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How Markets Enable Risk Sharing

▶ Robinson Crusoe: shared ownership of firm exists to finance
large firms that no one individual could own

▶ But shared ownership plays another key role: risk-sharing
▶ 1602, the Dutch East India Company officially was the world’s

first publicly traded company
▶ issued shares of the company on Amsterdam Stock Exchange
▶ Ships returning from the East Indies had a high chance of loss

due to weather, war, or pirates.
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How Markets Enable Risk Sharing

▶ Robinson Crusoe: shared ownership of firm exists to finance
large firms that no one individual could own

▶ But shared ownership plays another key role: risk-sharing
▶ 1602, the Dutch East India Company officially was the world’s

first publicly traded company
▶ issued shares of the company on Amsterdam Stock Exchange
▶ Ships returning from the East Indies had a high chance of loss

due to weather, war, or pirates.

▶ Instead of investing in one voyage, investors could now
purchase shares in multiple companies.

2 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

How Markets Enable Risk Sharing

▶ Robinson Crusoe: shared ownership of firm exists to finance
large firms that no one individual could own

▶ But shared ownership plays another key role: risk-sharing
▶ 1602, the Dutch East India Company officially was the world’s

first publicly traded company
▶ issued shares of the company on Amsterdam Stock Exchange
▶ Ships returning from the East Indies had a high chance of loss

due to weather, war, or pirates.

▶ Instead of investing in one voyage, investors could now
purchase shares in multiple companies.

▶ The company eventually went bankrupt in 1799
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Arrow-Debreu Securities and Risk Sharing
▶ Exchange economy with n traders and L goods
▶ Time-1: A state of the world s ∈ S = {1, . . . , S} is realized.
▶ Time-0: Only the probability πs of each state s is known.
▶ Label the goods in the Arrow-Debreu model by the state.
▶ A state-contingent claim xℓs ∈ RLS is a title to a unit of

consumption of good ℓ in state s.
▶ ps = price of the state s contingent claim, or Arrow security.
▶ So far, trade was contractually implemented, not using money.

These are now LS forward contracts — binding agreements to
buy/sell an underlying asset in the future, at a price set today

▶ The consumption vector of trader i is thus xi ∈ RLS.
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Complete Markets

▶ Complete markets: if there is one Arrow security for every
state (contingent claim), or if his securities span the states.
▶ Sports Example: If two teams score X and Y points,

individuals can often bet on the spread X − Y and the
over/under line X + Y. Together, these easily allow complete
identification of the scores X and Y.
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The Value of Life in the Two State Model
▶ L = 1 good, denoted x = “money”
▶ twice differentiable and concave Bernoulli utility function u(x).
▶ Willingness to accept for a cross town delivery trip, with a

chance p > 0 of deadly accident (costing L > 0) is π = $200.
▶ Case 1: linear function u (risk neutral) ⇒ WLOG u(x) = x:

w = (1− p)(w+π)+ p(w+π−L) ⇐⇒ pL = π ⇐⇒ L =
π

p
▶ So if p = 0.01%, then L = $200/0.0001 = $2, 000, 000
▶ Case 2: concave u (risk averse, in the sense of Arrow Pratt)

u(w) = (1 − p)u(w + π) + pu(w + π − L)
≤ u ((1 − p)(w + π) + p(w + π − L))

⇒ w ≤ (1 − p)(w + π) + p(w + π − L)

▶ Hence, pL ≤ π ⇐⇒ L ≤ π/p
5 / 22
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Risk Bearing and Optimal Insurance
▶ The WTP exercise explored an extensive margin. The optimal

insurance question turns on the intensive margin.
▶ Let disaster state wealth have price p in insurance premiums.

max
q≥0

πu(w − L + q − pq) + (1 − π)u(w − pq)

▶ At an interior solution, the FOC is:
π(1 − p)u′(w − L + q − pq)− p(1 − π)u′(w − pq) = 0

▶ Actuarially fair insurance when p = π, since the premiums
paid pq equal expected value of compensation received πq
u′(w−L+q−pq) = u′(w−pq) ⇔ q∗ = L (full insurance)

▶ Typical case is unfair insurance prices: p > π

FOC: u′(w − pq)
u′(w − L + q − pq) =

π(1 − p)
p(1 − π)

< 1

⇒ u′(w − pq) < u′(w − L + q − pq)
▶ So q < L if risk averse ⇒ not fully insured.
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The Fundamental Theorem of Risk Bearing

▶ Endowment of wealth across states x = (xs)

▶ Expected utility U(x1, . . . , xS) =
∑S

s=1 πsu(xs)

▶ Lagrangian L =
∑S

s=1 πsu(xs) + λ
∑S

s=1 ps(x̄s − xs).
▶ FOC: λ = πsu′(xs)/ps for all s.

Proposition (Fundamental Theorem of Risk Bearing)

π1u′(x1)

p1
= · · · = πSu′(xS)

pS

▶ Implications: the price of a state-contingent security rises in
proportion to the likelihood of the state.
▶ Eg. life insurance is really cheap for young buyers, and doubles

in price when the death rates double.
▶ This allows us to infer event probabilities from insurance rates.
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RIsk Bearing Encore: Must You Bet Against Your Team?

▶ Bad state s = 1 and good state s = 2 (your team loses / wins)
▶ Assume state-dependent utility functions u2(w) > u1(w)
▶ An extra time-0 dollar, used to buy Arrow securities,

▶ added to bad state raises expected utility by π1
p1

u′
1(w)

▶ added to good state raises expected utility by π2
p2

u′
2(w)

▶ With fair prices, pi = πi, one transfers a dollar to the higher
marginal utility state.

▶ Is Joy best captured by the marginal utility of spending?

8 / 22
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Yaari’s Depiction of Risk Aversion in Two State World
▶ Consumption x1 and x2 in states 1 & 2 with chances π1 & π2
▶ Expected utility U(x1, x2) = π1u(x1) + π2u(x2)
▶ Risk aversion ⇒ u concave ⇒ U concave ⇒ U quasiconcave
▶ A consumption vector x not on certainty line (x2=x1) is risky
▶ The MRS on certainty line is π1/π2
▶ Define more risk averse ⇔ willing to pay more to avoid risk
▶ We now relate this economic notion to the concavity of u(x)
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Risk Sharing: Idiosyncratic Risk

▶ Assume risk averse traders Iris and Joe, and S = 2 states.
▶ Iris and Joe obey π1u′(x1)/p1 = π2u′(x2)/p2 = λ.

x1 ≷ x2 ⇔ p1π2
p2π1

=
u′(x1)

u′(x2)
≶ 1 (1)

⇒ xI
1=xI

2 & xJ
1=xJ

2, or xI
1>xI

2 & xJ
1>xJ

2, or xI
1<xI

2 & xJ
1 < xJ

2.
▶ Total endowment x̄s = x̄I

s + x̄J
s in state s.

▶ purely idiosyncratic risk: x̄1 = x̄2
▶ aggregate risk: x̄1 ̸= x̄2

▶ Case 1: Idiosyncratic risk ⇒ x1 = x2
⇒ fair prices: reflect probabilities of states: p1/p2 = π1/π2
⇒ traders fully insure
▶ Life insurance premiums reflects death probabilities, and house

insurance the chance of a home burning down.
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Risk Sharing: Idiosyncratic Risk
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Risk Sharing: Aggregate Risk
▶ Case 2: Aggregate risk, with x̄1 > x̄2 (disaster state is s = 2)

▶ Fundamental Theorem of Risk Bearing ⇒ traders share risk.
▶ x̄1 > x̄2 ⇒ xI

1 > xI
2 and xJ

1 > xJ
2 ⇒ p1/p2 < π1/π2

▶ logarithmic Bernoulli utility uI(x) = uJ(x) = log x
⇒ utility function over consumption bundles is Cobb Douglas
▶ Ordinal utility U(x1, x2) = π1 log x1 + π2 log x2
▶ p1/p2 = (x̄2/x̄1)(π1/π2) > π1/π2.

▶ Example: earthquake insurance in California is extremely
costly, since it only pays out in an overall disastrous state.
▶ “force majeure” denies liability for catastrophes

12 / 22
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Risk Sharing: Aggregate Risk

▶ What happens to risk sharing if Iris grows more risk averse?
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Information Revelation and Rational Expectations
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Information Revelation and Rational Expectations
▶ So far, prices serve as a mechanism to clear markets
▶ But prices also convey information about supply and demand

▶ Austrian economists, non Mises (1920) and Hayek (1935):
social planners do not solve the calculation problem: aggregate
idiosyncratic consumption / production information

▶ In a rational expectations equilibrium, agents fully extract
information from prices (= Bayesian Nash equilibrium)

▶ 1970s rational expectations work (Radner, Lucas, Sargent,...)
15 / 22
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Information Revelation and Rational Expectations

▶ Can prices “serve two masters”: clear markets & convey info?
▶ Information ⇒ discontinuous demand as a function of price.
▶ Resolution: Noisy prices ⇒ small price changes reflect noise

more than fundamentals.
▶ Tatonnement process is now delicate:

▶ Auctioneer calls out a price
▶ Traders make demands
▶ Traders see demands, and revise demands
▶ Rinse and repeat

16 / 22
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Prices Reveal Information in Prediction Markets

▶ These let people bet on sporting or presidential etc. events.
▶ Share price convey the expected probability of events.
▶ Example: Every individual i has log Bernoulli utility, wealth

wi, and can buy x + i shares at price p [“Joe wins in 2020”]
max

xi
πi log[wi + xi(1 − p)] + (1 − πi) log[wi − xip]

▶ Individual i = 1, . . . , n’s demand: x∗i = wi
πi−p

p(1−p) .
▶ Traders buy if more optimistic than the price (πi > p)

▶ Assume everyone is equally wealthy: wi = w for all i.
▶ Clear markets: Market excess demand is

∑n
i=1 x∗i = 0, or∑

πi>p
(πi − p) =

∑
πi≤p

(p − πi) ⇒ p =
1
n

n∑
i=1

πi

17 / 22
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Political Prediction Market, as of Monday
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Political Prediction Market, as of Wednesday
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Prediction Market Fail, as of Monday
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Prediction Market Fail, as of Wednesday
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Rational Expectations Equilibrium: Nonexistence (Kreps)
▶ Iris likes x more if s = 2: uI(x, y) = s log x + y for s = 1, 2
▶ Joe likes x more if s = 1: uJ(x, y) = (3 − s) log x + y
▶ Iris knows s, but Joe thinks s = 1, 2 each have 50% chance
▶ Endowments: x̄ = 2, and ȳ is large.

▶ Iris’s FOC is xI(p) = s/p, provided ȳI ≥ 2p.
▶ Joe’s FOC is xJ(p) = (3 − s)/p, provided ȳJ ≥ 2(1 − p).

▶ If Joe learns the state from the price, then market demand is

xI(p) + xJ(p) = s
p +

3 − s
p =

3
p ⇒ p(s) = 1.5

▶ This price is the same in s = 1, 2 ⇒ conceals Iris’s information.
▶ If Joe learns nothing from the price, then market demand is

xI(p) + xJ(p) = s
p +

1.5
p = 3 ⇒ p(s) = 3

s + 1.5
▶ This price is different in s = 1, 2 ⇒ reveals Iris’s information.

▶ ̸ ∃ rational expectations equilibrium in this example.
▶ Exercise: Find all REE if uI(x, y) = uJ(x, y) = s log x + y
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▶ Iris’s FOC is xI(p) = s/p, provided ȳI ≥ 2p.
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