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Abstract
The 1927 SIR contagion model assumes an infection passes in random pair-

wise meetings, and derives a linear dynamical system. We propose and test a
log-linear modification that reflects the Nash equilibrium of a costly avoidance
game. In our Behavioral SIR Model (BSIR), the passing rate falls as a hyperbolic
function of the prevalence, and therefore incidence is log-linear in prevalence.

The SIR Model yields extreme predictions for major contagions, not realized,
even without systemic social distancing or lockdowns. At breakout, the “curve
bends” in the SIR model only with heterogeneous agents. In our BSIR model,
increasing avoidance behavior bends the curve in the homogenous agent model.
Also, herd immunity happens at lower prevalance in the BSIR Model.

Our model is tractable, and better explains incidence data during the 2009
Swine Flu and the COVID-19 pandemic. In both cases, we statistically reject
the SIR model. For Swine Flu, across states, the prevalence elasticity ranges
from 0.8 to 0.9. We find a similar slope at breakout in the COVID-19 pandemic,
and verify that its curve bending matches our BSIR formula.

The same model — with a similar slope but lower intercept — but with
increased losses explains data from national lockdowns for COVID-19.
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1 Introduction
Modeling the transmission of contagious diseases is important, as it informs individual
and national policy before and during epidemics. The workhorse SIR contagion model
(Kermack and McKendrick, 1927) assumes that infection spreads in random pairwise
encounters and transmission between susceptible and infected individuals, and later
recovery. This model is tractable, given its linear Markovian structure, and has spawned
many useful variants, such as the Sl (eg. polio or HIV), SIS (eg. seasonal flu), SEIR
(where E is “exposed”, for infections with a long incubation period, like chicken pox).

The transmission dynamics for a contagion impinge on many fields. Geography and
culture matter, since proximity and custom impact meeting rates. Social networking
impacts who meets whom. Finally, political economy considerations matter, since
people variably react to social distancing directives. This paper explores the economics
factors — since they can change most rapidly during the course of the contagion.

We derive a tractable modification of SI* contagion models that reflects the Nash
equilibrium in a game by susceptible individuals who can exert costly vigilance — by
meeting less, or more carefully. Greater vigilance “filters out” more infections, but with
diminishing returns. We then venture that everyone minimizes the sum of vigilance
costs and expected disease losses. In this risk-compensation setting, positive vigilance
balances expected marginal benefits and costs. For low prevalence, zero vigilance is
optimal, and SIR dynamics emerge. Above a threshold, a more prevalent or lethal
disease elicits greater vigilance. This game has a unique Nash equilibrium vigilance.

Incidence requires an infection passing in a meeting of susceptible S and infected I:

incidence rate = SI meeting rate× passing chance

The passing rate rises in the infectiousness and population density. In the Behavioral
SIR model (BSIR), the passing chance reflects the filter evaluated at the equilibrium
vigilance. So at low prevalence, the SIR passing chance obtains (zero vigilance). For
higher prevalence, the passing rate is falling (as equilibrium vigilance is increasing). We
assume that the infection filter is a hyperbolic function of vigilance, so that vigilance is
effective but with diminishing returns. More strongly, the passing chance is hyperbolic
in prevalence, and thus has a constant elasticity in the prevalence. Hence:

prevalence elasticity (of incidence rate) = 1 + prevalence elasticity of the passing rate
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Standard contagion models posit a constant passing chance, and thus a zero passing
elasticity. But in our BSIR, the prevalence elasticity of incidence is constant and less
than one. All told, 1% greater prevalence raises incidence by less than 1%, since the
vigilance ramps up, and this percent increment is the same for an initial prevalence.

The prevalence elasticity reflects the ease of proportionately improving the infection
filter. This turns on social, cultural and behavioral factors that impact the ease of either
eliminating meetings, or meeting more carefully. We nonetheless find in the data that
this number ranges around 0.9 across nations of the world, and across states of the
USA. We find a similar elasticity for the 2009–10 Swine Flu epidemic for the USA.

To appreciate the importance of closing the loop here with equilibrium, consider
the optimization faced by vigilant individuals not wishing to get infected. Assume
the disease prevalence rises. An immediate reaction is to become more vigilant. For
instance, people wash their hands more, or shy away from crowded stores. But soon
it dawns on them that everyone else is more vigilant, and thus everyone relaxes their
vigilance: Indeed, prevention efforts are strategic substitutes. Equilibrium accounts for
this (infinite) feedback cycle. By contrast, an arbitrary rule for reacting to a riskier
environment1 is almost never a best response to itself. This is an epidemiological
version of the 1970s Lucas critique of macroeconomics.

One might then wonder “why only a static Nash equilibrium?” To this end, note
that in any dynamic continuum player game, no individual impacts play and so must
myopically best respond to play: The only question is what disease loss to use. Assuming
a constant loss yields our simple BSIR that we empirically justify. It also formally
emerges in an infinite horizon equilibrium, with a constant chance of the plague ending.2

Our Nash equilibrium has two regimes (Theorems 1 and 2): First, at low prevalence,
the SIR model obtains, as people exert no vigilance. But once prevalence surpasses
a threshold, people best respond to increases with greater vigilance and thus a lower
behavioral passing rate. In this range, the incidence accordingly rises with a constant
elasticity less than one. Figure 3.2 depicts this dual finding. The regime shift happens
at a lower prevalence for a more deadly or more infectious disease; we expect e.g. that
the USA has been in the vigilant regime since news of domestic COVID cases hit.

This equilibrium characterization has some quick useful implications. First, there is
1He et al. (2013a) posits a dynamical equation for the public equation of risk and increases in

the current deaths. Bootsma and Ferguson (2007) ventures a specific function dictating how much
individuals reduce their contacts as the number of deaths in the previous time period increases.

2We otherwise ignore future nonstationary equilibria, because the best experts have no agreed
models. Plagues are one-offs not suited to standard hyper rational forward-looking agents.
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a linear relationship between log incidence and log prevalence. This suggests a natural
econometric test of our model, since a slope less than one rejects the SIR model in favor
of our richer behavioral model — i.e. a prevalence elasticity less than one. Second,
since the behavioral passing rate falls in prevalence, a per capita measure, it must rise
in population. This explains the faster rate of spread of COVID in higher population
countries, for any given number of cases — and in fact, predicts the precise relationship.

The dynamics of the BSIR model qualitatively resemble those of the SIR, namely,
that prevalence is first increasing and then decreasing (Theorem 3). But the peak
prevalence is lower and delayed. Moreover, this peak — called herd immunity — is
smaller the lower is the prevalence elasticity (Theorem 4). This explains why predic-
tions based on the SIR model are so much more dire. This theorem also critically
parses between herd immunity, or when the flow turns around, and the actual end of
the contagion.

Literature Review. Research into the spread of infectious diseases begins with
Kermack and McKendrick (1927, 1932), who model how agents transition over time
from susceptible to infected, and then to recovered (or possibly other other states).
Bailey et al. (1975), Anderson and May (1992) and Hethcote (2000) and Brauer et al.
(2012) are treatises from a mathematical, epidemiological and biological standpoints.3

Since then, scientists of epidemiology have enriched the SIR model with avoidance
behavior, including social distancing, quarantines, hygiene, masks, travel restrictions,
and non-pharmaceutical interventions.4 Avoidance behavior shed light on pandemics,
such as the 1918 Spanish Flu (Markel et al., 2007; He et al., 2013b), and later the
2003 Severe Acute Respiratory Syndrome (SARS) (Lau et al., 2003); and HIV/AIDS
(Hyman and Stanley, 1988), and the 2009 Swine flu (Poletti et al., 2009, 2011).

Economists have pointed out the flow of agents from one group to another is not
exogenous, but reflects risky choice, and thus disease prevalence, acuteness, or the
economic or health care cost. Geoffard and Philipson (1996) and Philipson and Posner
(1995) introduced optimal choice, and so pioneered the field of economic epidemiology.
We build on their a key idea, the prevalence elasticity, by devising a game built on
a constant vigilance elasticity, and then finding that this property implies a constant
prevalence elasticity in the Nash equilibrium. In a simple two type model of the spread
of AIDS Kremer (1996) introduced equilibrium considerations. Quercioli and Smith

3Newman (2002) considered integrated networks.
4See Funk et al. (2009, 2010), Ferguson et al. (2006), Liu et al. (1986), and Perra et al. (2011).
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(2006) later used the notion of equilibrium for an SIR model.
A group of papers, Chowell and Nishiura (2014), Chowell et al. (2004) and Vi-

boud et al. (2016) discuss the use of geometric (which they call “sub-exponential”)
or polynomial growth models of spread of infections. They justify the decision to do
so by arguing that matching of infected and susceptible individuals happens through
clusters rather than random mixing, for certain types of diseases where the infected
only meet susceptible people in family gatherings, burial rituals and religious func-
tions. Our paper provides the optimizing equilibrium theoretical framework in which
this emerges. This framework makes sense of a flaw in an everywhere geometric growth
model makes no sense — for instance, the square root prevalence is unboundedly larger
than prevalence as prevalence tends to zero.

Two papers have built on ours: Rann Smorodinsky and David McAdams
information lags can lead to zigzagging
[Omitted: Epidemiologists have reduced the estimated R0, during the COVID pan-

demic, in an effort to capture the changing behavior exogenously.]

2 Prelude: The SIR and BSIR Contagion Models
Consider a contagion dynamic in continuous time [0,∞). We assume a continuum [0, 1]

of players, and thereby assume no aggregate randomness. The prevalence π(t) ∈ (0, 1) is
the mass of infected and contagious individuals in this population,5 while the susceptible
share σ(t) ∈ (0, 1) is the never-infected fraction of the population.

Fix an infection seed π0 > 0 — such as from farmers arriving with Swine Flu in
early 2009, or people deplaning off international flights in early 2020 in North America
or Europe, infected with COVID-19. A mass σ(0) = 1− π0 is initially susceptible.

We consider first the SIR (Susceptible-Infected-Recovered) Model. Each contagious
person infects a random number of susceptible people per unit time with mean β > 0,
called the exogenous passing rate.6 That is, β increases in the intrinsic contagiousness of
the disease, the population density (so higher in cities), and also reflects the culture and
social network. So given independent meetings, the new infection inflow, or incidence,
equals βπ(t)σ(t). Anyone infected “recovers” (or dies, and so is removed from the
matching pool) at a fixed recovery rate r > 0.7 Altogether, πt and σt evolve over time

5In §3.2, we will distinguish between infected and contagious.
6In a currently omitted Appendix, this emerges in a discrete random matching story.
7More broadly, recovered could mean “removed”, and include people who die.
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according to:
σ̇(t) = −βπ(t)σ(t)

π̇(t) = βπ(t)σ(t)− rπ(t)
(1)

The dynamics do not depend on the recovered mass ρ(t) of immune individuals, which
follow ρ̇(t) = rπ(t) ≥ 0. Since σ′(t) ≤ 0, the prevalence π(t) either starts falling, or first
rises and then falls, since π̇(t) = [βσ(t)− r]π(t) transitions from positive to negative.

The basic reproduction number R0 ≡ β/r is the number of people a typical con-
tagious person infects before he recovers, if (hypothetically) everyone he met were
susceptible. Herd immunity occurs when enough people are immune that its spread
stops naturally because too few people can transmit it. Thus, the “herd” is immune,
even though many individuals within it still are not. Formally, this has been taken to
be the point where the effective reproduction number σ(t) ·R0 ≤ 1. By (1), this yields
π̇(t) ≤ 0, and herd immunity starts at the tipping point when π̇(t) = 0. After this
time, recoveries exceed incidence for all later times, and the epidemic dies out.

This paper develops a modified dynamic, called the Behavioral SIR Model (BSIR),
described by two additional new variables — a threshold π ≥ 0 and an exponent
φ ∈ (0, 1). With a small seed π0 < π, dynamics start as (1) — our “chill” regime —
and shift into a “vigilant” regime at the first time τ with π(τ) = π. If π0 ≥ π, then the
vigilant regime starts at time t = 0. So long as π(τ) > π, the vigilant regime dynamics
apply, namely:

σ̇(t) = −βq(π)σ(t)π1−φπ(t)φ

π̇(t) = βq(π)σ(t)π1−φπ(t)φ − rπ(t)
(2)

The SIR model is famously simple, ignoring complications of network interactions, and
yet useful predictive model. The BSIR is nearly as simple, nesting the SIR model as
a special case. But we argue that it diverges in a way that better matches the data.
In particular, while initial exponential growth is the hallmark of the SIR model, the
BSIR model implies geometric growth, which we will show fits the data better.

We derive this general model in a fully optimizing equilibrium model of behavior
in §3, and then flesh out its dynamic properties in §4. We then show that the BSIR
better explains the data for two pandemics, H1N1 in 2009 and COVID-19 in 2020.
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3 The Strategic Model of Avoidance

3.1 The Behavioral Contagion Model

The SIR contagion model applies to humans and animals alike. But homo economicus
will adjust behavior to avoid sickness or death.8 We flesh out a game played in real time
by people in a contagion, to capture how people dislike infection, but find avoiding it
costly. The sickness or death stakes in the game amount to a loss L > 0. The vigilance
action reduces passing rates, and is denumerated in its cost v ≥ 0 per unit time.

Vigilance is very broadly defined as any costly activity that stifles passing. It
subsumes extensive margin choices, like the fraction of meetings by Zoom, or longer
routes to avoid passing people. Vigilance also includes intensive margin choices, often
labelled social distancing.9 People may sneeze into elbows, washing hands more often,
fist-bump rather than handshake, or weak masks. Vigilance should be a personally
costly activity — not something that one normally does without thinking. It is therefore
idiosyncratic and cultural: not kissing on the cheeks is harder in some countries than
others, and for some people than others. Also, with habit persistence or learning by
doing, the vigilance required for any passing rate falls over time. It can be history
dependent. A handshake might be the normal greeting pre-2020, but post 2020, the
lower vigilance greeting might be a fist bump.

Vigilance v scales down passing rates by a multiplicative filter function f(v) ∈ [0, 1]

— so that the passing rate is βf(v)f(w) if a contagious vigilance v person meets
a susceptible vigilance w person. For the very actions we undertake to block others’
from infecting us — e.g. wear a mask or skip a meeting — also inhibit us from infecting
others. This functional form assumes a symmetric vigilance impact. Next, the two
parties’ vigilance acts independently, and thus the passing impact is multiplicative.
This makes sense even for extensive form vigilance, such as the fraction f(v) of meetings
made. Imperfect vaccinations fit, if we view f(v) as the chance it is effective.

We naturally assume that vigilance is effective but with diminishing returns, so
that f ′ < 0 < f ′′, with extreme values f(0) = 1 > 0 = f(∞). For instance, the in first
reducing one’s meetings, one will choose the lowest cost actions, at the margin. After
these options have been exploited, we turn to higher cost actions. In particular, we
posit the hyperbolic f(v) = (1 + v)−γ, for γ>0, with these properties. This ensures a

8Indeed, historically, behavior has changed, like quarantines off Venice in the 1300s during Black
Death. Or consider how the HIV/AIDS epidemic sparked a culture-changing “safe sex” drive.

9See Toxvaerd (2019) and Toxvaerd (2020).
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constant filter elasticity γ in terms of V = 1 + v, which includes an endowed baseline
unit vigilance. So one percent more total vigilance costs always leads to a γ-percent
infection risk reduction. The SIR model corresponds to a zero filter elasticity. We
eventually estimate that γ ≈ 1/8 in the data.10

3.2 Vigilance Optimization and Equilibrium Predictions

To make sense of optimal behavior, we parse the infected into two groups: People are
first obliviously infected and contagious, and next knowingly infected. We denote by
π the mass of unaware infected individuals, and exclude those knowingly infected.11

Under the maintained SIR model rules, meetings are random and independent of
any traits (like vigilance).12 Any random population vigilance W therefore induces an
expected passing rate βf(v)E[f(W )].13 A potentially susceptible person — namely, one
who is either susceptible or asymptomatically infected — thinks himself at risk with
susceptible belief q(π) = σ/(σ + π). So his posterior flow infection chance is

βf(v)E[f(W )]q(π)π (3)

Since f ′ < 0 < f ′′, this chance falls if v rises, E[f(W )] falls, or the prevalence π falls.
We compute the Nash equilibrium with the same loss L each period, with vigilance

cost v each period.14 Players minimize βf(v)E[f(W )]q(π)πL+v, their selfish expected
total losses:15 Since the filter function f(v) does not obey an INADA condition near
v = 0, there is only a corner solution for small π > 0. But barring a corner solution,
marginal analysis identifies a unique interior optimum, because f ′<0<f ′′. As everyone
is identical, the opt for a symmetric pure strategy Nash equilibrium W = v∗ ≥ 0.

Potentially susceptible people play a Nash equilibrium with loss L, minimizing the
10This corresponds to a constant health elasticity in the value of life model of Hall and Jones (2007).
11These infected may be (resp.) symptomatic (or symptomatic but ignorant) and asymptomatic.
12Relaxing this is important, and at the core of any paper that explores a network matching model.
13Rowthorny and Toxvaerd (2012), a decentralized SIS model, assumes that a “protection level” π

scales down the infection level at constant marginal costs. This would correspond to f(v) = 1 − v,
and hence their optimal solution is bang-bang; ours is interior in the vigilance regime.

14A continuum of agents is crucially unlike finite player games in one crucial respect: For since no
one can influence the future, any forward-looking equilibrium requires that all players play a static Nash
equilibrium every period. The loss L is constant each period if, for instance, people assume that the
contagion eventually stops with a constant chance every period. We assumed a static representative
agent model. A future Appendix will show that the same equilibrium arises with heterogeneous types.

15Adapting the random matching model with verification in Quercioli and Smith (2015), Quercioli
and Smith (2006) introduced cost minimization with two way filters for contagious matching games.
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Figure 1: Optimal Vigilance. Vigilance v minimizes total expected contagion losses
δ(v, v∗, π) + v in (4), equating expected marginal disease losses to one. Equilibrium
vigilance is lower than if no one else exerted any vigilance (v∗ < v̂) due to strategic
substitutes. But equilibrium flow disease losses are lower: δ(v, v∗, π) < δ(v̂, 0, π). The
SIR model assumes zero vigilance and thus higher expected slow disease losses.

flow disease loss δ(v, v∗, π) = βf(v)f(v∗)q(π)πL. At any interior optimum on [t, t+dt):

minv≥0 δ(v, v
∗, π)dt+ vdt ⇒ 1 = −δv(v, v

∗, π) (4)

This contagion game has the strategic substitutes property — specifically, a higher
vigilance v∗ by others leads to a lower best reply own vigilance v (so v∗ < v̂ in Figure 1).

The first order condition in a symmetric pure Nash equilibrium for v∗ > 0 solves:

1 = −δv(v
∗, v∗, π) = βγ(1 + v∗)−2γ−1q(π)πL (5)

as f(v) = (1 + v)−γ. Zero vigilance is strictly optimal for small π, since the right
side of (5) vanishes if π = 0. By continuity, v = 0 if q(π)π ≤ (βγL)−1, and thus for
all π ≤ π, where π slightly exceeds 1/(βLγ).16 Notably, whenever π > σ/(σγβL− 1),

v∗ = (γβq(π)πL)
1

2γ+1 − 1

and so increases in π, by (5). Intuitively, people grow increasingly vigilant as prevalence
rises:

16Rewriting πq(π) = 1
σ−1+π−1 , the threshold π shares the monotonicity of the threshold for πq(π).
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Figure 2: SIR versus BSIR Passing Rate and Incidence. The BSIR passing rate
is hyperbolic, and so has a constant elasticity — just as hyperbolic demand curves do.
The prevalence elasticity is thus constant and less than one.

Theorem 1 (Equilibrium) In the unique Nash equilibrium, for any prevalence π ≥ 0,
players choose a common vigilance v∗(π). There is a unique prevalence threshold π > 0

— with v∗(π) = 0 for π ∈ [0, π], and v∗(π) increasing for π ≥ π. This vigilance v∗(π)

increases in L, β, and γ, and the prevalence threshold π falls in L, β, and γ.

3.3 The Behavioral Passing Rate

We now explore how the Nash equilibrium modifies the SIR model. The key observation
is that the constant filter elasticity in vigilance induces a constant behavioral passing
elasticity in prevalence. To see this, monotonely transform the filter elasticity γ into
φ ≡ 1/(2γ+1). Naturally, 0 < φ < 1 and γ = (1−φ)/(2φ). The behavioral passing rate
B(π) ≡ βf(v∗)2 reflects the exogenous passing rate β and the equilibrium filter f(v∗).
The effective reproduction number in B(π)/r is an equilibrium object.

By Theorem 1, the zero-vigilance SIR model emerges for low vigilance, but vigilance
optimally rises in prevalence if π ≥ π, depressing the behavioral passing rate. We now
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characterize this relation by raising the FOC (5) to the power 1− φ = 2γ/(2γ + 1):

B(π) = β(1 + v∗)−2γ ≈ β[βL(1− φ)/(2φ)]φ−1πφ−1

if π ≥ π, for the approximate susceptible belief q(π) ≈ 1. So behavior is constant in
prevalence with φ = 1 (namely, the SIR model), and more elastic for lower φ ∈ (0, 1).

Theorem 2 The behavioral passing rate B(π) is continuous, with two regimes:

B(π) =

β π ≤ π (chill)

q(π)β(π/π)1−φ ≈ β(π/π)1−φ π > π (vigilant)
(6)

Since the behavioral passing rate (6) is continuous at π, we can also compactly
write it as17

B(π) = min(β, π1−φβπφ−1) (7)

As with the derived demand for any “bad”, like garbage, this demand for passing
implied by Theorem 2 falls in its unit loss L, and in the original level π of the bad.18

The falling hyperbolic behavioral passing rate in Theorem 2 for π > π induces a con-
stant coefficient log-linear derived demand for equilibrium incidence B(π)πσ, adjusting
the first term in (1):

log[B(π)πσ] = b+ φ log π + log σ (8)

We call the slope φ the incidence-prevalence elasticity. As q(π) ≈ 1, the above intercept
is

b ≈ log β+(1− φ) log π ≡ log
(
β[βL(1− φ)/(2φ)]φ−1

)
(9)

and can be positive or negative, depending on L and β. Summarizing:

Corollary 1 (Incidence and Prevalence) Equilibrium incidence B(π)πσ is log-
linear in prevalence π, as in (8), when π > π. Also, φ ≡ 1/(2γ + 1) < 1, and the
intercept b increases in φ and β, and falls in L.19

17A geometric passing rate B(π|φ) ∝ πφ for all prevalence π is impossible, since it is infinitely times
the SIR rate as π ↓ 0. “Subexponential” formulas (such as Viboud et al. (2016)) cannot globally hold.
The fixed SIR passing rate must still obtain for low enough prevalence — our chill regime.

18Quercioli and Smith (2015) exploited an interpretation of the counterfeiting rate (analogous to
the prevalence here) as the price in an “implicit market”. We do not pursue that here.

19If the passing rate only reflected one’s own vigilance, the incidence-prevalence elasticity would
be φ̂ = 1/(γ+1) = 2φ/(1+φ) > φ. Consistent with the strategic substitutes property, the equilibrium
dual filter is worse than two people optimizing but ignorant of the larger game: φ̂2 < φ.
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SIR: βπ

BSIR: min(βπ, π1−φ
0 βπφ)

BSIR: min(βπ, π1−φ
1 βπφ)

Lower disease loss L0

Higher disease loss L1

1ππ1 π00 Chill Vigilant
Figure 3: Equilibrium Infection Chance Under the BSIR. The SIR model obtains
for a smaller prevalence interval [0, π] if the disease is more dire (loss L1 versus L0). For
the common flu, SIR dynamics may obtain over a large prevalence interval (Theorem 2).

Proof: To see the last claim, the φ-derivative of b in (8) is log[πβL(1−φ)/(2φ)] > 0,
using (9), and the L-derivative is (φ− 1)/L < 0. □

Standard SIR insights about the exogenous passing rate β impact this log-linear
relationship (8): For instance, the BSIR intercept b increases in the population density.
But the SIR model places no importance of the disease loss on the contagion.

Since predicted vigilance rises in prevalence, which falls in population, we have:

Corollary 2 Fixing the number of cases, the behavioral passing rate rises in population.

This result explains why, long before we hit herd immunity, countries with larger
populations have more cases. For at high enough case levels, prevalence and so vigilance
falls in population in the BSIR model; so the behavioral passing rate rises. This pattern
was generally observed across nations in the COVID19 data.

4 The Behavioral SIR Dynamics
Our theory prescribes how prevalence impacts the behavioral passing rate. We now
explore the impact of this contemporaneous relationship on the contagion dynamics.
Theorem 2 naturally yields the dynamics (2) claimed for the BSIR, with a continuous
transition to the log-linear dynamics in the vigilant regime at transition point π = π.20

20The SIR model and BSIR continuation has a unique solution, by the Picard–Lindelof theorem.
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ρφ=1(t) ρφ=0.9(t)

ρφ=0.8(t)
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0.5
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0 100 200t

Figure 4: Contagion Dynamics, for Varying φ. We illustrate Theorem 4, by plot-
ting the (dashed) shares of past symptomatically infected by that date, for prevalence
elasticities φ = 1, φ = 0.9, and φ = 0.8. We assume a passing rate β = 0.9, and asymp-
tomatic share α = 0.5. The solid curves are currently contagious individuals. In fact,
this plots the solution for the model with vaccination, so that ρφ(t) = (1−α)[1−σφ(t)].

There is nothing about equilibrium theory that holds effective R0 below 1 and in
fact the infection follows the growth and decline pattern of SIR ... just much more
muted

Optimization can in no way holds the growth rate below one, because the static
optimization makes no account of recovery rate.

First, prevalence π is still hump-shaped and σ a falling S-shaped function of time.

Theorem 3 (BSIR Dynamics) The susceptible share σ(t) falls monotonically in
time, while prevalence π(t) either monotonically falls, or first rises and then falls.

Figure 4 depicts the hump-shaped prevalence π and S-shaped recovered shares ρ.
A greater prevalence elasticity φ < 1 reduces both the susceptible share σ and reduces
and delays the peak π. The impact of falling φ is ordinally analogous to that of falling β
in the SIR model, but different cardinally (Figure 18).

Of particular interest are breakout dynamics — namely, for low times near time
t = 0 with few infections and recoveries, when approximately σ≈ 1 and π ≈ 0. Here
the analysis is far simpler, since dynamics are formally one-dimensional. Also, it applies
where nations find themselves in early 2020.21 Or just after an effective lockdown ends,

21For instance, from an antibody survey of 70,000 people in Spain, one of the hardest hit European
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with prevalence down to π ≈ 0, the breakout analysis also holds. But in that case,
a positive mass 1 − σ̄ ∈ (0, 1) of people is infected or recovered. Reflecting meetings
that encounter susceptible individuals, the passing rate is σ̄β. For times t < τ , the SIR
dynamics apply:

π̇(t) ≈ βπ(t)− rπ(t) ⇒ π(t) ≈ π0e
(β−r)t

So the homogeneous agent SIR model predicts initial exponential growth at rate β−r.22

Provided β > r, we eventually hit π(t) = π. If β ≤ r, then the infection dies out before
the vigilant regime starts.

The linear SIR dynamical system is not solvable in closed form, and likewise neither
is our log linear behavioral SIR system. But from breakout, we can solve it explicitly.
For t > τ , the passing rate is B(t) ≈ β[π/π(t)]1−φ, given the susceptible belief q ≈ 1,
by Theorem 2. We have an autonomous first order Bernoulli differential equation:

π′(t) = βπ1−φπ(t)φ − rπ(t) ⇒ π(t) = π

(
β

r

(
1− ke−r(1−φ)t

)) 1
1−φ

(10)

for the constant k = (β/r − 1) (π/π0)
r(1−φ)/(β−r). One can check that the prevalence

π(t) is an increasing, convex and log-concave function of time t.23

The herd immunity locus are all pairs (σ, π) with stationary prevalence: π′ = 0.
That is, the net prevalence flow is at a stationary point, and thus, by Theorem 3,
prevalence is thereafter falling. Herd immunity in the SIR model happens because rising
immunity chokes off new infections; therefore, the herd immunity locus is independent
of π only in the SIR model with prevalence elasticity φ = 1 in Figure 5. But in the
behavioral SIR model, vigilance also chokes off contagions: Since individuals are more
vigilant at a higher prevalence, less immunity is needed with more prevalence. In other
words, the herd immunity locus is decreasing in (1−σ, π) space, as depicted in Figure 5.

Herd immunity starts at (σ̌φ, π̌φ) when inflow balances outflow: π′ = 0 in (2), if
and only if

B(π)σ̌φπ̌
φ
φ = rπ̌φ ⇒ σ̌φ = (r/B(π))π̌1−φ

φ > r/β

countries, found that only 5% of Spaniards have been infected with the coronavirus.
22We thank Chris Auld (Victoria) for a nice insight: There is a well-known impact of heterogeneity

in β via a selection effect: as time goes on the remaining susceptibles are likely low-β types. This by
itself flattens the curve.

23We can show that this creates a log-concave total case count.
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Figure 5: The Herd Immunity Locus. We plot the stream path and herd immunity
locus for prevalence π and {immune or recovered} 1− σ, assuming φ = 0.85, β = 0.5,
r = 1/17, and L = 200000, with no one asymptomatic. Prevalence is stationary
(π′ = 0) along the red herd immunity locus, rising below it (fewer immune), falling
above it (more immune). This herd immunity locus is falling in (π, 1−σ) space due to
the equilibrium avoidance behavior. Around 90% of people are eventually infected.

Notice that whereas herd immunity in the SIR model is independent of prevalence
(see §2), a tradeoff emerges in the BSIR: more people can be susceptible if more are
infected (Figure 5). For in that case, people are more careful, and thus the passing rate
is lower; hence, more can be susceptible. Moreover, herd immunity in the BSIR model
allows a larger mass of susceptible people than in the SIR model.

The SIR model predicts more infections. But maximizing avoidance behavior in the
BSIR increasingly “flattens” the curve as the prevalence elasticity φ falls (Figure 18).
Despite lacking a closed form formula, we indirectly one can show that the herd im-
munity is increasing in the infectiousness β, and in the behavioral model, falling in the
losses L from infection.

Theorem 4 (Herd Immunity) As the prevalence elasticity φ falls, (i) the herd
immunity time τφ rises, (ii) peak prevalence πφ falls, (iii) the herd immunity infection
share 1−σφ falls, and (iv) its ratio to eventual infections (1−σφ)/(1−σφ(∞)) rises.

This result and Figure 18 make clear that infections stop long after we hit herd im-

14



φ = 1

φ = 0.9

φ = 0.8

π 10 π0

1− σ

β = 0.8

β = 0.6

β = 0.4

β = 0.2

π0 1
Figure 6: Contagion Dynamics. We plot the stream path and herd immunity locus
for prevalence elasticities 1 (blue), 0.9 (cyan), and 0.8 (magenta) at left [with passing
rate β = 0.5], and passing rates 0.8 (blue), 0.6 (red), and 0.4 (magenta), and 0.2 (green)
[with prevalence elasticity φ = 0.85], and no asymptomatics. As φ or β falls, the peak
prevalence falls, and the herd immunity locus shifts down and left in (π, 1 − σ)-space.
Herd immunity is independent of prevalence π only in the SIR model.

munity!24 Obviously, the true cost of any policy changes reflects the eventual infection
numbers, and not number at the moment herd immunity is achieved.

To understand herd immunity, note that it is the tipping point, NOT the endpoint!
If the COVID fires start to abate by prevalence �=40% (my guess), we eventually will
hit say 70%+ by infection or vaccination. Faster vaccination reduces the death toll.

5 COVID19
1. Mitigation

2. Seasonal effects
3. Mutations
4. Vaccinations
Mitigation efforts are game changer, literally: They change the game. Since our

24“A note on the derivation of epidemic final sizes”
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only parameter is the exogenous passing rate β, we assume that any mitigation effort25

such as a lockdown scales down β. Since this is a submodular game, the behavioral
passing rate scales down by a smaller factor, as vigilance rises, by Corollary 1.

First, we must convert this to a stochastic discrete time model.
To capture the COVID19 pandemic, we enrich our infection model, first toward an

SEPSR Model (Susceptible - Exposed - Presymptomatic - Symptomatic - Recovered),
and then add two twists. First, we assume that a fraction α of infected individuals
are entirely asymptomatic through their infection (“silent spreaders”), and only spread
with reduced (possibly zero) chance ζ. Second, we assume two contagious states — a
distinction that is inessential for epidemiology, but critical here, because choices must
reflect information, and one’s symptoms can flag a person that he is sick. Thus, infected
individuals pass through a sequence of states (see Figure 7):

We consider an SEPIR model (Susceptible-Exposed-Presymptomatic-Infected-recovered)

• State 1: Exposed, or infected and incubating but not yet contagious

• State 2: Infected, Contagious and Pre-Symptomatic

• State 3: Infected, Contagious and Symptomatic

• State 4: Recovered and no longer Infected

Susceptible individuals, S, enter the exposed class, E, upon infection after contact
with infected individuals. Some will remain asymptomatic, A, while the remainder
become pre-symptomatic, P. The latter will advance to the symptomatic stage, I, which
die from the disease at rate α (referred to as ‘virulence’). All others eventually recover,
and are assumed immune.

We take primitives from Ferretti et al. (2020), summarized in Figure 7.26

We secured data on 4/9/2020 from https://github.com/CSSEGISandData/COVID-
19. This data set relies on tests, and thus is perforce incomplete. Day to day variation
in the availability of tests data adds volatility to the measured case count.

25These are known as NPI, for non pharmaceutical intervention
26The incubation period (the time between infection and onset of symptoms) has mean 5.5 days.

The relative infectiousness of asymptomatic individuals compared with symptomatic individuals is 0.1.
The fraction of infected individuals who are asymptomatic is 0.4, based on media reports from the
Diamond Princess.
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Figure 7: The SI3R Model.

Figure 8: Pre- and Post Lockdown New Zealand. We depict log daily cases as a
function of the total currently contagious.
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Figure 9: Pre- and Post Lockdown in Australia. We depict log daily cases as a
function of the total currently contagious.

Figure 10: Pre- and Post Lockdown in Norway. We depict log daily cases as a
function of the total currently contagious.
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Figure 11: Pre- and Post Lockdown in Austria. We depict log daily cases as a
function of the total currently contagious.

Figure 12: Pre- and Post Lockdown in Germany. We depict log daily cases as a
function of the total currently contagious.
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Figure 13: Pre- and Post Lockdown in Switzerland. We depict log daily cases as
a function of the total currently contagious.

Figure 14: Pre- and Post Lockdown in Cambodia. We depict log daily cases as a
function of the total currently contagious.
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We report regressions of log of incidence of new cases daily nct against currently
contagious cct for various countries. We assume a 14 day contagion window, so that

log(nct) = b̂+ φ log(cct)

This corresponds to the regression (8), except that it does not scale for the population.
Lockdowns. Let us interpret mitigation, lockdown, or stay-in-place orders as an

exogenous reduction in the passing rate β. Then by Corollary 1

5.1 Age dependent infection rates

NY and NJ were caught off guard with a sudden rise in infectiousness due to the time
lags. Now, each state is following the model, with lockdown influencing β in each case.

6 Swine Flu
• Estimate this with the same machinery

• What is the difference between pandemics in β and loss L?

• Despite being more contagious, COVID ha spread less after 11 months than
H1N1!

The Swine Flu lasted January 2009 to August 2010, and in the USA starting in April
2009, and lasting about a year. We have acquired a unique data set of this pandemic,
with weekly or daily data from the state health departments of each of 41 states in the
USA. Our total case count is 150,023 people in 41 states representing 260.1M people.
In fact, the CDC estimates that around 61.8M Americans succumbed to H1N1.

H1N1 profited from a standard seasonal effect in summer 2009, akin to a falloff in
contagiousness, with a major emergence in the fall of 2009. The pandemic ended at
herd immunity, helped by a vaccination that emerged in fall 2009. This affords us an
essential glimpse of the future for COVID.

Swine Flu had a clear seasonal component to the transmission rate, with β falling
in the summer of 2009.

We now modify the model to account for vaccinations. Assume that a fraction v(t)

of people are vaccinated by period t. Of course, only the uninfected get vaccinated,
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and thus we now interpret σ(t) as the fraction who have not yet gotten infected, and
the true mass of susceptible people is σ(t)− v(t). the theoretical dynamics are:

σ̇(t) = −B(t)π(t)[σ(t)− v(t)]

Here we see the timeline of Swine Flu pandemic in the USA. Herd immunity begin
on 10/31/09 with 70.1% infected at that time. In other words, much of the battle still
lay ahead.

Herd immunity has been in the air this year, and has been used too casually. Fauci
has adapted to the casual usage in the press of the endgame of the pandemic. But
the relevant definition is when R0=1, which happens long before the endgame. Best
metaphor is that a pandemic is a wildfire and after the fires start to dim, there is
still a helluva lot of forest yet to burn. Here is Swine Flu. Rough story is that after
herd immunity hit, another 1/3 of infections were yet to occur. I miswrote in my
earlier comment: Swine Flu hit herd immunity around 21% on Halloween 2009. Of
this, around 7% were vaccinated and 14% were infected. We ended at around 25%
vaccinated and 20% infected.

Herd immunity is being abused here and by Fauci. It is a tipping point, and
not the endpoint. If the pandemic ends with 2/3 immune (H1N1 ended with about
45%; upper curve in the plot; empty circle plot was vaccinated plot), then the tipping
point was likely around 30Secondly, we reject the linear SIR model in favor the log-
linear behavioral SIR model. And its tipping point is not an invariant percent of the
population. When the pandemic is raging out of control, people are more vigilant, and
tipping occurs at a lower percentage immune. The latter insight speaks to an advantage
of rapid vaccination: fewer need be infected and die before we hit herd immunity.
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7 Conclusion
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Figure 15: Log Incidence on Log-Prevalence: CT, ME, MA, NH, RI and VT.
We depict the estimation of the number of new cases Nt on the currently contagious
H1N1 cases Ct, accounting for the susceptible fraction σt

We ignore the possibility of lags. This makes the model SIR in the short run, if people
do not react. This would allow temporary spikes.

If individuals respond to announced cases or deaths, then this creates lags and thus
naturally cycles that we observe!

We have developed the behavioral SIR model, and applied it to the two pandemics
post 2000. Its behavioral respond also can be applied to SI contagions, like AIDS or
herpes, and should predict a log-log rule.

We now depict the monthly ratios of COVID-19 infection rates for adjacent age
groups, for the state of Massachusetts in 2020. Notice that
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Figure 16: Log Incidence on Log-Prevalence: NJ and NY.
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Corollary 1 rationalizes the more cavalier behavior of younger less at-risk groups in
a contagion (see §5.1).

A Increasing Avoidance Behavior Pre-Lockdown
We document increasing avoidance behavior, before any government recommended
social distancing or mandated pre-lockdown! See Figure 17.

B Omitted Plots

C Omitted Proofs

C.1 Derivation of Breakout Equation (10)

If π′ = Cπφ−rπ, where C = βπ1−φ, then π′/πφ = C−rπ1−φ. Define y = π1−φ/(1−φ).
Then y′ = C(1−φ)− r(1−φ)y, and thus log[C(1−φ)− r(1−φ)y] = −r(1−φ)t+ k′,
whence C/r − y = ke−r(1−φ)t, and so π(t) = y(t)1/(1−φ) =

(
C/r − ke−r(1−φ)t

)1/(1−φ).

C.2 Prevalence is Hump-shaped: Proof of Theorem 3

It suffices to prove that π′(t) is downcrossing; i.e. that if π′(t) ≥ 0, then this remains
true as t falls. In the vigilance regime, (??) implies π′(t) ≥ 0 iff βq(π)σ(t)π1−φ ≥
rπ(t)1−φ. If this holds at time t, then it holds strictly for slightly lower t. For that
both increases the LHS (σ monotonically falls) and weakly decreases the RHS (by the
premise that π is nondecreasing at t). So π′(t) ≥ 0 ⇒ π′(τ) > 0 for τ < t, as desired.□

C.3 Herd Immunity: Proof of Theorem 4

(omitted for now)
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Figure 17: Year-over-year decline of seated diners at restaurants prior to locally-
mandated closures (from OpenTable)
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(1− α)[1− σβ=1(t)]
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Figure 18: Contagion Dynamics, for Varying β. For prevalence elasticity φ = 0.85
and α = 0.5 asymptomatic (never contagious), we plot the (dashed) shares of past
symptomatically infected, for three passing rates β. The solid curves are currently
contagious individuals. Prevalence is hump-shaped (Theorem 3). Note to us: must
add BSIR ODE with asymptomatic infections.
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