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The Matching Paradigm as Metaphor Economic Interaction
▶ Buzz for Matching Models:

▶ Pairwise matching models with transferable utility capture in
a simplest form the economic structures of many settings:
▶ assigning tasks to individuals
▶ buyers and sellers trading
▶ partnerships, and maybe marriages
▶ firms hiring workers

▶ metaphor: two sides of the market are “men” and “women”
▶ We wish to understand: Who trades with whom? Who pairs

with whom? Who marries whom? Who works with whom?
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Matching without Transfers: The Girl-Guy Band Contest

▶ Contest of Beyonce, Taylor Swift, and Lady Gaga to sing a
duet with concert with Billy Joel, Bruno Mars, and Jay-Z

▶ We first only specify ordinal preferences
▶ Men commonly rank: Beyonce > Taylor Swift > Lady Gaga
▶ Women commonly rank: Billy Joel > Bruno Mars > Jay-Z
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Deferred Acceptance Algorithm (DAA)
1. All men start unengaged and women start with no suitors.
2. Each unengaged man proposes to his most-preferred woman

(if any) among those he has not yet proposed to, if he prefers
matching to remaining single;

3. Each woman gets engaged to the most preferred among all
her suitors, including any prior engagements, if she prefers
matching with him to remaining single.

4. Rinse and repeat until no more proposals are possible.
Engagements become matches.
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Stability

▶ Matchings should ideally exploit all gains from trade.
▶ An assignment is unstable if there are men, say Alan and Bob,

respectively matched to women Alice and Bea, such that Bob
prefers Alice to Bea and Alice prefers Bob to Alan

▶ Say that the matching of Bob and Alice blocks the matching.
▶ A matching is stable if it is not unstable, i.e. ̸ ∃ blocking pair.
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Gale-Shapley Theorem

Proposition (Gale & Shapley, American Math Monthly, 1962)
(a) The DAA stops in finite time.
(b) Given an equal number of men and women, if matching with
someone beats remaining single, then everybody matches.
(c) The DAA matching is stable, i.e. a stable matching exists.
(d) Given strict preferences, the DAA yields a unique matching.
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Proof of Gale-Shapley Theorem

▶ At each iteration, one man proposes to some new woman
▶ Let Alice and Bob be married, but not to each other.
▶ Claim: After the DAA, Alice and Bob cannot prefer each

other to their match partners.
▶ If Bob prefers Alice to his match partner, then he must have

proposed to Alice before his match partner.
▶ If Alice accepted, yet ends up not married to him, then she

must have dumped him for someone she prefers
⇒ Alice doesn’t prefer Bob to her current partner.

▶ If Alice rejected Bob’s proposal, then she was already engaged
to someone she prefers to Bob. □
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Proof of Gale-Shapley Theorem

▶ Claim: With n men and n women, there are at most n2

possible ways men can propose.
▶ A each stage, one man proposes to someone to whom he has

never proposed before
▶ With n men and n women, there are n2 possible events
▶ In fact, the maximum number of DAA steps is n2 − 2n + 2.
▶ Exercise: Illustrate this for the cases n = 2 and n = 3.

(Solution is in class notes.)
▶ Al Roth found that the DAA was used to match interns to

hospitals. This was a major reason for:
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Ranking Stable Matchings

▶ Assume several stable matchings.
▶ The set of stable matchings is nonempty.
▶ x is a valid partner of y if they pair in some stable matching.
▶ In a male optimal matching, each man pairs with his best

valid partner.
▶ In a male pessimal matching, each man pairs with his worst

valid partner.
▶ Similarly define woman-optimal and woman-pessimal.
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The DAA Yields the Male Optimal Stable Allocation

Proposition (Male Optimality of DAA)
The DAA finds a male-optimal / female-pessimal stable matching.

12 / 89



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Men Optimal Implies Female Pessimal
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Unique Stable Outcomes

Corollary (Uniqueness)
The DAA produces the same matching, regardless of which side
proposes, if and only if there is a unique stable matching.
▶ If the stable matching is unique, then the DAA yields the

same result regardless of which side proposes.
▶ If the DAA yields the same result regardless of which side

proposes, then it is both optimal and pessimal for both sides,
and so is unique. □

14 / 89
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Three Stable Matchings, but two Outcomes from the DAA
x1 x2 x3

y1 5,5 6,2 2,6
y2 2,6 5,5 6,2
y3 6,2 2,6 5,5

▶ When men offer in the DAA, we get the male-optimal and
female pessimal matching, where men earn 6 and women 2.

▶ When women offer in the DAA, we get the female-optimal
and male pessimal matching, where women earn 6 and men 2.

▶ A third stable matching yields payoffs of 5 for everyone.

(Malibu usually gets what she wants)
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Cardinal Preferences

▶ Start with nontransferable payoffs (all in millions of dollars).
▶ This might be by organizational rule, eg. NCAA rules forbid

payoffs to athletes.

Lady Gaga Taylor Swift Beyonce
Billy Joel 6,21 12,12 18,3

Bruno Mars 4,14 8,8 12,2
Jay-Z 2,7 4,4 6,1

▶ Men commonly rank: Beyonce > Taylor Swift > Lady Gaga
▶ Women commonly rank: Billy Joel > Bruno Mars > Jay-Z
▶ DAA ends in three periods!
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Transferable Utility

▶ Assume cardinal payoffs (or cardinal utility) is money.
▶ Every man and woman cares only about total money
▶ This is a special case of quasi-linear utility, or utility

U(a, z) = u(a) + z, where a is a real action and z is money
▶ Quasi-linear utility precludes income effects on the action

17 / 89
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Transfers and Bribery

Lady Gaga’s Corrupt Thought:
▶ Gaga schemes to match up with Billy Joel. To do this, she

▶ bribes Billy more than his loss of 18 − 6 = 12 to accept her,
▶ pays Beyonce more than her loss of 3 − 1 = 2, and
▶ collects from Jay-Z less than his gain 6 − 2 = 4 from matching

with Billy
▶ These bribes on net cost as much as 12 + 2 − 4 = 10. But

Lady Gaga gains 21 − 7 = 14 by matching with Billy Joel.

Lady Gaga Taylor Swift Beyonce
Billy Joel 6,21 12,12 18,3

Bruno Mars 4,14 8,8 12,2
Jay-Z 2,7 4,4 6,1

18 / 89
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Fido Wonders if Money Helps for Matching Efficiency
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Making Matching Immune to Bribery

Only total match payoffs matter in the end with transfers.

Lady Gaga Taylor Swift Beyonce
Jay-Z 6 + 21 = 27 12 + 12 = 24 18 + 3 = 21

Bruno Mars 4 + 14 = 18 8+8=16 12 + 2 = 14
Billy Joel 2 + 7 = 9 4 + 4 = 8 6 + 1 = 7

20 / 89
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Making Matching Immune to Bribery

Only total match payoffs matter in the end with transfers.

Lady Gaga Taylor Swift Beyonce
Billy Joel 27 24 21

Bruno Mars 18 16 14
Jay-Z 9 8 7

20 / 89
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Making Matching Immune to Bribery

▶ A matching is immune to bribes if there is no set of
matched individuals for whom a profitable re-matching exists.

▶ An efficient matching maximizes the sum of payoffs.
Theorem An efficient matching is immune to bribes.

Lady Gaga Taylor Swift Beyonce
Billy Joel 27 24 21

Bruno Mars 18 16 14
Jay-Z 9 8 7
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Efficient Matching

▶ Matching Sudoku: Efficiently match n men to n women.
▶ = Place exactly one dot in every row and column

▶ Obviously, an efficient matching exists. But what is it?
▶ Problem: There are n! = 1 × 2 × · · · × n possible allocations.
▶ E.g. there are 10158 pairings of 100 men and 100 women.

The number of electrons in the universe is estimated at 1080.
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1781 — Transportation Problem: How Best to Move Dirt
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1781 — Transportation Problem: How Best to Move Dirt

▶ Holy Grail of Matching: Solving for the optimal matching in
general is too hard — for the transportation problem has been
long open, since Gaspard Monge (1781), Mémoire sur la
théorie des déblais et des remblais. De l’Imprimerie Royale.

▶ Father of differential geometry
▶ Assign unit dirt piles xi∈{x1, ..., xn} to holes yi∈{y1, ..., yn}

to minimize the sum of transportation costs c(xi, yj)?

23 / 89
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1781 — The Transportation Problem: How to Move Dirt

▶ Assume the cost of transporting earth from a cut (déblais) to
a fill (remblais) depends on the distance, roads, etc.

▶ c(x, y) = cost of moving dirt from déblais x to remblais y
▶ What is the cheapest way to transport all the earth from every

déblais to some other remblais, while omitting no déblais and
overfilling no remblais?

▶ As formulated, this is an impossible combinatorics exercise.
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1781 — The Transportation Problem

▶ Start with an n × n matrix of costs c(x, y)
▶ E.g: It costs 7 to move the dirt in déblais n − 1 to remblais 2

25 / 89
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1957: Transportation Problem as the Assignment Problem

▶ 160 years passes and linear programming is invented in WWII,
by many in USA (e.g. Dantzig) and Kantorovich in Russia
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1957: Transportation Problem as the Assignment Problem

▶ 160 years passes and linear programming is invented in WWII,
by many in USA (e.g. Dantzig) and Kantorovich in Russia
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1957: Transportation Problem as the Assignment Problem

▶ 160 years passes and linear programming is invented in WWII,
by many in USA (e.g. Dantzig) and Kantorovich in Russia
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1957: Transportation Problem as the Assignment Problem

▶ 160 years passes and linear programming is invented in WWII,
by many in USA (e.g. Dantzig) and Kantorovich in Russia
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www.academictree.org
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Socially Efficient Matching
▶ Finitely many women x and men y (from XX and XY)
▶ m(x, y) = 1 if x is matched to man y, and m(x, y) = 0 if not.
▶ The set M of feasible matchings [m(x, y)]

▶ symmetry: m(x, y) = m(y, x) for all x, y
▶ no overmatching: for every x, m(x, y) = 1 for at most one y.

▶ So a woman x remains single if m(x, y) = 0 for all y ∈ Y.
▶ Convexify the matching set:

▶ A fraction m(x, y) ≥ 0 of woman x to match with man y
▶ The matching is at most a doubly stochastic matrix

(nonnegative entries and unit row and columns sums)
▶ h(x, y) = output of match of man x and woman y (or h(x, y))
▶ An efficient matching m ∈ M maximizes the sum of all

match outputs
∑

x
∑

y m(x, y)h(x, y) over M

Proposition
An efficient matching m ∈ M exists.
▶ Proof: By Weierstrass Theorem, the maximum of a

continuous function on a compact set exists
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Competitive Equilibrium
▶ Payoffs: wages v(x) and w(y) to woman x and man y
▶ Price Competition Story. match makers compete to offer

wages v(x) and w(y) to men and women, and earn profits
h(x, y)− v(x)− w(y) for any match they intermediate

▶ Taking actions as given is in the spirit of Nash equilibrium!
▶ Free entry of match makers ⇒ profits ≤ 0 for all matches
▶ Free exit of match makers ⇒ profits ≥ 0 for all actual matches
▶ A competitive equilibrium (m,w, v) satisfies feasibility and:

▶ Free Entry: v(x) + w(y) ≥ h(x, y) for any (x, y)
▶ Free exit: v(x) + w(y) ≤ h(x, y) if m(x, y) > 0

⇒ v(x) + w(y)
{
≥ h(x, y) for all women and men x, y
= h(x, y) if x, y are matched

▶ By contrast, a free market allows market power, not insisting
on free entry of market makers, and thus matches that obtain
might embed rents. (See the lecture notes.)

30 / 89



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Competitive Equilibrium is Efficient
Proposition (First Welfare Theorem of Matching)
A competitive equilibrium (m, v,w) yields an efficient matching m.
▶ Proof: If a competitive equilibrium (m, v,w) is not efficient
⇒ some feasible matching m̂ ∈ M has a strictly higher payoff:∑

x
v(x) +

∑
y

w(y) ≥
∑

y

∑
x

h(x, y)m̂(x, y)

>
∑

y

∑
x

h(x, y)m(x, y)

=
∑

y

∑
x
[v(x) + w(y)]m(x, y)

=
∑

x
v(x) +

∑
y

w(y)

▶ The first inequality reflects
▶ free entry: For v(x) + w(y) ≥ h(x, y) for all (x, y)
▶ feasibility: 1 ≥

∑
x m̂(x, y) ∀y and 1 ≥

∑
y m̂(x, y) ∀x

▶ The equality assumes everyone matches. What if not? 31 / 89
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Contrast with Stable Matching
Y1 Y2

X1 2,0 0,7
X2 0,7 2,0

Y1 Y2

X1 2 7
X2 7 2

▶ At left, are the male and female optimal stable outcomes.
▶ The male optimal one yields higher total payoffs, but stability

only reflects ordinal and not cardinal preferences.
▶ If outside options are zero, wages obey v1, v2,w1,w2 ≥ 0 and:

v1 + w1 ≥ 2 v1 + w2 = 7
v2 + w1 = 7 v2 + w2 ≥ 2

▶ Crucially, there are many competitive equilibrium wages
▶ One set of equilibrium wages is v1 = 5, v2 = 0,w1 = 7,w2 = 2
▶ Prove that any efficient matching is stable, if the wages are

fixed as the match payoffs of the individuals.
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Trading Houses (Shapley and Shubik, 1971)

▶ We now explore an equivalent model to the assignment model
of Koopmans and Beckman

▶ I ≥ 1 sellers (homeowners) and J ≥ 1 prospective buyers.
▶ i-th seller values his house at (opportunity cost) ci > 0 dollars
▶ j-th buyer values i’s house at ξij > 0 dollars.
▶ If ξij > ci, and seller i to sell his house to buyer j for some

price pi dollars, then i’s payoff is exactly pi − ci and j’s payoff
is exactly ξij − pi (reflecting the quasilinear utility).

▶ Since seller i need not sell his house to buyer j, their match
payoff is

hij = max{0, ξij − ci}

33 / 89



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Primal Problem: Maximizing Total Gains from Trade

▶ Let seller i sell fraction mij ≥ 0 of house i to buyer j.
▶ Example: buying and selling “time shares” on condominiums.
▶ constraints on mij ≥ 0: no house can be oversold, and no

buyer can buy more than one house.

max
(mij)

I∑
i=1

J∑
j=1

hijmij

s.t.
J∑

j=1
mij ≤ 1 ∀i ∈ {1, . . . , I}

and
I∑

i=1
mij ≤ 1 ∀j ∈ {1, . . . , J}
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Dual Problem

Lemma
The dual problem to the output maximization is the cost
minimization:

min
vi,wj

I∑
i=1

vi+
J∑

j=1
wj s.t. vi+wj ≥ hij ∀i, j and vi,wj ≥ 0 ∀i, j

▶ So the cheapest way to afford all match output subject to
entry and free exit constraints of a competitive equilibrium
occurs at the efficient matching.

▶ two ways of measuring output — corresponding to gross
national product and gross national income — coincide at the
optimum.
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Linear Programming Duality

▶ Primal problem:

max{pz|Az ≤ q, z ≥ 0}

▶ Dual problem:

min{uq|uA ≥ p, u ≥ 0}

▶ Theorem: These two problems have the same values.
▶ Primal feasibility ⇒ Az ≤ q and dual feasibility ⇒ p ≤ uA.
▶ weak duality: pz ≤ uAz ≤ uq for all u, z ≥ 0
▶ So the value of the primal is at most the value of the dual.
▶ The reverse (strong) direction is harder to show.
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Linear Programming Duality as Deja Vu
▶ Flashback: von Neumann’s Minimax Theorem (Saddle Point)
▶ George Dantzig, “A Theorem on Linear Inequalities,” 1948 —

first formal proof of LP duality
▶ Air Force Later Tucker asked me, ”Why didn’t you publish

it?” I replied, ”Because it was not my result; it was von
Neumann’s. All I did was to write up, for internal circulation,
my own proof of what von Neumann had outlined to me.

▶ von Neumann and Dantzig:
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Ideal “PhD Conquer the World” Mindset
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Proof of Dual Solution Lemma
▶ Example with I = J = 2 buyers and sellers,

q′ = (1, 1, 1, 1)

h′ = (h11, h12, h21, h22)

m′ = (m11,m12,m21,m22)

A =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


▶ Primal:

∑
i
∑

j hijmij = maxm≥0 h′m s.t. Am ≤ q
▶ Dual:

min
w,v≥0

{v1+v2+w1+w2} = min
v,w≥0

(v,w)·q s.t. (v,w)·A ≥ h □
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Multipliers and Complementary Slackness Conditions
▶ Primal: max{pz|Az ≤ q, z ≥ 0}
▶ Dual: min{uq|uA ≥ p, u ≥ 0}
▶ Fictitious zero sum game with payoff L(z, u) = pz + uq − uAz
▶ By the 1928 Minmax Theorem, this game has saddle point:

max
z≥0

min
u≥0

[pz + uq − uAz] = min
u≥0

max
z≥0

[pz + uq − uAz] (⋆)

▶ A finite saddle point requires p − uA ≤ 0 ≤ q − Az
⇒ zℓ = 0 when pℓ − (uA)ℓ < 0, and uk=0 when qk − (Az)k > 0.
▶ Complementary slackness & (⋆) ⇒ primal value = dual value
▶ Application of complementary slackness in Shapley-Shubik:

vi + wj

{
≥ hij for all i, j
= hij if buyer xi and seller yj trade (mij > 0)
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Multipliers as Shadow Values
▶ Primal: max{pz|Az ≤ q, z ≥ 0}
▶ Social planner’s payoff function: L(z, u) = pz + u(q − Az)
▶ Envelope Theorem ⇒ ∂

∂qL(z, u) = u
⇒ dq extra constrained resource lifts planner’s payoff by u dq.

▶ u = shadow value of resource, as it indirectly shows true value
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Multipliers as Shadow Values
▶ Primal: max{pz|Az ≤ q, z ≥ 0}
▶ Social planner’s payoff function: L(z, u) = pz + u(q − Az)
▶ Envelope Theorem ⇒ ∂

∂qL(z, u) = u
⇒ dq extra constrained resource lifts planner’s payoff by u dq.

▶ u = shadow value of resource, as it indirectly shows true value
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Shadow Values in Shapley-Shubik Housing Model
▶ Application of complementary slackness in Shapley-Shubik:

vi + wj

{
≥ hij for all i, j
= hij if buyer xi and seller yj trade (mij > 0)

▶ buyer i and seller j trade ⇒ gains from trade hij
▶ So ε more of i and j raises social payoff by εhij

⇒ All we can say is vi + wj = hij
▶ “It takes two to tango…but who matters more?”

▶ We cannot separately identify buyers’ & sellers’ shadow values

42 / 89
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Shadow Values in Shapley-Shubik Housing Model
▶ Application of complementary slackness in Shapley-Shubik:

vi + wj

{
≥ hij for all i, j
= hij if buyer xi and seller yj trade (mij > 0)

▶ buyer i and seller j trade ⇒ gains from trade hij
▶ So ε more of i and j raises social payoff by εhij

⇒ All we can say is vi + wj = hij
▶ “It takes two to tango…but who matters more?”

▶ We cannot separately identify buyers’ & sellers’ shadow values
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Shadow Values in Shapley-Shubik Housing Model
▶ Application of complementary slackness in Shapley-Shubik:

vi + wj

{
≥ hij for all i, j
= hij if buyer xi and seller yj trade (mij > 0)

▶ buyer i and seller j trade ⇒ gains from trade hij
▶ So ε more of i and j raises social payoff by εhij

⇒ All we can say is vi + wj = hij
▶ “It takes two to tango…but who matters more?”

▶ We cannot separately identify buyers’ & sellers’ shadow values
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1971 — Buyer-Seller Trade: Shapley and Shubik

▶ Assume three potential home buyers and three sellers
Buyer Valuations

Seller Costs Buyer 1 Buyer 2 Buyer 3
House 1 18 23 26 20
House 2 15 22 24 21
House 3 19 21 22 17

▶ Match payoffs now are gains from trade, or zero, if negative:
Buyer 1 Buyer 2 Buyer 3

Seller 1 23 − 18 = 5 26 − 18 = 8 20 − 18 = 2
Seller 2 22 − 15 = 7 24 − 15 = 9 21 − 15 = 6
Seller 3 21 − 19 = 2 22 − 19 = 3 max(17 − 19, 0) = 0

43 / 89
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1971 — Buyer-Seller Trade: Shapley and Shubik

▶ Assume three potential home buyers and three sellers
Buyer Valuations

Seller Costs Buyer 1 Buyer 2 Buyer 3
House 1 18 23 26 20
House 2 15 22 24 21
House 3 19 21 22 17

▶ Match payoffs now are gains from trade, or zero, if negative:
Buyer 1 Buyer 2 Buyer 3

Seller 1 5 8 2
Seller 2 7 9 6
Seller 3 2 3 0
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1971 — Buyer-Seller Trade: Shapley and Shubik

▶ Assume three potential home buyers and three sellers
Buyer Valuations

Seller Costs Buyer 1 Buyer 2 Buyer 3
House 1 18 23 26 20
House 2 15 22 24 21
House 3 19 21 22 17

▶ Match payoffs now are gains from trade, or zero, if negative:
Buyer 1 Buyer 2 Buyer 3

Seller 1 5 8 2
Seller 2 7 9 6
Seller 3 2 3 0

▶ gains from trade are the match payoffs

43 / 89
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Solving the Housing Example
▶ Minimize the sum of shadow values

∑
i vi +

∑
j wj subject to

vi ≥ 0 and wj ≥ 0 as well as

v1 + w1 ≥ 5 v1 + w2 ≥ 8 v1 + w3 ≥ 2
v2 + w1 ≥ 7 v2 + w2 ≥ 9 v2 + w3 ≥ 6
v3 + w1 ≥ 2 v3 + w2 ≥ 3 v3 + w3 ≥ 0

▶ Since the optimum occurs at the red matching, we just solve

v1 + w1 ≥ 5 v1 + w2 = 8 v1 + w3 ≥ 2
v2 + w1 ≥ 7 v2 + w2 ≥ 9 v2 + w3 = 6
v3 + w1 = 2 v3 + w2 ≥ 3 v3 + w3 ≥ 0

▶ a solution: (v1, v2, v3) = (4, 5.5, 0) & (w1,w2,w3) = (2, 4, 0.5)
⇒ home prices are pi = ci + vi, or p1 = 22, p2 = 20.5, p3 = 19
▶ Example: seller 1 sells his home (cost 18) to buyer 2 (who

values it at 26) for a seller surplus v1 = 4 and a buyer surplus
w2 = 4: from this, we deduce the price p1 = 22
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An Integer Price Solution of the Housing Example

y1 y2 y3 Seller “wage” vi
Seller 1 5 8 2 v1 = 4
Seller 2 7 9 6 v2 = 6
Seller 3 2 3 0 v3 = 0

Buyer “wage” w1 = 2 w2 = 4 w3 = 0
▶ We increase the price of home 2 to p2 = 21, increasing the

surplus of seller 2 to v2 = 6 and reducing the surplus of
buyer 3 to w3 = 0.

▶ So house prices are now p1 = 22, p2 = 21, p3 = 19
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Worst Payoffs (“Wages”) for Sellers
y1 y2 y3 Sellers vi

Seller 1 5 8 2 v1 = 3
Seller 2 7 9 6 v2 = 5
Seller 3 2 3 0 v3 = 0
Buyers w1 = 2 w2 = 5 w3 = 1

▶ Buyer 1 does not buy house 1 ⇒ v1 ≥ v3 + 3
▶ Proof: w1 + v1≥5=3+ 2=3+w1 + v3 (Buyer 1 buys house 3)

▶ Buyer 1 does not buy house 2 ⇒ v2 ≥ v3 + 5
▶ Proof: w1 + v2≥7=5 + 2=5 + w1 + v3

▶ All other buying incentive constraints do not bind as tightly
▶ Solution: Least seller payoffs (v1, v2, v3) = (3, 5, 0)
▶ Associated maximum buyer payoffs (w̄1, w̄2, w̄3) = (2, 5, 1)

▶ Proof: Equality constraints from matches that do occur imply:
v1 + w̄2 = 8, v2 + w̄3 = 6, v3 + w̄1 = 2

▶ Then verify that payoffs (v, w̄) obey all incentive constraints!
46 / 89



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Worst Payoffs (“Wages”) for Buyers
y1 y2 y3 Sellers vi

Seller 1 5 8 2 v1 = 5
Seller 2 7 9 6 v2 = 6
Seller 3 2 3 0 v3 = 1
Buyers w1 = 1 w2 = 3 w3 = 0

▶ Buyer 1 does not buy house 2 ⇒ w1 ≥ w3 + 3
▶ Proof: w1 + v2≥7=1+ 6=1+w3 + v2 (Buyer 3 buys house 2)

▶ Buyer 2 does not buy house 2 ⇒ w2 ≥ w3 + 3
▶ Proof: w2 + v2≥9=3 + 6=3 + w3 + v2

▶ All other buying incentive constraints do not bind as tightly
▶ Solution: Least buyer payoffs (w1,w2,w3) = (1, 3, 0)
▶ Associated maximum seller payoffs (v̄1, v̄2, v̄3) = (5, 6, 1)

▶ Proof: Equality constraints from matches that do occur imply:
v̄1 + w2 = 8, v̄2 + w3 = 6, v̄3 + w1 = 2

▶ Then verify that payoffs (v, w̄) obey all incentive constraints!
47 / 89



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Welfare Theorems and Stigler’s Proviso

Welfare Theorems A competitive equilibrium yields an efficient
matching. Conversely, an efficient matching is a competitive
equilibrium, for a suitable set of wages.
▶ Proof: We use linear programming duality.
▶ Consider the optimization of output, subject to the linear

constraints of not overmatching any man or woman.
▶ The multipliers for these constraints are the wages.
▶ Duality: the maximum total output equals the minimum total

wages, subject to all the competitive incentive constraints.
▶ This resolves the horrific complexity issue — we need only

find n wages for men and n for women!
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Who Matches with Whom: Becker’s Marriage Model

▶ This paper argued to a large audience that matching was
economically important.

▶ The paper then (re-) derived the welfare theorems for
matching with transfers (unaware of Shapley and Shubik)

▶ The paper’s highlight was a simple description of the efficient
allocation of matching with transfers.
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Positive Sorting is an Empirical Fact

Fun Application (Yale 2006): The Dating Market
▶ Data Source 1: Facebook
▶ Data Source 2: Online beauty contest, such as

www.rankmyphotos.com
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General Type Distributions on Men and Women
▶ Allow now a continuum of men and women.

▶ Assume cdfs M for women and N for men
▶ M(x) gives the mass of women of type x′ ≤ x
▶ N(y) gives the mass of men of type y′ ≤ y

▶ let M̄, N̄ (respectively) be the total mass of men, women
▶ Let man y(x) be the partner of woman x, if she is matched.
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Assortative Matching: Basic Definitions
▶ Example: Easy finite terms, say with 50 men and 100 women.
⇒ men are on the long side of the market and women on the

short side of the market
▶ positive assortative matching (PAM): woman k with

man k, for k = 1, 2, . . . , 50, and men 51, . . . , 100 unmatched
▶ negative assortative matching (PAM): woman k with

man 51 − k, for k = 1, . . . , 50, & men 51, . . . , 100 unmatched
▶ Now consider the continuum analogues:
▶ PAM if M̄ − M(x) = N̄ − N(y(x)) for all matched women x.
▶ NAM if M̄ − M(x) = N(y(x)) for all matched women x.
▶ This definition allows for either women or men to be

unmatched, since the mass of men and women might differ
▶ If M̄ = N̄, normalize M̄ = N̄ = 1, and think of quantiles:

▶ The q-th highest quantile man matches with the q-th highest
quantile woman if there is PAM

▶ The q-th highest quantile man is matched with the q-th lowest
quantile woman if there is NAM
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NTU Payoff Conditions for Assortative Matching

▶ Without transfers (NTU):
▶ f(y|x) = payoff of woman x matched with man y,
▶ g(x|y) = payoff of man y matched with woman x

▶ f, g are comonotone if ∀y2 > y1 and x2 > x1,

[f(y2|x)− f(y1|x)] · [g(x2|y)− g(x1|y)] > 0 ∀x, y

▶ The opposite inequality is reverse comonotone
▶ If f and g are differentiable, then both partial derivatives (in

first arguments) have the same sign if comonotone
▶ Theorem: The unique stable matching with NTU is PAM if f

and g are comonotone, and NAM if reverse comonotone.
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Proof of NTU Sorting Proposition

▶ Assume comonotonicity and but a stable match is not PAM
▶ Then ∃x′ > x and y′ > y with matches (x, y′) and (x′, y)
▶ Claim: either (x′, y′) or (x, y) is a blocking pair
▶ First case: f(y′|x′) > f(y|x′) ⇒ g(x′|y′) > g(x|y′)
▶ Second case: f(y′|x) < f(y|x) ⇒ g(x′|y) < g(x|y)
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1973 — Becker’s Marriage Model

x = 1 x = 2 x = 3
y = 3 6,21 12,12 18,3
y = 2 4,14 8,8 12,2
y = 1 2,7 4,4 6,1

1 2 3
3 27 24 21
2 18 16 14
1 9 8 7

▶ At left is positive assortative matching (PAM)
▶ Since men prefer higher women x and women prefer higher men y,

the stable matching without transfers is PAM.
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1973 — Becker’s Marriage Model

x = 1 x = 2 x = 3
y = 3 6,21 12,12 18,3
y = 2 4,14 8,8 12,2
y = 1 2,7 4,4 6,1

1 2 3
3 27 24 21
2 18 16 14
1 9 8 7

▶ At right is negative assortative matching (NAM)
▶ Why? Matches all profit from higher men, but the matches that

profit most from higher men are those with lower women.
▶ This forces downward sorting.
▶ For instance, rematching the two sorted pairs (1, 1) and (2, 2) as

(1, 2) and (2, 1) changes output by (18+8)−(16+9) = 26−25 = 1
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Pairwise Efficiency and Efficiency
▶ A matching m is pairwise efficient with TU if for all

matched pairs (x1, y1) and (x2, y2):

h(x1, y1) + h(x2, y2)− h(x1, y2)− h(x2, y1) ≥ 0

▶ This is the analogue of the stability criterion with NTU, but it
also measures the strength of the preferences

▶ If this fails, then rematching to (x1, y2) and (x2, y1) undoes
the original matching with side payments.

▶ With NTU, losses of dumped partners do not matter
▶ An efficient matching maximizes the sum of all match

outputs, and so rematching any set of couples cannot help.
Lemma
Any efficient matching m ∈ M is pairwise efficient.
▶ The converse of this lemma is false
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Pairwise Efficiency ̸⇒ Efficiency

y1 y2 y3

x1 3 3 0
x2 0 3 3
x3 2 0 3

▶ The pairwise efficient green matching has a lower total payoff
than the pairwise efficient cyan matching, and is inefficient.

▶ Q: What bribery scheme would unravel the green matching?
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1973 — Strategic Substitutes Drives Negative Sorting
1 2 3

3 27 24 21
2 18 16 14
1 9 8 7

Cross Partial Payoff Differences (Synergies)

12 23
23 18 + 24 − 27 − 16 = −1 16 + 21 − 14 − 24 = −1
12 9 + 16 − 18 − 8 = −1 8 + 14 − 16 − 7 = −1

▶ Strategic substitutes:
▶ all cross partial differences of match payoffs are negative
▶ pairwise efficiency ⇒ positive sorting is not locally efficiency

▶ Strategic complements:
▶ all cross partial differences of match payoffs are positive
▶ pairwise efficiency ⇒ negative sorting is not locally efficiency
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1973 — Strategic Substitutes Drives Negative Sorting

NTU Matching TU Matching
x = 1 x = 2 x = 3

y = 3 6,21 12,12 18,3
y = 2 4,14 8,8 12,2
y = 1 2,7 4,4 6,1

1 2 3
3 27 24 21
2 18 16 14
1 9 8 7

▶ Left: payoffs are men get 2xy and women get y(10 − 3x).
▶ Men’s payoffs 2xy increases in women’s type x
▶ Women’s payoffs y(10 − 3x) increases in men’s type y
▶ ⇒ PAM is the stable allocation without transfers

▶ Right: match payoffs are 2xy + y(10 − 3x) = 10y − xy.
▶ Cross partial derivative is −1
▶ ⇒ strategic substitutes
▶ ⇒ NAM
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Becker (1973): Assortative Matching with Transfers
▶ The match function h(x, y) is (strictly) supermodular if

h(x′, y′) + h(x, y) ≥ (>) h(x′, y) + h(x, y′) (1)

for any pair of women x′ ≥ x and men y′ ≥ y.
▶ h(x, y) is (strictly) submodular if the reverse inequality holds
▶ For twice differentiable match payoffs, this says h12(x, y) ≥ 0

Proposition (Becker’s Marriage Model)
(a) If production is supermodular, then PAM is efficient.
If it is strictly supermodular, then PAM is uniquely efficient.
(b) If production is submodular, then NAM is efficient.
If it is strictly submodular, then NAM is uniquely efficient.
(c) If production is modular, then any matching is efficient.
▶ Proof (by Buz Brock): Assume strictly supermodular
▶ Then not PAM is not pairwise efficient, and so not efficient.
▶ Corollary: If production is modular for a set of agents that

match, then any re-matching among them is also efficient.
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Becker (1973): Assortative Matching with Transfers
▶ The match function h(x, y) is (strictly) supermodular if

h(x′, y′) + h(x, y) ≥ (>) h(x′, y) + h(x, y′) (1)

for any pair of women x′ ≥ x and men y′ ≥ y.
▶ h(x, y) is (strictly) submodular if the reverse inequality holds
▶ For twice differentiable match payoffs, this says h12(x, y) ≥ 0

Proposition (Becker’s Marriage Model)
(a) If production is supermodular, then PAM is efficient.
If it is strictly supermodular, then PAM is uniquely efficient.
(b) If production is submodular, then NAM is efficient.
If it is strictly submodular, then NAM is uniquely efficient.
(c) If production is modular, then any matching is efficient.

▶ Proof (by Buz Brock): Assume strictly supermodular
▶ Then not PAM is not pairwise efficient, and so not efficient.
▶ Corollary: If production is modular for a set of agents that

match, then any re-matching among them is also efficient.
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Becker (1973): Assortative Matching with Transfers
▶ The match function h(x, y) is (strictly) supermodular if

h(x′, y′) + h(x, y) ≥ (>) h(x′, y) + h(x, y′) (1)

for any pair of women x′ ≥ x and men y′ ≥ y.
▶ h(x, y) is (strictly) submodular if the reverse inequality holds
▶ For twice differentiable match payoffs, this says h12(x, y) ≥ 0

Proposition (Becker’s Marriage Model)
(a) If production is supermodular, then PAM is efficient.
If it is strictly supermodular, then PAM is uniquely efficient.
(b) If production is submodular, then NAM is efficient.
If it is strictly submodular, then NAM is uniquely efficient.
(c) If production is modular, then any matching is efficient.
▶ Proof (by Buz Brock): Assume strictly supermodular
▶ Then not PAM is not pairwise efficient, and so not efficient.
▶ Corollary: If production is modular for a set of agents that

match, then any re-matching among them is also efficient.
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Example: Matching with and without Transfers
PAM NAM

x = 1 x = 2 x = 3
y = 3 6,21 12,12 18,3
y = 2 4,14 8,8 12,2
y = 1 2,7 4,4 6,1

1 2 3
3 27 24 21
2 18 16 14
1 9 8 7

▶ Men earn f(x|y) = 2xy and women earn g(y|x) = y(10 − 3x)
⇒ ∂f(y|x)

∂x = 2x > 0 (men prefer higher women)
∂g(x|y)

∂y = 10 − 3x > 0 (women prefer higher men)
⇒ unique stable matching is PAM
⇒ Hence, the DAA delivered PAM

▶ With transfers, match payoffs are strictly submodular:
h(x, y) = f(x|y) + g(y|x) = 2xy + y(10 − 3x) = 10y − xy

⇒ unique efficient matching is NAM
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Example: Matching with and without Transfers
PAM NAM

x = 1 x = 2 x = 3
y = 3 6,21 12,12 18,3
y = 2 4,14 8,8 12,2
y = 1 2,7 4,4 6,1

1 2 3
3 27 24 21
2 18 16 14
1 9 8 7

▶ Men earn f(x|y) = 2xy and women earn g(y|x) = y(10 − 3x)
⇒ ∂f(y|x)

∂x = 2x > 0 (men prefer higher women)
∂g(x|y)

∂y = 10 − 3x > 0 (women prefer higher men)
⇒ unique stable matching is PAM
⇒ Hence, the DAA delivered PAM
▶ With transfers, match payoffs are strictly submodular:

h(x, y) = f(x|y) + g(y|x) = 2xy + y(10 − 3x) = 10y − xy
⇒ unique efficient matching is NAM
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How to Find Competitive Wages without Duality
▶ An Illustrative Example:

▶ Match payoffs: h(x, y) = x2y
▶ Types: women x and men y uniformly distributed on [0, 1]

▶ Since h12 = 2x > 0, PAM is the efficient outcome
▶ Notice the cheat here: we are using Becker’s PAM solution of

the primal problem in the special case with PAM payoffs
▶ Let w(x) and v(y) be the competitive wage functions
▶ If the matchmaker pairs up x and y (paying them their wages

but keeping the surplus), his profits are:
π(x, y) = x2y − w(x)− v(y)

▶ Competition among match makers forces a zero profit
maximum at y = x (by PAM):

∂π

∂x = 0 ⇒
[
2xy = w′(x)

]
y=x ⇒ w′(x) = 2x2

∂π

∂y = 0 ⇒
[
x2 = v′(y)

]
x=y ⇒ v′(y) = y2
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Finding Competitive Wages, Continued
▶ Evaluating these at the efficient matches, (x, x) and (y, y),

w(x) =
2
3x3 + β

v(y) =
1
3y3 + δ

▶ By zero profits, π(x, x) = 0 ∀x, and so β + δ = 0 because

0 = x2 · x − w(x)− v(x) = x3 − 2
3x3 − 1

3x3 − (β + δ)

▶ If unmatched pays everyone zero, then all wages must be
nonnegative, and so β = δ = 0

▶ A dowry δ > 0 — a fixed transfer that women pay men —
only arises if unmatched women earn a payoff at most −δ < 0

▶ A bride price β > 0 — a fixed transfer that men pay women
— only arises if unmatched men earn a payoff ≤ −β < 0

▶ If both unmatched men and women earn negative payoffs,
then a dowry or bride price will simply reflect a social norm
(i.e. a Nash equilibrium)
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Assortative Matching and Search (Shimer-Smith, 2000)
▶ There is no stock exchange for marriage partners, firm-worker

pairs, etc. Search frictions matter ⇒ Higher types might
settle for lower parters because the cost of search is higher.

▶ With search frictions, PAM requires that log hx(x, y) is SPM
▶ Eg: Matching with h(x, y) = (x + y − 1)2 and h(x, y) = exy:
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The Comparative Statics of Sorting (current)

▶ We only fully understand two extreme cases: PAM or NAM.
▶ Since the transportation problem is not solved, we cannot

characterize who matches with whom in any other case
▶ With my former PhD advisee Axel Anderson, we relate sorting

to synergies: the cross partial differences of match output

h(x2, y2)− h(x2, y1) + h(x1, y2)− h(x1, y2)

when x2 ≥ x1, y2 ≥ y1
▶ If synergy is not always positive or always negative, then

Becker’s Theorem is silent on who matches with whom.
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How to Mathematically Formaluate that Sorting Increases

▶ Measure how sorting increases from NAM to PAM with the
positive quadrant dependence (PQD) order on matches
— namely, the mass of matches (x, y) ≥ (x0, y0) and
(x, y) ≤ (x0, y0) increases, ∀(x0, y0)
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All Pure Matchings with Three Types

▶ PQD is a partial order, ≻PQD. For example,

PQD ≻PQD {NAM1, NAM3} ≻PQD {PAM2, PAM4} ≻PQD NAM
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Sorting Does not Rise in Cross Differences
▶ Increasing Sorting Theorem

Sorting is higher with production function hB than hA if
▶ synergy is higher with hB than hA, for every x2 ≥ x1, y2 ≥ y1
▶ For every x2 ≥ x1, y2 ≥ y1, the synergy for each hi obeys:

hi(x2, y2)− hi(x2, y1) + hi(x1, y2)− hi(x1, y2)

shifts from negative to positive as x1 or x2 or y1 or y2 increases.
NAM1 is efficient

x = 1 x = 2 x = 3
y = 3 9 14 18
y = 2 5 2 14
y = 1 1 5 9

Matrix of Cross Differences

8 −8
−7 8
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Sorting Does not Rise in Cross Differences
▶ Increasing Sorting Theorem

Sorting is higher with production function hB than hA if
▶ synergy is higher with hB than hA, for every x2 ≥ x1, y2 ≥ y1
▶ For every x2 ≥ x1, y2 ≥ y1, the synergy for each hi obeys:

hi(x2, y2)− hi(x2, y1) + hi(x1, y2)− hi(x1, y2)

shifts from negative to positive as x1 or x2 or y1 or y2 increases.
NAM3 is efficient

x = 1 x = 2 x = 3
y = 3 9 16 24
y = 2 5 3 16
y = 1 1 5 9

Matrix of Cross Differences

9 −5
−6 9
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Sorting Does not Rise in Cross Differences
▶ Increasing Sorting Theorem

Sorting is higher with production function hB than hA if
▶ synergy is higher with hB than hA, for every x2 ≥ x1, y2 ≥ y1
▶ For every x2 ≥ x1, y2 ≥ y1, the synergy for each hi obeys:

hi(x2, y2)− hi(x2, y1) + hi(x1, y2)− hi(x1, y2)

shifts from negative to positive as x1 or x2 or y1 or y2 increases.
NAM1 is efficient

x = 1 x = 2 x = 3
y = 3 9 20 30
y = 2 5 6 20
y = 1 1 5 9

Matrix of Cross Differences

10 −4
−3 10
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Sorting Does not Rise in Cross Differences
▶ Increasing Sorting Theorem

Sorting is higher with production function hB than hA if
▶ synergy is higher with hB than hA, for every x2 ≥ x1, y2 ≥ y1
▶ For every x2 ≥ x1, y2 ≥ y1, the synergy for each hi obeys:

hi(x2, y2)− hi(x2, y1) + hi(x1, y2)− hi(x1, y2)

shifts from negative to positive as x1 or x2 or y1 or y2 increases.
NAM3 is efficient

x = 1 x = 2 x = 3
y = 3 9 22 36
y = 2 5 7 22
y = 1 1 5 9

Matrix of Cross Differences

11 −1
−2 11
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Sorting in the Trade Paradigm

▶ Becker Marriage model applies to the Shapley-Shubik model
▶ The match payoff is hij = max{0, ξij − ci} when buyer j values

seller i’s house at ξij
▶ If hij is supermodular, then there is sorting among traders.
▶ We now shift to a world with homogenous houses
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Double Auctions

▶ We now relax Shapley-Shubik’s double coincidence of wants
▶ The housing assignment model with homogeneous houses ⇝

double auction model
▶ Buyer j’s values all goods at ξj, so that ξij = ξj for all i
▶ h(ξ, c) ≡ max{0, ξ − c} are the gains from trade for a buyer

with value ξ and a seller with cost c.
▶ Efficiency: maximize total trade surplus

∑
i
∑

j mijh(ξj, ci),
where mij = 1 if seller i sells to buyer j, and mij = 0 otherwise.

▶ Shapley-Shubik: the sum of the shadow values of seller and
buyer trading is the match output, vi + wj = hij if mij > 0.

▶ The price pi divides this surplus between matched traders
▶ producer surplus: vi = pi − ci
▶ consumer surplus: wj = ξij − pi = ξj − pi
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The Trade Surplus Function is Submodular
Lemma (Trade Surplus Function)
The trade surplus function h is submodular: If ξ′ ≤ ξ′′ and c′ ≤ c′′,
then h(ξ′′, c′′) + h(ξ′, c′) ≤ h(ξ′′, c′) + h(ξ′, c′′), with strict
inequality iff ξ′ < c′ < c′′ < ξ′′ or c′ < ξ′ < ξ′′ < c′′.

Proof:

. ▶ Case A: Here, two trades should occur, and
h(ξ′′, c′′) + h(ξ′, c′) = h(ξ′, c′′) + h(ξ′′, c′) = ξ′′ + ξ′ − c′ − c′′.

▶ Case B: Here, one trade should happen, and
h(ξ′′, c′′) + h(ξ′, c′) = ξ′′ − c′′ ≤ ξ′′ − c′ = h(ξ′, c′′) + h(ξ′′, c′).
Case C: Here, one trade should happen, and
h(ξ′′, c′′) + h(ξ′, c′) = ξ′ − c′ ≤ ξ′′ − c′ = h(ξ′, c′′) + h(ξ′′, c′).

▶ Case D: Here, no trade should happen, and
h(ξ′′, c′′) + h(ξ′, c′) = h(ξ′, c′′) + h(ξ′′, c′) = 0.

▶ Inequalities are strict if c′ < c′′ and ξ′ < ξ′′, since trade
surplus falls when the wrong good is traded. □
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The Trade Surplus Function is Submodular
Lemma (Trade Surplus Function)
The trade surplus function h is submodular: If ξ′ ≤ ξ′′ and c′ ≤ c′′,
then h(ξ′′, c′′) + h(ξ′, c′) ≤ h(ξ′′, c′) + h(ξ′, c′′), with strict
inequality iff ξ′ < c′ < c′′ < ξ′′ or c′ < ξ′ < ξ′′ < c′′.
Proof:

. ▶ Case A: Here, two trades should occur, and
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The Supply and Demand Paradigm

▶ The highest value buyers trade with the lowest cost sellers.
▶ Rank order buyers: ξ1 < · · · < ξk < ξk+1 < · · · < ξN
▶ Rank order sellers: c1 < · · · < ck < ck+1 < · · · < cN
▶ Intuitively, the stronger/higher buyers have high values, but

the stronger/higher sellers have low costs
▶ Since h(ξ, c) is submodular, by Becker’s Marriage Theorem,

NAM arises: high value buyers trade with low cost sellers.
▶ Also, since h(ξ, c) is modular matching among agents trading,

and among those not trading:
▶ Matching among those trading sellers and buyers is irrelevant.
▶ Matching among sellers and buyers not trading is irrelevant.
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Matching Model is a Foundation for Supply and Demand

74 / 89



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Competitive Equilibrium in a Double Auction

Proposition (Double Auctions)
(a) If ξN < c1, there is no trade. Assume c1 ≤ ξN henceforth.
(b) The k∗ highest value buyers purchase from the k∗ lowest cost
sellers, where k∗ is the largest k with ck ≤ ξN+1−k.
(c) The law of one price holds, with a common price

p∗ ∈ [max(ck∗ , ξN−k∗),min(ck∗+1, ξN+1−k∗)]

(d) Any competitive equilibrium is efficient, and therefore
maximizes the sum of gains from trade.
(e) The final allocation is immune to side bribes.
▶ When supply balances demand, we say markets clear
▶ To understand deviations from the law of one price, which we

see everywhere, one really needs to add search frictions to the
model (as I teach in advanced theory).
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Is There One Price? What is it?
▶ Proof of (c): The social planner equally values buyer j’s

shadow value wj = ξj − pi > 0 in any optimal trade, namely
from low cost sellers i, by the Becker Marriage Theorem

⇒ Seller prices pi cannot vary with i, assuming they trade
▶ The price p∗ encourages last transaction: ck∗ ≤ p∗ ≤ ξN+1−k∗

▶ The price p∗ deters another transaction: ξN−k∗ ≤ p∗ ≤ ck∗+1
▶ Hence, crossing of supply and demand determines quantity:

max(ck∗ , ξN−k∗) ≤ p ≤ min(ck∗+1, ξN+1−k∗)

▶ The competitive price is not pinned down unless the last trade
yields no surplus, whereupon the last unit needn’t be traded

▶ “Walrasian auctioneer” secures a competitive equilibrium by
raising the price with excess demand and reducing the price
with excess supply

▶ Opening stock market prices are set to clear the market
76 / 89
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Beyond Unit Supply and Demand: Limit Orders

▶ The same can be done to construct the supply curve.
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Overnight Market in Stock Exchanges

▶ To open/close, many stock exchanges use single price double
auction

▶ The buyer must ask for a limit order (my choice) or a market
order (limit order with unspecified price)
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Double Auction Example
▶ Consider 20 agents, numbered from 1 to 20
▶ Even agents are buyers, and odd agents are sellers
▶ Buyer valuations are ξi = 2i and sellers costs are cj = 3j.
▶ Ordering the valuations from high to low:

40, 36, 32, 28, 24, 20, 16, 12, 8, 4
▶ Ordering costs from low to high:

3, 9, 15, 21, 27, 33, 39, 45, 51, 57
▶ An efficient matching clears the market: the high value buyers

and low cost sellers ⇒ k∗ = 4 (but actual pairing irrelevant)
▶ The price p∗ encourages the value 28 buyer and cost 21 seller

to trade:
21 ≤ p∗ ≤ 28

▶ The price p∗ deters the value 24 buyer and cost 27 seller from
trading:

24 ≤ p∗ ≤ 27
▶ any price in the interval [24, 27] clears the market 79 / 89
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Gains from Trade

▶ All traders earn positive surplus: e.g. at p∗ = 25, the marginal
buyer earns 28 − 25 = 3 and the marginal seller 25 − 21 = 4
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Gains from Trade

▶ Heterogeneity is good and the source of all gains from trade.
▶ If everyone had identical valuations, then no consumer secures

consumer surplus at the market clearing price
▶ the more heterogeneous are consumers or producers, the larger

the total gains from trade.
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How Paternalism Reduces Gains from Trade

▶ Example: Volunteer vs. Draft Army
▶ A volunteer army maximizes gains from trade: it sets a wage

so that the people who most want to serve willingly do so.
▶ Milton Friedman’s opposition the Draft helped end it in 1973.

▶ Example: Regifting and scalping
▶ U.S. Ticket Resale Laws vary hugely (my advisee Axel

Anderson and football tix)
▶ Jay Leno’s freely gave away Tonight Show tickets to

unemployed in Detroit in 2009. People tried resold tickets on
eBay and Leno objected.

▶ Example: Gift giving often means value < cost
▶ Waldfogel (1993), “The Deadweight Loss of Christmas’
▶ Lost surplus was about ten billion dollars per holiday season!
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How Paternalism Reduces Gains from Trade

▶ Example: Volunteer vs. Draft Army
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▶ Milton Friedman’s opposition the Draft helped end it in 1973.
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eBay and Leno objected.
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Application to Market Power: Seller’s or Buyer’s Cartel
▶ Question: What if all sellers form a cartel?
▶ Buyer valuations are vi = 2i and sellers costs are cj = 3j.
▶ Buyer valuations: 40, 36, 32, 28, 24, 20, 16, 12, 8, 4
▶ Seller costs: 3, 9, 15, 21, 27, 33, 39, 45, 51, 57
▶ Now: Cartel — not impartial auctioneer — sets the price p
▶ Sellers choose quantity n to maximize profits

max
n

{
n∑
j
(p − cj)|v20−n ≥ p}

▶ Example: Workers sell their unit supply of labor.
▶ If buyers act competitively, then intuitively sellers no longer

take the price as given, but set the wage
▶ Market power ⇔ one side of the market influences the price
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Market Power: A Union of Sellers
▶ Solution: use calculus, by assuming a continuous quantity
▶ The marginal buyer’s value, or demand curve, is v(Q)

▶ Demand curve falls if low Q buyers have high values
▶ The marginal seller’s price, or the supply curve, is c(Q)

▶ The seller cartel’s producer surplus PS(Q) is the area over
supply curve on [0,Q] under c(Q)
▶ Producer surplus slope PS′(Q) = Qc′(Q)
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Market Power: Seller’s Cartel (Union of Workers)
▶ The union’s profits are Π(Q) = PS(Q) + Q[v(Q)− c(Q)]
▶ Second term is a pure rent, namely, a payment over and

above that needed to keep all sellers trading
▶ Cartel demands a wage v(Q) from the buyers for quantity Q
▶ Maximum union profits imply the FOC:

0 = Π′(Q) = PS′(Q)+[v(Q)−c(Q]+Q[v′(Q)−c′(Q)] = v(Q)−c(Q)+Qv′(Q)

▶ SOC holds if c′(Q)>0 and [Qv(Q)]′′=[v(Q) + Qv′(Q)]′≤0
▶ E.g. [Qv(Q)]′′ = −2B < 0 for linear functions v(Q) = A−BQ.
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Market Power is Inefficient

▶ Market power prevents some positive surplus trades — albeit
the lowest surplus ones — and thus reduces the gains from
trade below competitive levels
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Market Power: Seller’s Cartel with an Integer # of Sellers

▶ Most profitable quantity for union: 0 = v(Q)− c(Q) + Qv′(Q)

▶ Approximate integer demands by v(Q) = 40 − 4Q and
c(Q) = 6Q + 3

▶ Example: buyer Q = 0 has value 40 & seller Q = 0 has cost 3
⇒ 0 = 40 − 4Q − (6Q + 3) + Q(−4) ⇒ Q = 37/14 = 2.642
▶ With integers, check that k = 3 is best for the cartel

▶ k = 1: Price is 40, and maximum cartel profits are 40 − 3 = 37
▶ k = 2: Price is 36, and maximum cartel profits are

2 × 36 − 3 − 9 = 60
▶ k = 3: Price is 32, and maximum cartel profits are

3 × 32 − 3 − 9 − 15 = 69
▶ k = 4: Price is 28, and maximum cartel profits are

4 × 28 − 3 − 9 − 15 − 21 = 64
▶ Total gains from trade fall by the value of the lost fourth

trade: 28 − 21 = 7
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Market Power: Buyer’s Cartel (Union of Buyers)

(food for thought)

▶ Henceforth, we shift to a continuous quantity world
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