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The Walrasian Existence Problem

I Leon Walras (1874), Éléments d’économie politique pure

I Formulated the marginal theory of value

I Father of the general equilibrium theory
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The Walrasian Existence Problem

I He deduced four sets of equations solving for
I (a) the price of each good and
I (b) factor of production,
I (c) the quantity of each good and
I (d) factor bought by businesses.

I Fifth equation: Walras Law: all money received is spent 3 / 20



Nash (1951) Inspires Arrow and Debreu (1954)
Existence of an Equilibrium for a Competitive Economy

I “Walras first formulated the state of the economic system at
any point of time as the solution of a system of simultaneous
equations . . . Walras did not, however, give any conclusive
arguments to show that the equations have a solution”
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Nash (1951) Inspires Arrow and Debreu (1954)
Existence of an Equilibrium for a Competitive Economy

I “Walras first formulated the state of the economic system at
any point of time as the solution of a system of simultaneous
equations . . . Walras did not, however, give any conclusive
arguments to show that the equations have a solution”

I Idea: Professor Nash has formally introduced the notion of an
equilibrium point for a game.. . .

I Goal: introduce an (m + n + 1)-player game with
I m consumers maximize utility, and n firms maximize profits
I One fictitious Walrasian chooses prices to maximize the value

of net excess demand ⇒ reduce prices of goods in excess
supply and raise the prices of goods in excess demand
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Arrow and Debreu’s Damn Clever Formulation of Firms

I A firm is a subset Y ⊂ RL, given L ≥ 2 goods.
I Assume m firms ⇒ exchange economy is m = 0 special case

I A firm transforms inputs into outputs
I yk ∈ Y is outputs if yk > 0 and input if yk < 0
⇒ firm profits are p · y , the dot product of prices and quantities.

Closed convex technology
I no free lunch ⇒ Y ∩ RL

+ = {0}⇒ 0 ∈ Y (free exit)
I free disposal ⇒ Y ⊃ RL

−
I Y ⊆ R` is closed and convex
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Formal Model of Capitalism
I Let consumer i = 1, . . . n own a share θij ≥ 0 of the profits of

each firm j = 1, . . . ,m

I A competitive equilibrium of a private ownership economy(
{Y j}mj=1; {X i , ui , xi , θi1, θi2, ..., θim}ni=1

)
is an allocation (x, y) ∈ Rn` ×Rm` and a price p ∈ R` so that
I ∀j : yj ∈ Y j maximizes profits, namely p · ŷj ≤ p · yj ∀ŷj ∈ Y j

I ∀i : xi ∈ X i maximizes utility ui in the budget set:

B i (p) = {xi ∈ X i : p · xi ≤ p · xi +
m∑
j=1

θijp · yj}

I Markets clear, namely the excess demand vector is nonpositive:

z = D(p)− x − S(p) ≡
n∑

i=1

xi −
n∑

i=1

xi −
m∑
j=1

yj ≤ 0

and if zk < 0, then pk = 0
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Existence Theorem

Theorem (Arrow and Debreu, 1954)

Assume every consumer i = 1, . . . , n has a continuous, nonsatiated
and strictly quasiconcave utility ui , endowment xi ∈ R`

+, and
dividend shares (θij). Assume firms j = 1, . . . ,m have closed and
convex production technologies. A competitive equilibrium exists.

Corollary (Existence in General Exchange Economies)

Assume every consumer i = 1, . . . , n has a continuous, nonsatiated
and strictly quasiconcave utility ui , and an endowment xi ∈ R`

+. A
competitive equilibrium exists.

I Nash only proved existence of mixed strategy equilibrium for
games with finitely many actions

I Arrow and Debreu generalized Nash’s existence for games
with quasiconcave and continuous payoff functions of action
in a compact convex space.

I They parallel Nash’s proof.
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Upper Hemi Continuity
I Upper hemicontinuity precludes sudden implosions of a

correspondence function ψ(x): left but not right graph
I Lower hemicontinuity precludes sudden implosions of a

correspondence function ψ(x): right but not left graph
I Cool aside: game theory refinements, like the Intuitive

Criterion, essentially argue LHC ought not fail
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Kakutani Fixed Point Theorem

Theorem (Kakutani Fixed Point Theorem, 1944)

Let S ⊂ Rn be non-empty, compact and convex. Let φ be a
set-valued function on S with a closed graph and φ(x) 6= ∅ and
convex-valued for all x ∈ S. Then φ has a “fixed point” x ∈ φ(x)

I “Sir, tell us about the Kakutani FPT.” Him: “What’s that?”
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Kakutani Fixed Point Theorem

Theorem (Kakutani Fixed Point Theorem, 1944)

Let S ⊂ Rn be non-empty, compact and convex. Let φ be a
set-valued function on S with a closed graph and φ(x) 6= ∅ and
convex-valued for all x ∈ S. Then φ has a “fixed point” x ∈ φ(x)

I Kakutani used the von Neumann Approximation lemma to
draw a continuous function very close to any closed graph.

I Each such function has a fixed point, by Brouwer. Take limits.
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Is the domain compact and convex?

I A competitive equilibrium is a triple (x , y , p) such that:
I Given p, consumers and firms choose x , y .
I Given x , y , auctioneer chooses price p (& it clears the market).

I Price domain compact: Use P = {p ∈ RL
+|p1 + · · ·+ pL = 1}.

I Markets clear ⇒ excess demand z = D(p)− S(p)− x ≤ 0.

⇒ S(p) = D(p)− z− x ≥ −x, since D(p) ≥ 0 ≥ S(p).

⇒ Since Yj is convex, and Yj ∩ RL
+ = {0}, it is bounded above

⇒ So every firm’s optimization is on a compact domain Yj .

I Likewise, D(p) ≤ S(p) + x is then uniformly bounded above

10 / 20



Arrow-Debreu (1954) Proof Sketch Theorem

φ : (x , y , p) → all utility maximizers x

→ all profit maximizers y

→ all maximizers p of net excess demand value

I Theorem of the Maximum ⇒ φ(x , y , p) has a closed graph
I Continuous u & compact domain ⇒ φ(x , y , p) 6= ∅
I Convex preferences and technologies ⇒ φ(x , y , p) convex

⇒ correspondence φ(x , y , p) is uhc and nonempty/convex-valued
I By Kakutani’s Fixed Point Theorem, ∃(x , y , p) ∈ φ(x , y , p)
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Insights for Iterative Computer Equilibrium Computation
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Equilibrium Computation for Dynamical Economic Systems

(Foretaste of my Advanced Theory Search MiniCourse)

13 / 20



Ken Arrow, young Larry Summers, et al
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Mackenzie’s Parallel Related Paper

I Mackenzie (1954) also had the idea to use Kakutani.
I But he did not model consumers
I He did not have the parsimonious description of firms.

I He did not cite Arrow-Debreu (1954), not did they cite him!!

I The editor Strotz wrote him in 1953: “I have given up.
Letters have gone to both referees requesting the return of
your manuscript to this office right away. I hope to God I can
have better luck with the next people. I don’t know whether
this is a matter of concern to you, but let me assure you that
it is my intention not to publish the paper by Arrow and
Debreu (which has also been submitted) before the
publication of your paper (if both are found acceptable). I
think this would only be fair to you.’

I Mackenzie founded the Rochester economics department
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Socially Efficiency for General Equilibrium with Production

I An allocation (x , y) ∈ Rn` × Rm` of a private ownership
economy is socially efficient if 6 ∃(x̂ , ŷ) ∈ Rn` ×Rm` such that
I every consumer i is weakly better off, ui (x̂) ≥ ui (x)
I some consumer k is strictly better off, uk(x̂) > uk(x)
I the allocation (x̂ , ŷ) is feasible (so “markets clear”):

n∑
i=1

x̂ i −
n∑

i=1

xi −
m∑
j=1

ŷ j ≤ 0

I Firm profits do not matter! (Corporations are not people.)
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Welfare Theorem with Production

Theorem (Efficiency ⇔ Competition)

(a) If (x, y, p) is a competitive equilibrium and preferences are not
locally satiated, then (x, y) is a socially efficient allocation.
(b) Conversely, assume monotonic and convex preferences, and
closed convex technologies. If (x, y) is socially efficient, then
(x, y, p) is a competitive equilibrium, for some prices p,
endowments x, and ownership shares θ.

I Idea: Choose the origin of Y to be the endowment vector x,
as that corresponds to the zero production exchange economy
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Robinson Crusoe Economies

I M = 1 firms, N = 1 consumers

I Karl Marx made this metaphor famous in Das Kapital
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Example: Constant Return to Scale Technology
I L = 2 goods, produced by M = 1 firm, for N = 1 consumer

I Technology: fish or fowl f (L) = αL, where L is labor.
I Preferences: u(X ,T ) = XαT 1−α, where T is leisure.
I Endowment: one unit of time 1 = T̄ = L + T
I Need not specify firm ownership shares: it earns no profits

I Solution: Let T be numéraire, and p the relative price of X
I Crusoe Inc. maximizes pf (L)− L iff pα = 1.
I As endowment income is T̄ = 1, Cobb Douglas demands are:

X = α/p = α2 and T = 1− α
I Clear the labor market ⇒ Robinson works L = α hours
I Crusoe, Inc. hires L = α ⇒ produces X = α2

I Finally, notice that the X market clears (Walras Law)
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Example: Technology with Diminishing Returns
I New technology: fish f (L) =

√
L

I Crusoe Inc. maximizes p
√
L− L.

I The FOC is L = p2/4
⇒ Production is X = p/2
I Profits pX − L are as depicted:

π =
p2

2
− p2

4
=

p2

4
> 0

I Robinson’s income is his endowment value and profits: 1 + π.

I Let’s choose to clear the labor-leisure market:
I Leisure demand (using L = p2/4) is

T = (1− α)(1 + p2/4) = (1− α)(1 + L)

I T + L = 1 ⇒ 1− L = (1− α)(1 + L) ⇒ L∗ = α/(2− α)
I T ∗ = 1− L∗ = 2(1− α)/(2− α).
I Supply X ∗ =

√
α/(2− α) ⇒ p = 2X ∗ = 2

√
α/(2− α)

I Quicker to find competitive equilibrium than social optimum
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