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Abstract

Given the dramatic age variation in COVID death rates, we create a het-
erogeneous agent version of the Behavioral SIR contagion model of Engle et
al. (2020). The Bayes Nash equilibrium of our infection avoidance game yields
a simple new log-linear relationship between the case fatality rate (CFR) and
COVID incidence: Everyone knows that everyone optimizes vigilance both for
both the prevalence and their CFR.

We explain 2020 CDC incidence data for the USA north-east in terms of
the CFR to age-specific COVID death data for Massachusetts. Our model is
statistically significant: A 10% higher CFR reduces incidence by about 1%.
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1 Introduction
A widely discussed feature story of the deadly COVID-19 pandemic has been the steep
age-fatality profile: the youth rarely die, and the case fatality rate rises sharply with
age. In fact,1 adults over 85 have a death rate over 527 times that of adults age 18–29.
This has led to immense differences in risk-taking behavior by age. This paper explains
the falling infection rate in age as a strategically optimal “value-of-life” tradeoff between
the risk of death from the pandemic and the costs of avoidance.

Engle et al. (2020) created a rational strategic twist on the classic SIR model2 in
which people minimize the sum of vigilance costs and expected disease losses. With
a simple constant elasticity of avoidance in its costs, this game was fully solvable —
namely, where everyone knows everyone else is optimizing too. The unique Nash equi-
librium implied a log-linear map from prevalence to incidence with slope less than one.
They statistically reject the nested SIR model for both the 2009 Swine Flu pandemic
and COVID-19, finding an elasticity of incidence in prevalence significantly below one.

We enrich their Behavioral SIR (BSIR) model allowing for heterogeneous agents —
like varying ages. In our Heterogeneous Agent BSIR Model, infection losses can vary
across groups. It arises from the unique Bayesian Nash equilibrium of the multitype
game. Incidence is not only log-linear in prevalence, with slope less than one — as in
Engle et al. (2020) — but also log-linear in the infection loss, with negative slope. We
find that optimization shaves about a tenth off marginal mortality changes. Specifically,
we estimate our model using COVID-19 infection data from the CDC for the northeast
USA, and case fatality rates (CFR) from deaths in Massachusetts. We find that a
10% increase in the CFR increases mortality by around 8.9%, after vigilance optimally
adjusts. By contrast, the same 10% prevalence increase raises mortality only 8.4%.

By explicitly accounting for heterogeneous losses, we offer different evidence for the
BSIR model. For the cross-sectional data allows us to identify three of its key strategic
features: First, are youth behaving irrationally? Not in the economic sense: Different
age cohorts have maximized the identical objective functions, just with different losses.
Second, infection transmission reflects two parties’ avoidance efforts. Thus, a 10%
prevalence rise increases one’s mortality risk that period less than a 10% increase in
one’s CFR. For increased prevalence makes both parties to any meeting more vigilant,
but a higher group CFR only impacts that group’s vigilance, and so typically impacts

1See the CDC summary web page “COVID-19 Hospitalization and Death by Age”.
2SIR stands for “susceptible-infected-recovered” (Kermack and McKendrick, 1927)
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Figure 1: The Infection Rate by Age Crossover (USA, North East). COVID-
19 infection rates in the northeast of the United States raged out of control in April
and then fell. Focusing the magnifying glass on age groups, the rates were initially
highest for the elderly, and lowest for the youth, and then switched.

one party’s vigilance. Third, this is a game of strategic substitutes: Higher vigilance by
others depresses the marginal benefit of vigilance. As everyone is more vigilant when
prevalence rises 10%, one does not increase vigilance as much as when one’s own CFR
rises 10%. The last two properties can only be identified in a heterogenous agent model.

The average age of COVID infection fell over a decade just from May to August
of 2020 (Boehmer et al., 2020). Figure 1 plots COVID-19 infections specifically for
the USA North-East. The infection rates for our three age cohorts cross. While
peak daily new COVID cases in July was more than twice that of April, the daily
deaths after the July peak were only about two thirds of those in April (see worldome-
ters.info/coronavirus) — reflecting the lower infection age.

McAdams (2020) summarizes the economic COVID literature, e.g. social distancing
(Toxvaerd, 2020). Philipson and Posner (1995) first suggested the prevalence elasticity
(of incidence); our context is a population game that yields a log-linear modification
of the SIR model, and also yields an infection loss elasticity. Brotherhood et al. (2020)
explore a macroeconomic model, with old and young individuals. Finally, with a dire
future (not true here), forward-looking behavior can lead to fatalism (Auld, 2003).

Our theory in §2, 3, and A is self-contained. The empirical analysis is in §4.
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2 The Model
In a large population, modeled as a unit continuum [0, 1], everyone makes choices in a
sequence of time periods (days or weeks). Fix a period. A mass σ ∈ (0, 1) is initially
susceptible to a disease, and π ∈ (0, 1) is contagious; this is also called the prevalence.

The SIR model is the dynamical system for (π, σ) that assumes a flow incidence
I = βσπ of new infections, and some fixed exit rate r > 0 from the susceptible pool,
either recovering or dying.3 This makes sense assuming random matching of identical
individuals, and a fixed passing rate β > 0 when susceptible and infected persons meet.

The Behavioral SIR model (or BSIR) of Engle et al. (2020) modifies the SIR model,
adding a costly vigilance action that reduces the passing rate below β.4 Examples of
continuous vigilance include the fraction of time one wears a mask, or share of in-person
meetings one skips. Vigilance v≥0 costs precisely v. If contagious and susceptible per-
sons meet, with respective vigilances v, w≥0, the passing rate is reduced to βf(v)f(w),
for the filter function f(v) = (v + 1)−γ ∈ (0, 1], where γ > 0. In other words, vigilance
reduces the passing rate, but with diminishing returns; infinite vigilance entirely chokes
off infection: f(0) = 1> 0 = f(∞). Also, the elasticity of f in “total vigilance” v + 1

is constant, namely, −γ = (v + 1)f ′(v)/f(v). So 1% vigilance increments result in
constant γ% drops in the passing rate. It drives the log-linear formula in Theorem 1.

Anyone not sick or recovered thinks himself susceptible with probability q ≈ 1.5

The infection loss ℓ > 0 here varies by age group, unlike in the representative agent
model of Engle et al. (2020). Let L denote the random loss for people one meets. As no
one impacts future play, everyone must myopically best reply; therefore, equilibrium
obtains for each period: Everyone minimizes the sum of vigilance costs and expected
infection losses, solving

min
v

[v + βf(v)E[f(W )]qπℓ] (1)

for any random vigilance W of others. In a Bayes Nash equilibrium, everyone solves
optimization (1), and the random loss L yields random vigilance W as a best reply.

We assume that types mix uniformly and randomly — for random “out and about”
encounters. The opposite extreme is that people sort by age, since it obviously formally
reduces to the representative agent BSIR model, since all losses coincide.

3In continuous time, π̇ = βσπ − rπ and σ̇ = −βσπ. But we ignore these dynamics in this paper.
4As such, it applies to any infection model with a random transition from susceptible to infected,

such as SIS (susceptible-infected-susceptible) and SI (susceptible-infected).
5If a small fraction ω ∈ (0, 1) of infected people is oblivious about it, then q(π) = σ/(σ + ωπ) ≈ 1.
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3 Equilibrium Analysis
Let V(ℓ) be the vigilance function, namely, the best reply for someone with loss ℓ to
others’ vigilance W ≡ V (L). Inspired by the derivation of the standard first price
auction bidding function, when V (ℓ) > 0, it solves a fixed point equation — namely,
the equilibrium FOC, given random equilibrium vigilance W ≡ V (L):

1 + f ′(V (ℓ))E[f(V (L))]πℓβq = 0 (2)

Barring a corner solution V (ℓ) = 0 (ruled out in (⋆)), a solution of (2) is an optimum
because f ′′ > 0 holds everywhere, guaranteeing the SOC and a unique interior solution.
Since every type optimizes, such a vigilance function V (·) is a Bayes Nash equilibrium.

Lemma 1 (Equilibrium Filtering) Define C = γπβqE[L−γ/(γ+1)]. In equilibrium,
f(V (ℓ)) = C− γ

2γ+1 ℓ−γ/(γ+1) if ℓ ≥ ℓ0, while f(V (ℓ)) = 1 if ℓ ≤ ℓ0, where ℓ0 = C− 1+γ
2γ+1 .

So above a threshold, greater losses ℓ lead people to filter out more infections. Our
proof in the Appendix deduces the intuitive property that greater losses elicit more
vigilance, so that the best reply vigilance V (ℓ) is increasing. Hence, the vigilance game
has the strategic substitutes property: If others’ vigilance W = V (L) increases (in the
sense of first order stochastic dominance), then the best reply V (ℓ) is lower.6

We assume a contagion so bad that everyone chooses positive vigilance — i.e., the
support of losses L is in [ℓ0,∞), for some ℓ0 > 0 (⋆). In what we will refer to as the
Heterogeneous Agent BSIR Model, our next result applies Lemma 1 to derive a simple
log-linear formula relating equilibrium incidence I(ℓ, π) = f(V (ℓ))2βσπ to ℓ and π.7

Theorem 1 (Incidence) In the unique Bayes Nash equilibrium, given (⋆), the log
incidence rate is

log I(ℓ, π) = B + ψ log ℓ+ φ log π (3)

for a constant B that depends on σ, β, L, γ, and q, and ψ = −γ
1+γ

< 0 < φ = 1
2γ+1

< 1.
6Proof: For the expectation E[f(V (L))] in the FOC (2) falls, since |f ′| is a decreasing function.

To compensate, f(V (ℓ)) must increase, and thus vigilance V (ℓ) must fall, since f is also decreasing.
7Theorem 1 implies simple dynamics for the heterogeneous agent BSIR. Specifically, there exists a

threshold π ≥ 0 and an exponent φ ∈ (0, 1), such that when π ≥ π, dynamics for ((σℓ), π) are:

σ̇ℓ(t) = −βℓψ/E[Lψ]q(π)σℓ(t)π
1−φπ(t)φ

π̇(t) = β[LψσL(t)]/E[Lψ]π1−φπ(t)φ − rπ(t)

omitting a q(π) ≈ 1 factor. We do not need these dynamics for the empirical analysis.
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Theorem 1 applies to a mythical elegant continuum agent model. In §4, we estimate
a significant result ̂log I = B − 0.123(log ℓ) + 0.846 log π

Slopes in (3) are standard economic elasticities. As in the homogenous agent BSIR
model of Engle et al. (2020), the incidence - prevalence elasticity is φ < 1, rejecting
the SIR model’s assertion that φ = 1. Notably, this emerges in a panel regression here,
rather than the time series analysis in Engle et al. (2020). So unlike the SIR model,
incidence is not directly proportional to prevalence in the BSIR model. For vigilance
adjusts to prevalence, shaving a constant fraction off infection rate changes.

The heterogeneity in losses yields our novelty: ψ, the incidence - infection loss
elasticity. Theorem 1 has three testable takeout messages related to ψ that respectively
reflect optimization, the matching externality, and the strategic substitutes property:

1. ψ < 0, since vigilance increases in the potential losses, just as it does prevalence.
This effect simply reflects optimizing behavior.

2. −ψ < 1−φ, since ψ reflects the vigilance efforts of just one party, but φ reflects
the vigilance of both in this pairwise matching infection transmission model.

3. 1− φ < −2ψ, by the strategic substitutes property: people react less to greater
prevalence than twice one person reacts to the same percentage CFR increase

The last two items follow from the explicit expressions for ψ and φ in Theorem 1.
For the second takeout message, note that Theorem 1 assumes independent random

matching of types, where everyone selfishly optimizes, ignoring the positive externality
of his vigilance. Namely, a 10% increase in a person’s loss makes him more vigilant in
all meetings, but the same 10% prevalence rise makes both parties more vigilant. At
the opposite extreme, assume people sort by age. Given our optimization (1), a given
percentage increase in the loss ℓ is formally equivalent to the same percentage increase
in prevalence π; therefore, the optimal solution for sorting by ages must be ψ = φ− 1.
We will see that this is not the case in §4, that infections are best understood as spread
in random meetings rather than age-segregated encounters.
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4 Data and Empirical Analysis
To apply our theory, we assume that people are rational, and minimize the sum of
vigilance and the expected loss of life. Let λ > 0 be the value of life, and ∆ the
probability of death, conditional on a COVID diagnosis.8 Then our loss in Theorem 1
is ℓ = λ∆, given expected utility. Considering optimization (1), people are equally
harmed in meetings by a 10% increase in the prevalence π and a 10% jump in the
death rate ∆. Then the value of life λ is absorbed into the constant C in Lemma 1,
along with κπ, and therefore the formula in Theorem 1 still applies, treating ∆ as ℓ.

A. Probability of Death. To measure the probability of death ∆, we use the case
fatality rate (CFR), or the share of COVID positives that end in death. We have found
this data for one state, Massachusetts,9 which has so far had the third highest deaths
per capita in the United States. This data includes hospital and nursing home deaths,
which is important given what has transpired from late March to early August 2020,
in age cohorts 0–19, 20–29, 20–39, 40–49, 50–59, 50–69, 70–79, 80+. To match with
CDC data below, our paper will use the coarser partition of 0–19, 20–49, 50–69, 70+,
the deaths were respectively 0, 146, 1210, and 7390, resulting in CFRs for these groups
0.00, 0.29, 3.71, 29.64 percent.10 We ignore the youngest age group, since it is not clear
the extent to which they have rational independent agency, which our optimizing model
requires. The death rates in this group are also too low to be accurately measured from
our data (indeed, no deaths happen in our data).

We do not assume a constant CFR over time, as this is debated (Ledford, 2020).
We instead create a piecewise linear time series of CFR’s, one for each age cohort i. We
do so, using the time series of deaths in any week, divided by the new cases from three
weeks earlier.11 This reflects the variable time to die, centered about three weeks.
In other words, we posit a constant rate of change bi in each age group CFRi, for
i = 1, 2, 3, corresponding to youngest, middle aged, and elderly.

log(CFRit) = ai + bit+ ϵt

8The value of life is the willingness to pay for a small increment in the survival rate (Rosen, 1988).
9We use their COVID dashboard: www.mass.gov/info-details/covid-19-response-reporting

10Computations are based on positive COVID tests the week of March 22 through the week of July
19, and deaths through the week of Aug 9. Very few people died the first two weeks.

11We ignore death underestimates, inferred from excess deaths, since this ratio does not vary greatly
by age cohort, from 14.4% to 24.1% for all age cohorts over age 25 (Rossen et al., 2020).
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Figure 2: The Estimated Log CFR with a Linear Time Trend. We assume
that individuals optimize on vigilance in response to their CFR. The age groups are
20-49 (solid) 50–69 (dot-dash), and 70+ (dash). The reported unlogged intercepts are
roughly consistent with earlier noted CFRs. The slope estimates are not significant.

Using daily data for 21 weeks for each age group, we separately estimate the regressions
depicted in Figure 2. This regression reflects how older individuals are more at risk
from COVID, and medical treatments are evolving.

The CFR suffers from self-selection issues, as it conditions on a positive COVID test.
This is known to be an undercount. The most reasonable interpretation of probability
of death is the infection fatality rate (IFR). The IFR does not rely on testing, and thus
can only be inferred from seroprevalence studies. But these studies only determine
infections to date, and not the week by week infections. Using the CFR in lieu of the
IFR is not unreasonable if the ratio of IFR to CFR does not vary greatly by age cohort.
By weighting the year by year interpolated IFR’s in Levin et al. (2020),12 we compute
the respective IFR’s for these groups in Britain to be 0.060, 0.867, and 10.402.13

12Lacking such data for Massachusetts, we use age pyramid for France.
13The earlier noted raw CFRs 0.33, 4.12, 45.67 are resp. 5.5, 4.75, and 4.39 times bigger. This
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CFR proxy −→ Entire sample Excluding first 6 weeks
infection-loss elasticity γ −0.123 −0.110

P (H0 : γ ≥ 0) 0.081 0.148
incidence-prevalence elasticity φ 0.846 0.837

P (H0 : −γ ≥ 1− φ) 0.310 0.210
P (H0 : −γ ≤ 1

2
(1− φ)) 0.254 0.357

Number of Observations 111 96
Adjusted R2 0.987 0.986

Table 1: How Case Fatality Rates and Prevalence Impact Infection Rates.
The middle column documents the panel regression for all weeks CDC infection data,
and the linearly projected CFR. The last column ignores the first six weeks when the
nursing home deaths occurred.

B. Infection Rates. Finally, we turn to the COVID infection rates. To compute
the infection rates by age, we use CDC data14 for HHS 1 region 1 (specifically, the
states of CT, ME, MA, NH, RI, and VT). This contains the state of Massachusetts.

The CDC positive test rates were based on 6,419,892 specimens tested for SARS-
CoV-2 using a molecular assay for the time span March 1–Dec 19, 2020. The percentage
of specimens testing positive for SARS-CoV-2 each week, based on week of specimen
collection, are summarized below. Unlike Massachusetts age groups, the CDC reports
positive tests for 0-4, 5–17, 18–49, 50–64, and 65+. Merging the first two groups,
the positive tests for 0-17, 18-49, 50-64, and 65+ are respectively, 6662, 50161, 32613,
and 24931. We matched the CDC age groups to the amalgamated MA age groups,
20–49, 50–69, and 70+ respectively. This small mismatch is inescapable given the data
coarseness limitations. Its impact is hopefully not major: It slightly increases the CFR
of the middle age group, and slightly reduces the CFR of the oldest age group.15

In Table 1, we summarize two panel regressions with age and time fixed effects —
one that ignores the first six weeks.16 This is the period when the vast majority of
nursing home deaths occurred, before policy changes were enacted.

For COVID-19, people are maximally contagious from days 2–7. So inspired, it

consistency argues for the CFRs, since the testing does not appear to be too age-biased. Notably, this
also suggests that Massachusetts testing has undercounted COVID-19 by about a factor of five.

14www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/01042021/specimens-tested.html.
15Using Levin et al. (2020), the interpolated infection fatality rates (IFR) per 100 for the MA cohorts

is 0.0023, 0.06, 0.867, and 10.4, whereas the CDC cohorts has IFRs 0.019, 0.0567, 0.5895, and 7.93.
16We use a lag of three weeks, to match published estimates of time to due. To highlight the

robustness of our findings, an online appendix shows that the estimated parameters are not too
sensitive to how the CFR is computed, or whether we run this regression with daily data.
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Figure 3: The CFR Predicts the Infection Rate. This is the scatter plot for the
residuals of the regression of log infection rate on the CFR that are not explained by
the last period infection rate, or by the age or time fixed effects.

is reasonable to proxy the prevalence by the percent infected last week IRt−1, and
incidence by the rate this week. Then Theorem 1 is proxied by the panel regression

IRi,t = α + φIRi,t−1 + γCFRi,t + δi + τt + εi,t

for group effects δi and time effects τi. The time fixed effects capture the driving
effect of prevalence on incidence that appears in the SIR and BSIR models; this panel
approach avoids explicitly estimating the time series. This sidesteps any analysis of the
time series aspects of the paper, which is the focus of Engle et al. (2020). Age effects
capture heterogeneity in the age groups not summarized in the CFR. For instance, the
youth may party more than other groups. Any undercounting of true infections, as
long as it is same percent across ages, simply appears in the vertical intercept α.

Finally, let’s consider our three predicted corollaries of Theorem 1 in §3. Consider
first the optimizing behavior by agents solving the objective function (1). This involves
two predictions, one old and one new. We estimate that incidence increases in preva-
lence with an elasticity φ̂ < 1, and this gap is significant. Specifically, a 10% increase
in the prevalence leads to a 8.4% rise in incidence (not the 10% predicted by the SIR
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model). This is consistent with the estimate found by Engle et al. (2020). And for our
novel optimization as the case fatality rate changes, we estimate γ̂ < 0. In particular,
we conclude that a 10% increase in a group’s CFR results depresses its incidence by
1.2%. In Figure 3, we give the scatter plots of IRt − φIRt−1 to illustrate the impact
of CFR on infection rates not explained by the prevalence, but captured by the CFR.

Consider finally the pairwise matching prediction −ψ̂ < 1 − φ̂, namely, that two
parties jointly respond more strongly to increased prevalence than does one to greater
CFR, and the strategic substitutes prediction 1− φ̂ < −2ψ̂, that efforts displace each
other. These more nuanced predictions hold for our estimated parameters, but we
cannot statistically reject the opposite inequalities. Both predictions await better data.

5 Conclusion
Three events must happen for death from COVID: exposure to the virus (prevalence),
infection from the virus (passing), and death conditional on infection. Engle et al.
(2020) introduce a strategic twist on the SIR model with endogenous vigilance. Their
Nash equilibrium yields a simple log-linear map from prevalence to incidence that nests
the SIR model as a special case. This paper reworks their avoidance game for a non-
representative agent model, with a varying case fatality rate (CFR). Our unique (now)
Bayesian Nash equilibrium yields a log-linear map from the CFR to incidence.

We show that this new model is predictive of cross-sectional behavior of different
individuals in the pandemic. We deduce that avoidance behavior by each party shaves
about 10% off the increased CFR by age: a 10% more deadly infection reduces the
incidence by about 1%. Our parametric estimates are consistent with two other pre-
dictions of the model — the pairwise matching transmission or its strategic substitutes
property. More refined data is needed to secure statistically significant tests of these.

Our paper and Engle et al. (2020) derive and test novel models of risk compensation
with deadly consequences that apply matching theory and game theory. We could also
compute willingness to pay, and so offer value of life analysis. Hopefully the COVID-19
pandemic soon ends, but our heterogeneous agent twist applies to any epidemic where
people have divergent mortality risks, and equally well, divergent infection risks.17

17The latter holds for instance for HIV infections, with male to female transmission almost twice as
likely as female to male transmission (ESGFHT-HIV, 1992).
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A Appendix: Omitted Proofs

A.1 The Equilibrium Filtering Formula: Proof of Lemma 1

We now solve the differential equation (2) by further differentiating it. Since f ′(V (ℓ))ℓ

is constant in ℓ by (2), its ℓ derivative is zero — and so V (ℓ) is differentiable. Hence:

f ′(V (ℓ)) + f ′′((V (ℓ))V ′(ℓ)ℓ = 0 (4)

As f(v) = (v + 1)−γ implies f ′(v)/f ′′(v)=−(v + 1)/(γ + 1), the equilibrium vigilance
function solving (4) is

V (ℓ) = cℓ1/(1+γ) − 1 (5)

All that remains is to solve for the constant c > 0. Vigilance vanishes at the loss ℓ0 > 0

where V (ℓ0) = cℓ
1/(γ+1)
0 − 1 = 0. Then ℓ0 = c−(1+γ). In equilibrium, the filter function

is then f(V (ℓ)) = (1 + V (ℓ))−γ = c−γℓ−γ/(γ+1) if ℓ ≥ ℓ0, while f(V (ℓ)) = 1 if ℓ ≤ ℓ0.
We now find the constant c. Since ℓ0 = c−1−γ by V (ℓ0) = 0 and (5), substituting

f ′(V (t0)) = f ′(0) = −γ, and the equilibrium filter function formula under (⋆), yield:

0 = 1+f ′(V (ℓ0))E[f(V (L))]πℓ0κ = 1−γc−γE[L−γ/(γ+1)]πℓ0κ = 1−γπκc−2γ−1E[L−γ/(γ+1)]

where κ ≡ βq. So the constant obeys c2γ+1 = γπκE[L−γ/(γ+1)]. Now put C = c2γ+1. □

A.2 The Equilibrium Incidence Formula: Proof of Theorem 1

All told, if ℓ ≥ ℓ0, the equilibrium filter function is

f(V (ℓ)) = c−γℓ−γ/(γ+1) =
ℓ−γ/(γ+1)

(γπκE[L−γ/(γ+1)])γ/(1+2γ)

Type ℓ’s incidence events (others to him, and him to others) f(V (ℓ))E[f(V (L))]κπσ

is:
Î(ℓ, π, σ) = ℓ−γ/(γ+1)π1/(1+2γ) · E[L−γ/(γ+1)]1/(1+2γ)γ−2γ/(1+2γ)κ1/(1+2γ)σ (6)

Then (6) yields (3) for interactions involving loss type ℓ. Finally, while these involve
infection by ℓ of others, and vice versa, in a steady-state, the incidence density I(ℓ, π) of
loss type ℓ is a constant fraction of the incidence events density Î(ℓ, π). Thus unknown
fraction is absorbed in the constant B, along with the log of the last three factors (6).
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