world is su�ciently persistent. If instead state changes are
rather unpredictable, i.e. for middling e � 1=2, information depreciates the
most. Here, the public belief qn will never venture far from 1=2, and so no
cascade will ever arise.
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Proposition 2 (cascades on a single action). For any q1 2 �1ÿ a; a�, with
probability one, a cascade on some action arises in ®nite time if and only if
e < e a� � � a 1ÿ a� �.

Proof. It su�ces to show that with positive probability, a cascade arises on
some action in ®nitely many periods. Consider ®rst the possibility of a cas-
cade on action a1, requiring that qk > a for some k > 1. The most favorable
case for the occurrence of such a cascade is when all consecutive signal
realizations are r1. Then the dynamics follow

qn�1 � f1 qn� � � 1ÿ e� �aqn � e 1ÿ a� � 1ÿ qn� �
aqn � 1ÿ a� � 1ÿ qn� � : �3:3�

We claim that for small enough e, hqni converges globally to some attractor
strictly above a.

The ®xed points of the di�erence equation (3.3) are the roots of the
quadratic equation

q2 2aÿ 1� � � q 1� eÿ 2a� � ÿ e 1ÿ a� � � 0 : �3:4�
Note that f1 1� � � 1ÿ e and f1 0� � � e, and one can calculate
sgnf 01�qn� � sgn 1ÿ 2e� � and f 001 �qn�2 < 0. For any e 2 0; 1� � there is only one
positive root �q a; e� � of the quadratic equation (3.4). Note that �q a;�
1=2� � 1=2 and �q a; e� � 2 e; 1ÿ e� � for any a.

To show that the ®xed point �q a; e� � is globally stable, let
L�q� � f1�q� ÿ �q� � qÿ �q� �. Then L is a Liapunov function if: (i) L��� is con-
tinuous in q; (ii) L�f1�q�� > L�q� > 0 for any q 6� �q; (iii) L�f1��q�� � L��q� � 0.
It is easy to show that these conditions are always satis®ed for e 2 0; 1=2� �.
Similarly, for e 2 1=2; 1� � these conditions are satis®ed if f 01��q� > ÿ1, which
always holds; therefore, the ®xed point �q is globally stable for e 2 0; 1� �.

Finally, there is a positive chance of cascade on a1 i� e satis®es

a < �q a; e� � �
ÿ 1� eÿ 2a� � �

������������������������������������������������������������������
1� eÿ 2a� �2�4 2aÿ 1� �e 1ÿ a� �

q
2 2aÿ 1� � �3:5�

For then, and only then, is it possible that in ®nite time the public beliefs
surpass a, and reach any left neighborhood of this ®xed point. Finally, (3.5)
reduces to e < e a� � � a 1ÿ a� �, as required. The argument for cascades on a0
is symmetric: If q�a; e� is the positive ®xed point of f0, then e < e a� � is
equivalent to q a; e� � < 1ÿ a. (

Consider a belief on the border of the non-cascade region, e.g. q � a. If
e � e a� � then f1�a� � a, so that the posterior belief is ®xed, but for e < e a� �
the state changes less rapidly, so that the cascade region is entered after a
signal r1 departing from q � a. If instead the state changes slightly more
rapidly, then f1 a� � < a, so that the posterior after a signal r1 would be
interior to the non-cascade region.
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Temporary cascades arise when information depreciates the least, i.e.
when the next state is most predictable based on current beliefs. This happens
not only when e is small, but also when it is near 1. When the state of the
world changes rapidly enough and individuals alternate between the two
actions, the system may enter an alternating cascade in which individuals
alternate between the two actions regardless of private signals.

Corollary 1 (cascades on alternating actions). For q1 2 1ÿ a; a� �, with prob-
ability one, cascades on alternating actions arise in ®nite time if and only if
e > �e a� � � 1ÿ a 1ÿ a� �.

The appendicized proof argues that the public belief oscillates until it
enters either cascade region (in ®nite time). Cascade dynamics (3.2) are
nonmonotone given �e a� � > 1=2.

From Proposition 2 and Corollary 1, and a > 1=2 it follows immediately
that if the environment is changing in an unpredictable way there will never
be a cascade.

Corollary 2. No cascade ever arises for e 2 1=4; 3=4� �.

4 Conclusion

Social learning decouples the behavior of the agents from the economy's
fundamentals. During an informational cascade on a single action, the same
action persists predictably while the environment changes with positive
probability. Then the action eventually switches and learning resumes. This
simple model of observational learning can explain why common practice
can persist more than it should; agents stick to the practice even if they have
contrary private information, without possibly knowing in an informational
cascade whether others have similar contrary information.

This paper has dwelt on the short-run aspects of learning in a changing
world. In a ®xed world a never-ending cascade starts eventually with prob-
ability one, while in our setting the long-run analysis becomes more inter-
esting. For that we refer to the companion paper Moscarini and Ottaviani [5].

This model is amenable to applications across the economics spectrum,
where an invariant state of nature does not ring true. For a salient micro-
economics example, suppose that actions are the sequential and observable
consumer purchase decisions. Then a changing environment might corres-
pond to the stochastic but unobserved quality innovations of the products
purchased.

Appendix: Proof of Corollary 1

Proof. The most favorable case for the occurrence of such a cascade is when
all signal realizations exactly alternate up to n. WLOG suppose ®rst that
rnÿ1 � r0 and rn � r1 for n even. Therefore the public belief dynamics are
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qn � f0 qnÿ1ÿ � � f0 f1 qnÿ2ÿ �ÿ �
. The function f0 f1 �� �� � will be denoted by g0 �� �.

Substituting from (3.1) one gets

g0 q� � � a 1ÿ a� � 1ÿ 2e� � ÿ e 1ÿ aÿ e� �� �q� 1ÿ a� �e 1ÿ e� �
e 2aÿ 1� �q� 1ÿ a� � aÿ e� 2ae� � :

Similarly denote qn�1 � f1 qn� � � f1 f0 qnÿ1ÿ �ÿ �
by g1 qnÿ1ÿ �

, where

g1 q� � � a 1ÿ a� � 1ÿ 2e� � ÿ e aÿ e� �� �q� ae 1ÿ e� �
ÿe 2aÿ 1� �q� a 1ÿ aÿ e� 2ae� � :

For the selected sequence of realizations of signals and for e > 1=2 the public
belief follows oscillating dynamics, while the odd and even subsequences of
beliefs follow monotonic dynamics. Following for g0 and g1 the same steps as
in Proposition 2 for f1, we ®nd that both g0 and g1 have exactly one ®xed
point in 0; 1� �, denoted by q0 a; e� � and q1 a; e� �. Both points are global at-
tractors for the two dynamics and are in the cascade region (i.e. q0 a; e� � > a
and q1 a; e� � < 1ÿ a) if and only if e > �e a� �. (
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