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General Equilibrium and the Gold Rush
▶ Partial equilibrium: one-market world, often with quasi-linear

utility — where “money” subsumes all other goods
▶ General equilibrium multi-market world: Markets interact!
▶ Sam Brannan

▶ Richest man in California after Gold Rush of 1849
▶ “Gold! Gold on the American River!”
▶ Brennan owned only store between San Francisco & gold fields
▶ paid 20 cents each for the pans, then sold them for $15 each
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General Equilibrium in the Movies

▶ Goldfinger: evil mastermind tried to irradiate Fort Knox gold
⇒ his own gold would ↑ in value

▶ Die Hard with a Vengeance: same plan for the gold in NY Fed.
▶ A View to a Kill: bad guy wants to trigger earthquake to

destroy Silicon Valley, and then monopolize microchip market.
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General Equilibrium in the Movies

▶ Casino Royale: bad guy shorts airline stocks, while planning to
destroy a luxury jetliner on its maiden voyage.

▶ Quantum of Solace: bad guy wants to dam Bolivia’s fresh
water supply to create a Bolivian water monopoly (total joke).
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General Equilibrium in the World: Corona Virus!
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Conspiracy Theories with a GE Flavor
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General Equilibrium Notation
▶ Exchange economy E = ({ui}, x̄).

▶ L ≥ 2 goods ℓ ∈ {1, 2, . . . , L}
▶ n ≥ 2 traders i ∈ {1, 2, . . . , n}
▶ Consumer i has endowment x̄i = (x̄i

1, x̄i
2, . . . , x̄i

L)
′ ∈ RL

+
▶ A goods allocation is a matrix x = (x1, . . . , xn) ∈ RnL

+ .
▶ Trader i has utility ui : RL

+ → R.
▶ Trader i’s income is the market value p · x̄i of his endowment
▶ So every trader solves a traditional consumer theory problem

▶ Prices p = (p1, p2, . . . , pL) ∈ RL
+ in some unit of account

▶ Jevons (1875): Money is a store of value, unit of account, and
medium of exchange, standard of deferred payment

▶ Here, it is only a unit of account, and so ∃ degree of freedom.
▶ Each trader sells his endowment to the market, valued at the

unit of account prices, and then buys his optimal bundle.
▶ We assume that all transactions realize by time-0 contracts
▶ Modern financial transactions, together with bankruptcy laws,

violate this idyllic world (hence the 2008 Financial Crisis)

8 / 48
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General Equilibrium
▶ A trader’s wealth is the market value of his endowment
▶ Budget set Bi(x̄i,p) = {xi ∈ RL

+|p · xi ≤ p · x̄i}
▶ Traders optimize, given prices: Trader i = 1, 2 . . . , n solves:

max ui(xi) s.t. xi ∈ Bi(x̄i,p)

▶ Allocation x ∈ RnL
+ is feasible for E if

∑n
i=1 xi

ℓ ≤
∑n

i=1 x̄i
ℓ ∀ℓ

▶ free disposal of goods ⇒ weak inequality
▶ We say that markets clear in this case

▶ A feasible allocation x is (Pareto) efficient

▶ An allocation where one trader owns everything is efficient.

9 / 48
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General Equilibrium
▶ A trader’s wealth is the market value of his endowment
▶ Budget set Bi(x̄i,p) = {xi ∈ RL

+|p · xi ≤ p · x̄i}
▶ Traders optimize, given prices: Trader i = 1, 2 . . . , n solves:

max ui(xi) s.t. xi ∈ Bi(x̄i,p)

▶ Allocation x ∈ RnL
+ is feasible for E if

∑n
i=1 xi

ℓ ≤
∑n

i=1 x̄i
ℓ ∀ℓ

▶ free disposal of goods ⇒ weak inequality
▶ We say that markets clear in this case
▶ A competitive equilibrium (x,p) of E is a feasible allocation x

such that all traders optimize, given prices
▶ A feasible allocation x is socially optimal if ̸ ∃ feasible

allocation x̂ with
▶ no one worse off: ui(x̂i) ≥ ui(xi) for all i = 1, . . . , n,
▶ some trader j strictly better off: uj(x̂j) > uj(xj) for some j
▶ analogous to a blocking pair for stability

▶ An allocation where one trader owns everything is efficient.
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Edgeworth Boxes for n = 2 Traders
▶ Francis Ysidro Edgeworth

▶ Mathematical Psychics (1881)
▶ introduced indifference curves
▶ founding editor: Economic Journal

▶ Assume Trader Iris and Trader Joe
trade goods x and y

▶ Here, they trade to an efficient allocation from endowment
▶ Assume an interior solution with smooth preferences.
▶ Equate marginal rate of substitution and price ratio: ux

uy
= px

py

10 / 48
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Competitive Equilibrium and Social Efficiency
▶ Contract curve: the locus of socially efficient allocations x
▶ Individually rational (IR) allocation x obeys ui(xi) ≥ ui(x̄i) ∀i
▶ The core x is the IR portion of the contract curve
▶ A competitive equilibrium for E is a pair (x,p) s.t. x is feasible,

and optimal for traders, given prices p (via budget sets)
▶ A competitive equilibrium is in the core because xi ∈ Bi(x̄i,p)
▶ Divergent marginal rates of substitution ⇒ gains from trade
▶ In exchange economies, trade occurs due to differences in

preferences and/or endowments

11 / 48
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Social Efficiency with Perfect Complements
▶ Utility functions uI(x, y) = min{x, y} & uJ(x, y) = min{x, y}
▶ Endowments x̄I = x̄J = 2 and ȳI = ȳJ = 1
▶ The contract curve is the shaded region, since preferences are

not strictly monotone

12 / 48
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Social Efficiency with Imperfect Complements

▶ Increasing preferences that with at least one party strictly
convex is needed to ensure a contract curve and not region

13 / 48
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Social Efficiency with Smooth Strictly Convex Preferences
▶ Cobb-Douglas utility functions uI(x, y) = xαy and uJ(x, y) = xy
▶ Endowments x̄I = x̄J = ȳI = ȳJ = 1.
▶ Contract curve: MRSI

x,y = MRSJ
x,y

αyI/xI = yJ/xJ ⇒ αyI(2−xI) = xI(2−yI) ⇒ y1 =
2xI

α(2 − xI) + xI

▶ Contract curve is above or below the diagonal as α ≶ 1.
▶ As α ↑, Iris values good x more, and he efficiently gets more x

14 / 48
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Competitive Equilibria are Socially Efficient
▶ Since trade is win-win, it makes sense that self-interest is good
▶ Adam Smith (1723–90)

▶ 1759: “Theory of Moral Sentiments” explored empathy
▶ 1776: “Inquiry into the Nature and Causes of the Wealth of

Nations” explored the social benefits of self-interest
▶ “It’s not from the benevolence of the butcher, the brewer, or

the baker that we expect our dinner, but from their regard for
their own interest”

▶ Smith attacked win-lose mercantilism: “We must always take
heed that we buy no more from strangers than we sell them,
for so should we impoverish ourselves and enrich them” (1549)

15 / 48



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Competitive Equilibria are Socially Efficient
▶ Since trade is win-win, it makes sense that self-interest is good
▶ Adam Smith (1723–90)

▶ 1759: “Theory of Moral Sentiments” explored empathy
▶ 1776: “Inquiry into the Nature and Causes of the Wealth of

Nations” explored the social benefits of self-interest
▶ “It’s not from the benevolence of the butcher, the brewer, or

the baker that we expect our dinner, but from their regard for
their own interest”

▶ “When a country is losing many billions of dollars on trade
with virtually every country it does business with, trade wars
are good, and easy to win” — Trump (2018)
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The First Welfare Theorem
Proposition (Arrow (1951) & Debreu (1951), 1940s folk result)
If (p, x) is a competitive equilibrium of E , and preferences are
locally non-satiated, then x is socially efficient.
▶ Intuition: If another allocation is better for all and strictly

better for Joe, then it costs everyone at least as much (at the
market price), and Joe strictly more. It thus costs more than
the old allocation, and so more than the endowment.

▶ Proof: If x is socially inefficient, there is a feasible allocation x̂
with ui(x̂i) ≥ ui(xi) for all i, and uj(x̂j) > uj(xj) for some j.

▶ Claim 1: p · x̂i ≥ p · xi for all i
▶ Proof: If not, p · x̂i < p · xi even though ui(x̂i) ≥ ui(xi)
▶ By local nonsatiation, ∃yi arbitrarily close to xi (and so still

affordable) but strictly preferred to xi, contrary to xi optimal
▶ Claim 2: p · x̂j > p · xj

▶ Proof: This follows since xj is a utility maximizer for trader j
▶ Adding yields p ·

∑n
i=1 x̂i > p ·

∑n
i=1 xi.

▶ Since p ≥ 0, this contradicts
∑n

i=1 x̂i ≤
∑n

i=1 xi. □

16 / 48
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The First Welfare Theorem

▶ The proof logic used revealed preference theory.
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The Second Welfare Theorem
Proposition (Second Welfare Theorem)
Assume that consumers have continuous, monotonic, and
quasiconcave utility functions. If x ∈ Rℓn

+ is an efficient allocation,
then there exists a price p ∈ Rℓ

+ such that (x,p) is competitive
equilibrium of E = ({ui}, x̄).

▶ Why do we need convex preferences?
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The Second Welfare Theorem
▶ As in a double auction, equilibrium prices need not be unique.
▶ But here, nonuniqueness is harder to secure, given the

intensive margin
▶ Question: When are competitive prices unique?

Answer: At least one consumer has smooth convex preferences
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The Second Welfare Theorem: Proof Idea
▶ The (Minkowski) Separating Hyperplane Theorem proof

intuitively works for two traders
▶ Minkowski taught Einstein, and reformulated his 1905 special

relativity as spacetime in 1908 (but then sadly died 1909 at
age 44 of appendicitis)

▶ The Separating hyperplane Theorem easily works for n = 2:
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The Second Welfare Theorem: Proof by Lones Smith

▶ Let’s parallel Shapley and Shubik’s 1971 housing model proof
▶ Assume differentiable utility functions.

▶ Proof: At an efficient allocation x, Trader Joe j ∈ {1, . . . , n}
maximizes his own utility, s.t. others’ utility from x:
max

z
uj(zj) s.t. uj(zj) ≥ ui(xi) for all i ̸= j∑

i zi
ℓ ≤

∑
i xi

ℓ for ℓ = 1, . . . , L (feasibility)
▶ As x is efficient, this maximum is realized at z = x.

▶ objective function uj is quasiconcave
▶ constraint set is nonempty if no one is near a subsistence

utility level (regularity condition on utility functions)
▶ constraint set is convex if uj(zi) is quasiconcave

⇒ Lagrangian has saddle point property for some multipliers λi,p

Lj(z,pj, λj) = uj(zj)+
∑
i̸=j

λj
i[ui(zi)−ui(xi)]+

∑
ℓ

pj
ℓ

[∑
i

xi
ℓ −

∑
i

zi
ℓ

]
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The Second Welfare Theorem: Proof by Lones Smith
▶ Optimality in zi

ℓ and zj
ℓ for all traders i ̸= j yield the FOC’s:

∂

∂zj
ℓ

Lj(z,pj, λj) =
∂

∂zj
ℓ

uj(zj)− pj
ℓ = 0

∂

∂zi
ℓ

Lj(z,pj, λj) = λj
i
∂

∂zi
ℓ

ui(zi)− pj
ℓ = 0

▶ Equate pj
ℓ for traders i ̸= j is:

λj
i =

∂

∂zj
ℓ

uj(zj)

/
∂

∂zi
ℓ

ui(zi)

▶ Equate Planner’s MRS between any traders i, j across goods ℓ

∂

∂zi
ℓ1

ui(zi)

/
∂

∂zj
ℓ1

uj(zj) =
∂

∂zi
ℓ2

ui(zi)

/
∂

∂zj
ℓ2

uj(zj)

⇒ The price ratio pℓ1/pℓ2 is the same for any two traders i, j:
pi
ℓ1/pi

ℓ2 = pj
ℓ1
/pj

ℓ2

⇒ Multipliers are pj = cjp, some cj > 0, in Lagrangian for all j
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The Second Welfare Theorem: Proof by Lones Smith

⇒ Lj(z,p, λj) = uj(zj) +
∑
i̸=j

λj
i[ui(zi)− ui(xi)] + cjp · [xj − zj]

▶ Fixing the optima zi = xi for all i ̸= j, the saddle point
property of Lj gives Lj(z,p, λj) ≤ Lj(x,p, λj) for all zj:

uj(zj) +
∑
i̸=j

λj
i[ui(zi)− ui(xi)] + cjp · [xj − zj] ≤ uj(xj)

Since uj(zj) ≥ ui(xi), we must have

uj(zj) + cjp · [xj − zj] ≤ uj(xj)

⇒ If uj(zj) > uj(xj) then p · zj > p · xj. At price p, no trader j
can afford any bundle zj with a higher utility than xj

⇒ (x,p) is competitive equilibrium □
23 / 48
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Prices as Shadow Values

Corollary
The price of any good is its social shadow value.
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Excess Demand Functions
▶ Strictly convex preferences ⇒ unique demands xi

ℓ(p)
▶ Trader i’s excess demand (net demand): EDi

ℓ(p) = xi
ℓ(p)− x̄i

ℓ
▶ The market excess demand for xℓ is EDℓ(p) =

∑n
i=1 EDi

ℓ(p)
▶ Markets clear in a competitive eq (x(p),p): EDℓ(p) = 0 ∀ℓ

Lemma (Walras Law)
If traders consume their entire income at allocation x(p), then the
market value of net excess demand vanishes:

∑L
ℓ=1 pℓEDℓ(p) = 0.

▶ Proof: Trader i’s budget constraint p · xi(p) ≡ p · x̄i:
L∑

ℓ=1
pℓEDi

ℓ ≡
L∑

ℓ=1
pℓ[xi

ℓ(p)− x̄i
ℓ] ≡ 0 □

⇒ By Walras, it suffices that L − 1 of L markets clear
▶ Since demand is homogeneous of degree zero in (income,

prices), there is a degree of freedom in the prices. So we can:
▶ pick a good as numeraire, the de facto currency, with unit price
▶ or, insist that all prices sum to one
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Existence Using Excess Demand Functions: L = 2 Goods
▶ So equilibrium amounts to L − 1 equations in L − 1 unknowns
▶ Assume L = 2 goods, x and y. Let x be the numeraire.
⇒ Measure the price ratio p = py/px of y in units of x.
⇒ Equilibrium is one equation in one unknown: EDx(p) = 0.

Theorem (Existence)
Assume every trader i has strictly monotone and strictly convex
preferences over x and y, and owns a positive endowment (x̄i, ȳi).
There exists a Walrasian stable competitive equilibrium (x, y, p).
▶ Proof: Given strictly convex preferences, every trader i has a

unique optimal consumption bundle xi(p) at any price p > 0.
▶ The optimizer set is upper hemicontinuous in p, by (Berge’s)

Theorem of the Maximum ⇒ xi(p) is thus continuous in p
⇒ Market excess demand EDx(p) is a continuous function
▶ Monotone preferences ⇒ EDx(0) < 0 < EDx(∞)
▶ Intermediate Value Theorem ⇒ EDx(p) = 0, for some p > 0.
▶ At least one zero of EDx(p) = 0 is stable, crossing - to +

26 / 48
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Existence and Stability of Competitive Equilibrium
▶ Monotone preferences ⇒ EDx(0) < 0 < EDx(∞)

▶ Debreu-Mantel-Sonnenschein Theorem (1973/1974):
Excess demand curves can be almost anything, by suitably
specifying consumers and endowments!
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Local Uniqueness of Equilibria

▶ It is truly rare that the excess demand curve sits on the price
axis for an interval of prices, with a continuum of equilibria

▶ Debreu used Sard’s Theorem in differential topology to
formalize the sense that this is rare: For generic endowments,
it cannot happen.

▶ This mathematical minutia was studied in mathematical
economics

28 / 48
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Existence with Cobb Douglas Preferences & L = 2 Goods
▶ Utilities: Iris uI(x, y) = xαy1−α and Joe uJ(x, y) = xβy1−β

▶ Endowments: (x̄I, ȳI) and (x̄J, ȳJ).
▶ Incomes: wI = x̄I + pȳI and wJ = x̄J + pȳJ

▶ Demands: Iris xI(p,w) = αwI and Joe xJ(p,w) = βwJ

▶ Market excess demand:

EDx(p) =
(
αwI − x̄I

)
+
(
βwJ − x̄J

)
▶ It suffices to clear the x market: EDx(p) = 0

p∗ = x̄I(1 − α) + x̄J(1 − β)

αȳI + βȳJ

▶ The unique competitive equilibrium price p∗:
▶ falls in α, β (greater love of x by either trader raises its price)
▶ rises if x̄I or x̄J rises (gold discoveries led to inflation)
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Trade Offer Curves
▶ The trade offer curve (TOC) plots optimal consumption

allocations as prices vary, fixing endowments.
▶ In consumer theory, it is called the price-consumption curve
▶ Note: Trade theory overlaps heavily with consumer theory
▶ TOCs are the best reply graphs of general equilibrium theory
▶ With L = 2 goods, TOC is tangent to the indifference curve

through the endowment, and “more curved” than it
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Trade Offer Curves and Substitutes and Complements

▶ The TOC can be nonmonotone, despite monotone preferences
▶ As the price pi of y in terms of x rises p1 < p2 < p3, the

substitution effect pushes y ↓.
▶ As the price of y rises, “income” (value of endowment) rises,

since Iris is a net supplier of y
▶ If y is an normal good, then the TOC can fall or rise
▶ If y is an inferior good, then the TOC is strictly falling
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Backward Bending Trade Offer Curves Require Inferiority

▶ As the price of y in terms of x rises, the price of x in terms of
y falls, and the substitution effect pushes x ↑

▶ As the price of y rises, and so the “income” rises
▶ If x is an normal good, then the TOC pushes right
▶ If x is an inferior good, the TOC can turn back (but need not)
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Examples of Trade Offer Curves

▶ Perfect substitutes, perfect complements, and Cobb Douglas
▶ Assume Cobb-Douglas u(x, y) = xαy1−α

▶ TOC is the locus of indifference curve tangencies to the price
line through the endowments (x̄, ȳ):

(1 − α)x
αy = MRS = p =

x̄ − x
y − ȳ ⇒ y(x) = (1 − α)ȳx

x − αx̄

▶ The TOC starts at y(x̄) = ȳ, for there is always a price for
which it is efficient to consume the endowment.
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Uniqueness: Trade Offer Curves
▶ As best reply graphs, their intersection yields an equilibrium
▶ At a crossing of TOCI and TOCJ, each trader optimally

chooses that bundle, and so markets clear
▶ The absolute slope of the price line is px/py
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Non-Uniqueness: Trade Offer Curves
▶ There are three equilibrium prices (of y): p1 > p2 > p3
▶ Claim: p1 and p3 are Walrasian stable, and p2 is not: If the

price p ∈ (p2, p1) (flatter price line), then the excess demand
for y pushes up p; so the price line swings away from p2 more

▶ With multiple equilibria, alternating equilibria are stable
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Gross Substitutes and Uniqueness
▶ Recall that the TOC bends back with enough inferiority
▶ Demand has the gross substitutes property if an increase in

price pk raises the demand of every other good xℓ, for ℓ ̸= k.

Proposition (Uniqueness)
If the aggregate excess demand function satisfies gross substitutes,
the economy has at most one Walrasian equilibrium
▶ Proof: We prove that z(p) has at most one (normalized) root.
▶ Assume z(p) = z(p′) = 0 for p and p′ not linearly dependent.
▶ By homogeneity of degree zero, normalize the price vectors so

that pℓ ≥ p′ℓ for all ℓ, and pk = p′k for some k
▶ Move from p′ to p in n − 1 steps, increasing pℓ for each ℓ ̸= k.
▶ At each step, the aggregate demand for good xk strictly

increases, so that zk(p) > zk(p′) = 0. Contradiction. QED
⋆ Economics pro-tip: complementarity is the source of all

multiplicity of equilibria, while substitutes leads to uniqueness.
Supermodular games, eg., struggles with multiplicity
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Monopoly in the Edgeworth Box
▶ Start with a competitive equilibrium with two goods, in which

Joe sells y to the market and buys x
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Monopoly Joe Replaces the Walrasian Auctioneer
▶ Joe seeks his highest indifference curve on Iris’s TOC: ūJ

1 > ūJ
0

▶ He sets a higher price ratio for y to x (now, the red price line)
▶ This monopoly is inefficient, or ∃ (orange) gains from trade:

▶ Proof: The indifference curve ūJ
1 is tangent to TOCI at A

▶ The (red) price line slices through TOCI, and thus through ūJ
1

▶ But indifference curve ūI is tangent to the (red) price line at A
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Monopoly Kingpin Joe Sets a Two Part Tariff
▶ Joe now secures an even higher utility ūJ

2 > ūJ
1

▶ He sets a new price ratio for y to x, but now sets a trading fee
▶ Omnipotent monopoly is efficient: B is on the contract curve!

▶ Example: uJ(x, y)=x + y and x̄J = 20 and ȳJ = 0.
▶ uI(x, y)=x(9 − x) + y and x̄I = 0 and ȳI = 20.
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▶ Joe now secures an even higher utility ūJ

2 > ūJ
1

▶ He sets a new price ratio for y to x, but now sets a trading fee
▶ Omnipotent monopoly is efficient: B is on the contract curve!

▶ Example: uJ(x, y)=x + y and x̄J = 20 and ȳJ = 0.
▶ uI(x, y)=x(9 − x) + y and x̄I = 0 and ȳI = 20. 39 / 48
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Beyond Markets: Cooperative Games and Core Theory
▶ We now return to a world with just an extensive margin, and

develop a framework that subsumes markets with and without
market power, as well as public economics

▶ Allow arbitrary coalitions of individuals to form, like unions, or
god forbid, gangs. Is this the “law of the jungle” (Kipling)?

▶ These naturally arise in the networked world we have entered
▶ N = set of all players (cardinality N too)
▶ A coalition is a group of players S ⊆ N (grand coalition)
▶ A game with transferable payoffs associates to any coalition

S ⊆ N a value v(S), where v(∅) = 0
▶ A coalition S blocks a payoff vector x ∈ RN if

∑
i∈S xi<v(S)

▶ Pairwise matching model: v(S) = highest sum of match
values from pairing off members of S

▶ The core is all unblocked feasible payoffs x:
∑

i∈N xi=v(N)

▶ computer scientist Donald Gillies coined this in 1959
40 / 48
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Core Theory: House Example

▶ Seller S values painting at 100, buyers B1 & B2 at 120 & 150
⇒ V(B1)=V(B2)=V(B1,B2)=0

V(S)=100,V(B1,S)=120,V(B2,S)=V(B1,B2,S)=150
▶ Solution:
▶ Buyers B1 and B2 earn payoffs (consumer surpluses) π1 and π2
▶ Payoffs for seller S: price p
▶ IR constraints: π1 ≥ 0, π2 ≥ 0, p ≥ 100.
▶ Pairwise constraints: p + π1 ≥ 120, p + π2 ≥ 150, π1 + π2 ≥ 0
▶ Grand coalition earns V(B1,B2,S) = p + π1 + π2 = 150.
⇒ π1 = 0 and 120 ≤ p ≤ 150 and π2 = 150 − p.

41 / 48



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Core Theory: Carrying a Table

▶ A table must be carried by ≥ 2 people to secure a gain of 50.
▶ IR constraints: xi ≥ V(i) = 0.
▶ Pairwise constraints:

x1 + x2 ≥ V(1, 2) = 50
x2 + x3 ≥ V(2, 3) = 50
x1 + x3 ≥ V(1, 3) = 50

▶ Summing: x1 + x2 + x3 ≥ 75 > 50 = V(1, 2, 3) ⇒ empty core!
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Properties of Transferable Utility Cooperative Games
▶ Monotone: S ⊆ T ⇒ v(S) ≤ v(T)
▶ Supermodular: v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T) ∀S,T
▶ Superadditive: v(S ∪ T) ≥ v(S) + v(T) when S ∩ T = ∅.
▶ Supermodular ⇒ superadditive, if v(0) = 0
▶ A supermodular game is also called a convex game, since:
▶ Shapley’s Claim: v is supermodular if and only if

v(S∪{i})−v(S) ≤ v(T∪{i})−v(T ) ∀S ⊆ T ⊆ N\{i}, ∀i ∈ N
▶ A supermodular valuation implies increasing returns to size.
▶ “Snowballing effect” emerges: incentives for joining a coalition

increase in its size ⇒ precludes table carrying example!
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Convex Games
Lemma (Bondareva-Shapley Theorem)
A convex game has a non-empty core.
▶ Idea: convexity ⇒ core constraints do not preclude feasibility.
▶ Player i is paid his marginal addition to the coalition

{1, . . . , i − 1}, namely, xi = v({1, . . . , i})− v({1, . . . , i − 1})
▶ Claim: The payoff x = (x1, . . . , xN) is in the core, i.e. no

coalition Ak = {i1, . . . , ik−1} blocks it, where i1 < i2 < · · · < ik
k∑

j=1
xij =

k∑
j=1

[v({1, . . . , ij})− v({1, . . . , ij − 1})]

≥
k∑

j=1
[v({i1, . . . , ij})− v({i1, . . . , ij−1})]

= v({i1, . . . , ik})
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Convex Games
Lemma (Bondareva-Shapley Theorem)
A convex game has a non-empty core.
▶ Idea: convexity ⇒ core constraints do not preclude feasibility.
▶ Player i is paid his marginal addition to the coalition

{1, . . . , i − 1}, namely, xi = v({1, . . . , i})− v({1, . . . , i − 1})
▶ Claim: The payoff x = (x1, . . . , xN) is in the core, i.e. no

coalition Ak = {i1, . . . , ik−1} blocks it, where i1 < i2 < · · · < ik
k∑

j=1
xij =

k∑
j=1

[v({1, . . . , ij}
Bj∪ij=S∪T

)− v({1, . . . , ij − 1}
Bj=S

)]

≥
k∑

j=1
[v({i1, . . . , ij}

Aj=T
)− v({i1, . . . , ij−1}

Aj−1=S∩T
)]

= v({i1, . . . , ik}) ↑ telescoping sum, eg 1 + 3 + · · ·+ (2i − 1) = i2

▶ Why? Supermodularity ⇒ v(Bj ∪ ij)− v(Bj) ≥ v(Aj)− v(Aj−1),
given Aj−1 = {i1, . . . , ij−1} ⊂ {1, . . . , ij − 1} = Bj 44 / 48
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Core Generalization of First Welfare Theorem
Proposition (Welfare Theorem)
If (x,p) is a competitive equilibrium, then x is in the core.
▶ Proof: Let (x,p) be a competitive equilibrium, but x /∈ core.
▶ Then some coalition S has a feasible allocation x̂ with

ui(x̂i) ≥ ui(xi) for all i ∈ S, strictly so for some j ∈ S.
▶ Revealed preference ⇒ p · x̂i ≥ p · xi ∀i ∈ S, and p · x̂j > p · xj.
▶ Adding over i ∈ S yields

p ·
(∑

i∈S x̂i) > p ·
(∑

i∈S xi) = p ·
(∑

i∈S �xi).
▶ Then x̂ is infeasible for the coalition S:

∑
i∈S x̂i≤

∑
i∈S �xi. □

▶ We now seek a converse of this result!
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The Shrinking Core of a Market Economy

▶ Agent k = {I, J} with utility function uk(x, y) = xy.
▶ Endowments diverge: (x̄I, ȳI) = (2, 0) and (x̄J, ȳJ) = (0, 2).
▶ The core is the diagonal yI = xI of the Edgeworth box
▶ We now clone each trader: two Irises and two Joes.
▶ Any allocation with yk = xk for k = I, J is still efficient.

▶ E.g. (xI, yI) = (0.4, 0.4) for Irises and (xJ, yJ) = (1.6, 1.6) for
Joes is efficient and IR

▶ This allocation yields uI = 0.16 and uJ = 2.56.
▶ {I1, I2, J1} blocks with (xI, yI)=(1.2, 0.2), (xJ, yJ)=(1.6, 1.6)

▶ This is feasible: two Irises and one Joe are endowed with (4, 2)
▶ Irises strictly better off: uI(1.2, 0.2)=0.24>0.16=uI(0.4, 0.4)
▶ Joe is indifferent. (The excluded Joe is worse off.)

⇒ (xI, yI) = (0.4, 0.4) and (xJ, yJ) = (1.6, 1.6) not in the core.
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The Shrinking Core of a Market Economy
▶ The coalition {I1, I2, J} blocks more allocations.
▶ Start at the symmetric efficient allocation (xI, yI) = (a, a) and

(xJ, yJ) = (2 − a, 2 − a), with uI = a2 and uJ = (2 − a)2.
▶ Reallocate the coalition’s (4, 2) endowment so that

(x̂I, ŷI) = (1 + a/2, a/2) and (x̂J, ŷJ) = (2 − a, 2 − a).
▶ This blocks the symmetric allocation iff a < 2/3:

uI(x̂I, ŷI) =
(a

2 + 1
)(a

2
)
> a2 = uI(xI, yI)

▶ The core weakly shrinks with each replication, since each adds
more coalition constraints.

▶ Exercise. Show that 3 Irises and 3 Joes block any a < 4/5
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The Shrinking Core of a Market Economy
▶ Debreu and Scarf (1963) proved the reverse of the Core

Welfare Theorem holds in large economies
▶ This is an amazing endorsement of the competitive model
▶ Let CM be the core of the M-clone model.

Proposition (Core Convergence Theorem)
If x∗ ∈ CM for all M, then x∗ is a competitive outcome. So the
limit of the M-replica cores ∩∞

M=1CM is a competitive outcome.
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