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The Matching Paradigm as Metaphor Economic Interaction
I Buzz for Matching Models:

I Pairwise matching models with transferable utility capture in
a simplest form the economic structures of many settings:
I assigning tasks to individuals
I buyers and sellers trading
I partnerships, and maybe marriages
I firms hiring workers

I metaphor: two sides of the market are “men” and “women”
I We wish to understand: Who trades with whom? Who pairs

with whom? Who marries whom? Who works with whom?
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Matching without Transfers: The Girl-Guy Band Contest

I Contest of Beyonce, Taylor Swift, and Lady Gaga to sing a
duet with concert with Billy Joel, Bruno Mars, and Jay-Z

I We first only specify ordinal preferences

I Men commonly rank: Beyonce > Taylor Swift > Lady Gaga

I Women commonly rank: Billy Joel > Bruno Mars > Jay-Z
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Deferred Acceptance Algorithm (DAA)

1. All men start unengaged and women start with no suitors.

2. Each unengaged man proposes to his most-preferred woman
(if any) among those he has not yet proposed to, if he prefers
matching to remaining single;

3. Each woman gets engaged to the most preferred among all
her suitors, including any prior engagements, if she prefers
matching with him to remaining single.

4. Rinse and repeat until no more proposals are possible.
Engagements become matches.
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Stability

I Matchings should ideally exploit all gains from trade.

I An assignment is unstable if there are men, say Alan and Bob,
respectively matched to women Alice and Bea, such that Bob
prefers Alice to Bea and Alice prefers Bob to Alan

I Say that the matching of Bob and Alice blocks the matching.

I A matching is stable if it is not unstable, i.e. 6 ∃ blocking pair.
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Gale-Shapley Theorem

Proposition (Gale & Shapley, American Math Monthly, 1962)

(a) The DAA stops in finite time.
(b) Given an equal number of men and women, if matching with
someone beats remaining single, then everybody matches.
(c) The DAA matching is stable, i.e. a stable matching exists.
(d) Given strict preferences, the DAA yields a unique matching.
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Proof of Gale-Shapley Theorem

I At each iteration, one man proposes to some new woman

I Let Alice and Bob be married, but not to each other.

I Claim: After the DAA, Alice and Bob cannot prefer each
other to their match partners.

I If Bob prefers Alice to his match partner, then he must have
proposed to Alice before his match partner.

I If Alice accepted, yet ends up not married to him, then she
must have dumped him for someone she prefers
⇒ Alice doesn’t prefer Bob to her current partner.

I If Alice rejected Bob’s proposal, then she was already engaged
to someone she prefers to Bob. �
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Proof of Gale-Shapley Theorem

I Claim: With n men and n women, there are at most n2

possible ways men can propose.
I A each stage, one man proposes to someone to whom he has

never proposed before
I With n men and n women, there are n2 possible events
I In fact, the maximum number of DAA steps is n2 − 2n + 2.
I Exercise: Illustrate this for the cases n = 2 and n = 3.

(Solution is in class notes.)

I Al Roth found that the DAA was used to match interns to
hospitals. This was a major reason for:
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Ranking Stable Matchings

I Assume several stable matchings.

I The set of stable matchings is nonempty.

I x is a valid partner of y if they pair in some stable matching.

I In a male optimal matching, each man pairs with his best
valid partner.

I In a male pessimal matching, each man pairs with his worst
valid partner.

I Similarly define woman-optimal and woman-pessimal.
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Comparing Stable Allocations

I Call a woman optimal for a man if she is the highest ranked
woman he is paired with in some stable pairing.

I This is the best woman he can hope to get in a stable world.

I Call the lowest ranked woman a man can get in a stable
pairing his pessimal woman.

I A matching is man-optimal if all men simultaneously match
with their optimal woman

I A matching is man-pessimal if all men simultaneously match
with their optimal woman
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The DAA Yields the Male Optimal Stable Allocation

Proposition (Male Optimality of DAA)

The DAA finds a male-optimal / female-pessimal stable matching.

I Proof by contradiction: Suppose DAA is not man-optimal.
I Let k = earliest stage a man is rejected by his optimal woman,

i.e., optimal woman x rejects man y for a preferable man y ′

I Claim: y ′ �x y
I At stage k , man y ′ has not been rejected by his optimal

woman x ′, by definition of k
I also y ′ cannot be rejected by his optimal woman x ′ at stage k

either, since woman x gets engaged to him in that period
⇒ Claim: x �y ′ x

′ (y ′ proposes to x before his optimal woman
x ′)

I There is a stable matching m in which y matches with his
optimal woman x , and y ′ matches with some woman x∗ in m

⇒ Claim: x ′ �y ′ x
∗ (x ′= optimal woman of y ′, x∗ a stable

match)
I y ′ and x form a blocking pair in supposedly stable matching m
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Men Optimal Implies Female Pessimal
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Unique Stable Outcomes

Corollary (Uniqueness)

The DAA produces the same matching, regardless of which side
proposes, if and only if there is a unique stable matching.

I If the stable matching is unique, then the DAA yields the
same result regardless of which side proposes.

I If the DAA yields the same result regardless of which side
proposes, then it is both optimal and pessimal for both sides,
and so is unique. �
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Three Stable Matchings, but two Outcomes from the DAA

x1 x2 x3
y1 5,5 6,2 2,6

y2 2,6 5,5 6,2

y3 6,2 2,6 5,5

I When men offer in the DAA, we get the male-optimal and
female pessimal matching, where men earn 6 and women 2.

I When women offer in the DAA, we get the female-optimal
and male pessimal matching, where women earn 6 and men 2.

I A third stable matching yields payoffs of 5 for everyone.

(Malibu usually gets what she wants)
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Cardinal Preferences

I Start with nontransferable payoffs (all in millions of dollars).

I This might be by organizational rule, eg. NCAA rules forbid
payoffs to athletes.

Lady Gaga Taylor Swift Beyonce

Billy Joel 6,21 12,12 18,3
Bruno Mars 4,14 8,8 12,2

Jay-Z 2,7 4,4 6,1

I Men commonly rank: Beyonce > Taylor Swift > Lady Gaga

I Women commonly rank: Billy Joel > Bruno Mars > Jay-Z

I DAA ends in three periods!
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Transferable Utility

I Assume cardinal payoffs (or cardinal utility) is money.

I Every man and woman cares only about total money

I This is a special case of quasi-linear utility, or utility
U(a, z) = u(a) + z , where a is a real action and z is money

I Quasi-linear utility precludes income effects on the action
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Transfers and Bribery

Lady Gaga’s Corrupt Thought:

I Gaga schemes to match up with Billy Joel. To do this, she
I bribes Billy more than his loss of 18− 6 = 12 to accept her,
I pays Beyonce more than her loss of 3− 1 = 2, and
I collects from Jay-Z less than his gain 6− 2 = 4 from matching

with Billy

I These bribes on net cost as much as 12 + 2− 4 = 10. But
Lady Gaga gains 21− 7 = 14 by matching with Billy Joel.

Lady Gaga Taylor Swift Beyonce

Billy Joel 6,21 12,12 18,3
Bruno Mars 4,14 8,8 12,2

Jay-Z 2,7 4,4 6,1
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Fido Wonders if Money Helps for Matching Efficiency
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Making Matching Immune to Bribery

Only total match payoffs matter in the end with transfers.

Lady Gaga Taylor Swift Beyonce

Jay-Z 6 + 21 = 27 12 + 12 = 24 18 + 3 = 21

Bruno Mars 4 + 14 = 18 8+8=16 12 + 2 = 14

Billy Joel 2 + 7 = 9 4 + 4 = 8 6 + 1 = 7
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Making Matching Immune to Bribery

I A matching is immune to bribes if there is no set of
matched individuals for whom a profitable re-matching exists.

I An efficient matching maximizes the sum of payoffs.

Theorem An efficient matching is immune to bribes.

Lady Gaga Taylor Swift Beyonce

Billy Joel 27 24 21

Bruno Mars 18 16 14

Jay-Z 9 8 7
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Efficient Matching

I Matching Sudoku: Efficiently match n men to n women.

I = Place exactly one dot in every row and column

I Obviously, an efficient matching exists. But what is it?

I Problem: There are n! = 1× 2× · · · × n possible allocations.

I E.g. there are 10158 pairings of 100 men and 100 women.
The number of electrons in the universe is estimated at 1080.
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1781 — Transportation Problem: How Best to Move Dirt
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1781 — Transportation Problem: How Best to Move Dirt

I Holy Grail of Matching: Solving for the optimal matching in
general is too hard — for the transportation problem has been
long open, since Gaspard Monge (1781), Mémoire sur la
théorie des déblais et des remblais. De l’Imprimerie Royale.

I Father of differential geometry

I Assign unit dirt piles xi ∈{x1, ..., xn} to holes yi ∈{y1, ..., yn}
to minimize the sum of transportation costs c(xi , yj)?
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1781 — The Transportation Problem: How to Move Dirt

I Assume the cost of transporting earth from a cut (déblais) to
a fill (remblais) depends on the distance, roads, etc.

I c(x , y) = cost of moving dirt from déblais x to remblais y

I What is the cheapest way to transport all the earth from every
déblais to some other remblais, while omitting no déblais and
overfilling no remblais?

I As formulated, this is an impossible combinatorics exercise.
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1781 — The Transportation Problem

I Start with an n × n matrix of costs c(x , y)

I E.g: It costs 7 to move the dirt in déblais n − 1 to remblais 2
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1957: Transportation Problem as the Assignment Problem

I 160 years passes and linear programming is invented in WWII,
by many in USA (e.g. Dantzig) and Kantorovich in Russia
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www.academictree.org
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Socially Efficient Matching
I Finitely many women x and men y (from XX and XY)
I m(x , y) = 1 if x is matched to man y , and m(x , y) = 0 if not.
I The set M of feasible matchings [m(x , y)]

I symmetry: m(x , y) = m(y , x) for all x , y
I no overmatching: for every x , m(x , y) = 1 for at most one y .

I So a woman x remains single if m(x , y) = 0 for all y ∈ Y .
I Convexify the matching set:

I A fraction m(x , y) ≥ 0 of woman x to match with man y
I The matching is at most a doubly stochastic matrix

(nonnegative entries and unit row and columns sums)
I h(x , y) = output of match of man x and woman y (or h(x , y))
I An efficient matching m ∈M maximizes the sum of all

match outputs
∑

x

∑
y m(x , y)h(x , y) over M

Proposition

An efficient matching m ∈M exists.

I Proof: By Weierstrass Theorem, the maximum of a
continuous function on a compact set exists
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Competitive Equilibrium

I Payoffs: wages v(x) and w(y) to woman x and man y

I Price Competition Story. match makers compete to offer
wages v(x) and w(y) to men and women, and earn profits
h(x , y)− v(x)− w(y) for any match they intermediate

I Taking actions as given is in the spirit of Nash equilibrium!

I Free entry of match makers ⇒ profits ≤ 0 for all matches

I Free exit of match makers⇒ profits ≥ 0 for all actual matches

I A competitive equilibrium (m,w , v) satisfies feasibility and:

I Free Entry: v(x) + w(y) ≥ h(x , y) for any (x , y)
I Free exit: v(x) + w(y) ≤ h(x , y) if m(x , y) > 0

⇒ v(x) + w(y)

{
≥ h(x , y) for all women and men x , y

= h(x , y) if x , y are matched

I By contrast, a free market allows market power, not insisting
on free entry of market makers, and thus matches that obtain
might embed rents. (See the lecture notes.)
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Competitive Equilibrium is Efficient

Proposition (First Welfare Theorem of Matching)

A competitive equilibrium (m, v ,w) yields an efficient matching m.

I Proof: If a competitive equilibrium (m, v ,w) is not efficient
⇒ some feasible matching m̂ ∈M has a strictly higher payoff:∑

x

v(x) +
∑
y

w(y) ≥
∑
y

∑
x

h(x , y)m̂(x , y)

>
∑
y

∑
x

h(x , y)m(x , y)

=
∑
y

∑
x

[v(x) + w(y)]m(x , y)

=
∑
x

v(x) +
∑
y

w(y)

I The first inequality reflects
I free entry: For v(x) + w(y) ≥ h(x , y) for all (x , y)
I feasibility: 1 ≥

∑
x m̂(x , y) ∀y and 1 ≥

∑
y m̂(x , y) ∀x

I The equality assumes everyone matches. What if not? 32 / 76



Contrast with Stable Matching

Y1 Y2

X1 2,0 0,7
X2 0,7 2,0

Y1 Y2

X1 2 7
X2 7 2

I At left, are the male and female optimal stable outcomes.

I The male optimal one yields higher total payoffs, but stability
only reflects ordinal and not cardinal preferences.

I If outside options are zero, wages obey v1, v2,w1,w2 ≥ 0 and:

v1 + w1 ≥ 2 v1 + w2 = 7
v2 + w1 = 7 v2 + w2 ≥ 2

I Crucially, there are many competitive equilibrium wages

I One set of equilibrium wages is v1 = 5, v2 = 0,w1 = 7,w2 = 2
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Trading Houses (Shapley and Shubik, 1971)

I We now explore an equivalent model to the assignment model
of Koopmans and Beckman

I I ≥ 1 sellers (homeowners) and J ≥ 1 prospective buyers.

I i-th seller values his house at (opportunity cost) ci > 0 dollars

I j-th buyer values i ’s house at ξij > 0 dollars.

I If ξij > ci , and seller i to sell his house to buyer j for some
price pi dollars, then i ’s payoff is exactly pi − ci and j ’s payoff
is exactly ξij − pi (reflecting the quasilinear utility).

I Since seller i need not sell his house to buyer j , their match
payoff is

hij = max{0, ξij − ci}
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Primal Problem: Maximizing Total Gains from Trade

I Let seller i sell fraction mij ≥ 0 of house i to buyer j .

I Example: buying and selling “time shares” on condominiums.

I constraints on mij ≥ 0: no house can be oversold, and no
buyer can buy more than one house.

max
(mij )

I∑
i=1

J∑
j=1

hijmij

s.t.
J∑

j=1

mij ≤ 1 ∀i ∈ {1, . . . , I}

and
I∑

i=1

mij ≤ 1 ∀j ∈ {1, . . . , J}
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Dual Problem

Lemma
The dual problem to the output maximization is the cost
minimization:

min
vi ,wj

I∑
i=1

vi+
J∑

j=1

wj s.t. vi+wj ≥ hij ∀i , j and vi ,wj ≥ 0 ∀i , j

I So the cheapest way to afford all match output subject to
entry and free exit constraints of a competitive equilibrium
occurs at the efficient matching.

I two ways of measuring output — corresponding to gross
national product and gross national income — coincide at the
optimum.

36 / 76



Linear Programming Duality

I Primal problem:

max{pz |Az ≤ q, z ≥ 0}

I Dual problem:

min{uq|uA ≥ p, u ≥ 0}

I Theorem: These two problems have the same values.

I Primal feasibility ⇒ Az ≤ q and dual feasibility ⇒ p ≤ uA.

I weak duality: pz ≤ uAz ≤ uq for all u, z ≥ 0

I So the value of the primal is at most the value of the dual.

I The reverse (strong) direction is harder to show.
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Proof of Dual Solution Lemma

I Example with I = J = 2 buyers and sellers,

q′ = (1, 1, 1, 1)

h′ = (h11, h12, h21, h22)

m′ = (m11,m12,m21,m22)

A =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


I Primal:

∑
i

∑
j hijmij = maxm≥0 h′m s.t. Am ≤ q

I Dual:

min
w ,v≥0

{v1+v2+w1+w2} = min
v ,w≥0

(v ,w)·q s.t. (v ,w)·A ≥ h �
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Multipliers and Complementary Slackness Conditions

I Primal: max{pz |Az ≤ q, z ≥ 0}
I Dual: min{uq|uA ≥ p, u ≥ 0}
I Fictitious zero sum game with payoff L(z , u) = pz + uq− uAz

I By the 1928 Minmax Theorem, this game has saddle point:

max
z≥0

min
u≥0

[pz + uq − uAz ] = min
u≥0

max
z≥0

[pz + uq − uAz ] (F)

I A finite saddle point requires p − uA ≤ 0 ≤ q − Az

⇒ z` = 0 when p` − (uA)` < 0, and uk =0 when qk − (Az)k > 0.

I Complementary slackness & (F) ⇒ primal value = dual value

I Application of complementary slackness in Shapley-Shubik:

vi + wj

{
≥ hij for all i , j

= hij if buyer xi and seller yj trade (mij > 0)
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Multipliers as Shadow Values

I Primal: max{pz |Az ≤ q, z ≥ 0}
I Social planner’s payoff function: L(z , u) = pz + u(q − Az)

I Envelope Theorem ⇒ ∂
∂qL(z , u) = u

⇒ dq extra constrained resource lifts planner’s payoff by u dq.

I u = shadow value of resource, as it indirectly shows true value
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Shadow Values in Shapley-Shubik Housing Model

I Application of complementary slackness in Shapley-Shubik:

vi + wj

{
≥ hij for all i , j

= hij if buyer xi and seller yj trade (mij > 0)

I buyer i and seller j trade ⇒ gains from trade hij
I So ε more of i and j raises social payoff by εhij

⇒ All we can say is vi + wj = hij
I “It takes two to tango. . . but who matters more?”

I We cannot separately identify buyers’ & sellers’ shadow values
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1971 — Buyer-Seller Trade: Shapley and Shubik

I Assume three potential home buyers and three sellers

Buyer Valuations
Seller Costs Buyer 1 Buyer 2 Buyer 2

House 1 18 23 26 20

House 2 15 22 24 21

House 3 19 21 22 17

I Match payoffs now are gains from trade, or zero, if negative:

Buyer 1 Buyer 2 Buyer 3
Seller 1 23− 18 = 5 26− 18 = 8 20− 18 = 2
Seller 2 22− 15 = 7 24− 15 = 9 21− 15 = 6
Seller 3 21− 19 = 2 22− 19 = 3 max(17− 19, 0) = 0

42 / 76



1971 — Buyer-Seller Trade: Shapley and Shubik

I Assume three potential home buyers and three sellers

Buyer Valuations
Seller Costs Buyer 1 Buyer 2 Buyer 2

House 1 18 23 26 20

House 2 15 22 24 21

House 3 19 21 22 17

I Match payoffs now are gains from trade, or zero, if negative:

Buyer 1 Buyer 2 Buyer 3
Seller 1 5 8 2
Seller 2 7 9 6
Seller 3 2 3 0

42 / 76



1971 — Buyer-Seller Trade: Shapley and Shubik

I Assume three potential home buyers and three sellers

Buyer Valuations
Seller Costs Buyer 1 Buyer 2 Buyer 2

House 1 18 23 26 20

House 2 15 22 24 21

House 3 19 21 22 17

I Match payoffs now are gains from trade, or zero, if negative:
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I gains from trade are the match payoffs
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Solving the Housing Example

I Minimize the sum of shadow values
∑

i vi +
∑

j wj subject to
vi ≥ 0 and wj ≥ 0 as well as

v1 + w1 ≥ 5 v1 + w2 ≥ 8 v1 + w3 ≥ 2
v2 + w1 ≥ 7 v2 + w2 ≥ 9 v2 + w3 ≥ 6
v3 + w1 ≥ 2 v3 + w2 ≥ 3 v3 + w3 ≥ 0

I Since the optimum occurs at the red matching, we just solve

v1 + w1 ≥ 5 v1 + w2 = 8 v1 + w3 ≥ 2
v2 + w1 ≥ 7 v2 + w2 ≥ 9 v2 + w3 = 6
v3 + w1 = 2 v3 + w2 ≥ 3 v3 + w3 ≥ 0

I a solution: (v1, v2, v3) = (4, 5.5, 0) & (w1,w2,w3) = (2, 4, 0.5)

⇒ home prices are pi = ci + vi , or p1 = 22, p2 = 20.5, p3 = 19

I Example: seller 1 sells his home (cost 18) to buyer 2 (who
values it at 26) for a seller surplus v1 = 4 and a buyer surplus
w2 = 4: from this, we deduce the price p1 = 22
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An Integer Price Solution of the Housing Example

y1 y2 y3 Seller “wage” vi
Seller 1 5 8 2 v1 = 4
Seller 2 7 9 6 v2 = 6
Seller 3 2 3 0 v3 = 0

Buyer “wage” w1 = 2 w2 = 4 w3 = 0

I We increase the price of home 2 to p2 = 21, increasing the
surplus of seller 2 to v2 = 6 and reducing the surplus of
buyer 3 to w3 = 0.

I So house prices are now p1 = 22, p2 = 21, p3 = 19
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The Welfare Theorems and Stigler’s Proviso

Welfare Theorems A competitive equilibrium yields an efficient
matching. Conversely, an efficient matching is a competitive
equilibrium, for a suitable set of wages.

I Proof: We use linear programming duality.

I Consider the optimization of output, subject to the linear
constraints of not overmatching any man or woman.

I The multipliers for these constraints are the wages.

I Duality: the maximum total output equals the minimum total
wages, subject to all the competitive incentive constraints.

I This resolves the horrific complexity issue — we need only
find n wages for men and n for women!
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Who Matches with Whom: Becker’s Marriage Model

I This paper argued to a large audience that matching was
economically important.

I The paper then (re-) derived the welfare theorems for
matching with transfers (unaware of Shapley and Shubik)

I The paper’s highlight was a simple description of the efficient
allocation of matching with transfers.
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Positive Sorting is an Empirical Fact

Fun Application (Yale 2006): The Dating Market

I Data Source 1: Facebook

I Data Source 2: Online beauty contest, such as
www.rankmyphotos.com
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General Type Distributions on Men and Women

I Allow now a continuum of men and women.

I Assume cdfs M for women and N for men

I M(x) gives the mass of women of type x ′ ≤ x
I N(y) gives the mass of men of type y ′ ≤ y

I let M̄, N̄ (respectively) be the total mass of men, women

I Let man y(x) be the partner of woman x , if she is matched.
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Assortative Matching: Basic Definitions

I There is positive assortative matching (PAM) if
M̄ −M(x) = N̄ − N(y(x)) for all matched women x .

I There is negative assortative matching (NAM) if
M̄ −M(x) = N(y(x)) for all matched women x .

I This definition allows for either women or men to be
unmatched, since the mass of men and women might differ

I If M̄ = N̄, normalize M̄ = N̄ = 1, and think of quantiles:

I The q-th highest quantile man matches with the q-th highest
quantile woman if there is PAM

I The q-th highest quantile man is matched with the q-th lowest
quantile woman if there is NAM
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NTU Payoff Conditions for Assortative Matching

I Without transfers (NTU):
I f (y |x) = payoff of woman x matched with man y ,
I g(x |y) = payoff of man y matched with woman x

I f , g are comonotone if ∀y2 > y1 and x2 > x1,

[f (y2|x)− f (y1|x)] · [g(x2|y)− g(x1|y)] > 0 ∀x , y

I The opposite inequality is reverse comonotone

I If f and g are differentiable, then both partial derivatives (in
first arguments) have the same sign if comonotone

I Theorem: The unique stable matching with NTU is PAM if f
and g are comonotone, and NAM if reverse comonotone.
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Proof of NTU Sorting Proposition

I Assume comonotonicity and but a stable match is not PAM

I Then ∃x ′ > x and y ′ > y with matches (x , y ′) and (x ′, y)

I Claim: either (x ′, y ′) or (x , y) is a blocking pair

I First case: f (y ′|x ′) > f (y |x ′) ⇒ g(x ′|y ′) > g(x |y ′)
I Second case: f (y ′|x) < f (y |x) ⇒ g(x ′|y) < g(x |y)
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1973 — Becker’s Marriage Model

x = 1 x = 2 x = 3

y = 3 6,21 12,12 18,3
y = 2 4,14 8,8 12,2

y = 1 2,7 4,4 6,1

1 2 3

3 27 24 21

2 18 16 14

1 9 8 7

I At left is positive assortative matching (PAM)

I Since men prefer higher women x and women prefer higher men y ,
the stable matching without transfers is PAM.
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y = 3 6,21 12,12 18,3
y = 2 4,14 8,8 12,2

y = 1 2,7 4,4 6,1

1 2 3

3 27 24 21

2 18 16 14

1 9 8 7

I At right is negative assortative matching (NAM)

I Why? Matches all profit from higher men, but the matches that
profit most from higher men are those with lower women.

I This forces downward sorting.

I For instance, rematching the two sorted pairs (1, 1) and (2, 2) as
(1, 2) and (2, 1) changes output by (18+8)−(16+9) = 26−25 = 1
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Pairwise Efficiency and Efficiency

I A matching m is pairwise efficient with TU if for all
matched pairs (x1, y1) and (x2, y2):

h(x1, y1) + h(x2, y2)− h(x1, y2)− h(x2, y1) ≥ 0

I This is the analogue of the stability criterion with NTU, but it
also measures the strength of the preferences

I If this fails, then rematching to (x1, y2) and (x2, y1) undoes
the original matching with side payments.

I With NTU, losses of dumped partners do not matter

I An efficient matching maximizes the sum of all match
outputs, and so rematching any set of couples cannot help.

Lemma
Any efficient matching m ∈M is pairwise efficient.

I The converse of this lemma is false
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Pairwise Efficiency 6⇒ Efficiency

y1 y2 y3

x1 3 3 0

x2 0 3 3
x3 2 0 3

I The pairwise efficient green matching has a lower total payoff
than the pairwise efficient cyan matching, and is inefficient.

I Q: What bribery scheme would unravel the green matching?
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1973 — Strategic Substitutes Drives Negative Sorting

1 2 3

3 27 24 21

2 18 16 14

1 9 8 7

Cross Partial Payoff Differences (Synergies)

12 23

23 18 + 24− 27− 16 = −1 16 + 21− 14− 24 = −1

12 9 + 16− 18− 8 = −1 8 + 14− 16− 7 = −1

I Strategic substitutes:
I all cross partial differences of match payoffs are negative
I pairwise efficiency ⇒ positive sorting is not locally efficiency

I Strategic complements:

I all cross partial differences of match payoffs are positive
I pairwise efficiency ⇒ negative sorting is not locally efficiency
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1973 — Strategic Substitutes Drives Negative Sorting

NTU Matching TU Matching

x = 1 x = 2 x = 3

y = 3 6,21 12,12 18,3
y = 2 4,14 8,8 12,2

y = 1 2,7 4,4 6,1

1 2 3

3 27 24 21

2 18 16 14

1 9 8 7

I Left: payoffs are men get 2xy and women get y(10− 3x).
I Men’s payoffs 2xy increases in women’s type x
I Women’s payoffs y(10− 3x) increases in men’s type y
I ⇒ PAM is the stable allocation without transfers

I Right: match payoffs are 2xy + y(10− 3x) = 10y − xy .

I Cross partial derivative is −1
I ⇒ strategic substitutes
I ⇒ NAM
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Becker (1973): Assortative Matching with Transfers
I The match function h(x , y) is (strictly) supermodular if

h(x ′, y ′) + h(x , y) ≥ (>) h(x ′, y) + h(x , y ′) (1)

for any pair of women x ′ ≥ x and men y ′ ≥ y .
I h(x , y) is (strictly) submodular if the reverse inequality holds
I For twice differentiable match payoffs, this says h12(x , y) ≥ 0

Proposition (Becker’s Marriage Model)

(a) If production is supermodular, then PAM is efficient.
If it is strictly supermodular, then PAM is uniquely efficient.
(b) If production is submodular, then NAM is efficient.
If it is strictly submodular, then NAM is uniquely efficient.
(c) If production is modular, then any matching is efficient.

I Proof (by Buz Brock): Assume strictly supermodular
I Then not PAM is not pairwise efficient, and so not efficient.
I Later on we use the following generalization: If production is

modular for a set of agents that match, then any re-matching
among them is also efficient.
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Example: Matching with and without Transfers

PAM NAM

x = 1 x = 2 x = 3

y = 3 6,21 12,12 18,3
y = 2 4,14 8,8 12,2

y = 1 2,7 4,4 6,1

1 2 3

3 27 24 21

2 18 16 14

1 9 8 7

I Men earn f (x |y) = 2xy and women earn g(y |x) = y(10− 3x)

⇒ ∂f (y |x)
∂y = 2x > 0 (men prefer higher women)

∂g(x |y)
∂x = 10− 3x > 0 (women prefer higher men)

⇒ unique stable matching is PAM

⇒ Hence, the DAA delivered PAM

I With transfers, match payoffs are strictly submodular:
h(x , y) = f (x |y) + g(y |x) = 2xy + y(10− 3x) = 10y − xy

⇒ unique efficient matching is NAM
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How to Find Competitive Wages without Duality
I An Illustrative Example:

I Match payoffs: h(x , y) = x2y
I Types: women x and men y uniformly distributed on [0, 1]

I Since h12 = 2x > 0, PAM is the efficient outcome

I Let w(x) and v(y) be the competitive wage functions

I If the matchmaker pairs up x and y (paying them their wages
but keeping the surplus), his profits are:

π(x , y) = x2y − w(x)− v(y)

I Competition among match makers forces a zero profit
maximum at y = x (by PAM):

∂π

∂x
= 0⇒

[
2xy = w ′(x)

]
y=x
⇒ w ′(x) = 2x2

∂π

∂y
= 0⇒

[
x2 = v ′(y)

]
x=y
⇒ v ′(y) = y2
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Finding Competitive Wages, Continued
I Evaluating these at the efficient matches, (x , x) and (y , y),

w(x) =
2

3
x3 + β

v(y) =
1

3
y3 + δ

I By zero profits, π(x , x) = 0 ∀x , and so β + δ = 0 because

0 = x2 · x − w(x)− v(x) = x3 − 2

3
x3 − 1

3
x3 − (β + δ)

I If unmatched pays everyone zero, then all wages must be
nonnegative, and so β = δ = 0

I A dowry δ > 0 — a fixed transfer that women pay men —
only arises if unmatched women earn a payoff at most −δ < 0

I A bride price β > 0 — a fixed transfer that men pay women
— only arises if unmatched men earn a payoff ≤ −β < 0

I If both unmatched men and women earn negative payoffs,
then a dowry or bride price will simply reflect a social norm
(i.e. a Nash equilibrium)
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Deep Thoughts: Why are Wages now Unique

I Where does competition come from?

I Example: first and second price auctions
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My 1990s Research:
Marriage Model with Search Frictions (2000)

I DAA is not the real world: “Gotta Shop Around”

I Nor is there a stock exchange for marriage partners,
firm-worker pairs, etc. Search frictions matter.

I With search frictions, one’s time matters: Higher types might
settle for lower parters because the cost of search is higher.

I They need proportionate gains in match productivity to hold
out for higher partners.

I First year micro models are static; advanced theory explores it
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My Current Research:
The Comparative Statics of Sorting

I Amazingly, we only fully understand two extreme cases:
positively or negatively assortative matching.

I With my former Michigan PhD advisee Axel Anderson, we
relate sorting to synergies: the cross partial differences

I Since the transportation problem is not solved, we do not
characterize who matches with whom

I Assume that synergy both positive and negative, so that
Becker’s Theorem is silent on who matches with whom.

I We ask when sorting increases in the PQD order — namely,
∀(x , y), the mass of matches N-E and S-W of (x , y) increases

I Our Theorem 1 Sorting increases if synergy is increases
everywhere and synergy shifts from negative to positive in
men’s and women’s types, or vice versa.
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All Pure Matchings with Three Types

•

•

•PAM

•

•

•

NAM1

•

•

•NAM3

•

•

•

PAM2

•

•

•

PAM4 •

•

•

NAM
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Sorting Does not Rise in Cross Differences

NAM1 is efficient

x = 1 x = 2 x = 3

y = 3 9 14 18

y = 2 5 2 14
y = 1 1 5 9

Matrix of Cross Differences

8 −8

−7 8
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Sorting Does not Rise in Cross Differences

NAM3 is efficient

x = 1 x = 2 x = 3

y = 3 9 16 24
y = 2 5 3 16

y = 1 1 5 9

Matrix of Cross Differences

9 −5

−6 9

66 / 76



Sorting Does not Rise in Cross Differences

NAM1 is efficient

x = 1 x = 2 x = 3

y = 3 9 20 30

y = 2 5 6 20
y = 1 1 5 9

Matrix of Cross Differences

10 −4

−3 10
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Sorting Does not Rise in Cross Differences

NAM3 is efficient

x = 1 x = 2 x = 3

y = 3 9 22 36
y = 2 5 7 22

y = 1 1 5 9

Matrix of Cross Differences

11 −1

−2 11
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Double Auctions

I We now relax Shapley-Shubik’s double coincidence of wants

I The housing assignment model with homogeneous houses  
double auction model

I Buyer j ’s values all goods at ξj , so that ξij = ξj for all i

I h(ξ, c) ≡ max{0, ξ − c} are the gains from trade for a buyer
with value ξ and a seller with cost c .

I Efficiency: maximize total trade surplus
∑

i

∑
j mijh(ξj , ci ),

where mij = 1 if seller i sells to buyer j , and mij = 0 otherwise.
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The Trade Surplus Function is Submodular

Lemma (Trade Surplus Function)

The trade surplus function h is submodular: If ξ′ ≤ ξ′′ and
c ′ ≤ c ′′, then h(ξ′′, c ′′) + h(ξ′, c ′) ≤ h(ξ′′, c ′) + h(ξ′, c ′′), with
strict inequality iff ξ′ < c ′ < c ′′ < ξ′′ or c ′ < ξ′ < ξ′′ < c ′′.

Proof:

. I Case A: Here, two trades should occur, and
h(ξ′′, c ′′) + h(ξ′, c ′) = h(ξ′, c ′′) + h(ξ′′, c ′) = ξ′′+ ξ′− c ′− c ′′.

I Case B: Here, one trade should happen, and
h(ξ′′, c ′′) +h(ξ′, c ′) = ξ′′−c ′′ ≤ ξ′′−c ′ = h(ξ′, c ′′) +h(ξ′′, c ′).
Case C: Here, one trade should happen, and
h(ξ′′, c ′′) + h(ξ′, c ′) = ξ′− c ′ ≤ ξ′′− c ′ = h(ξ′, c ′′) + h(ξ′′, c ′).

I Case D: Here, no trade should happen, and
h(ξ′′, c ′′) + h(ξ′, c ′) = h(ξ′, c ′′) + h(ξ′′, c ′) = 0.

I Inequalities are strict if c ′ < c ′′ and ξ′ < ξ′′, since trade
surplus falls when the wrong good is traded. �
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The Supply and Demand Paradigm

I The highest value buyers trade with the lowest cost sellers.

I Rank order buyers: ξ1 < · · · < ξk < ξk+1 < · · · < ξN
I Rank order sellers: c1 < · · · < ck < ck+1 < · · · < cN
I Intuitively, the stronger/higher buyers have high values, but

the stronger/higher sellers have low costs

I Since h(ξ, c) is submodular, by Becker’s Marriage Theorem,
NAM arises: high value buyers trade with low cost sellers.

I Also, since h(ξ, c) is modular matching among agents trading,
and among those not trading:
I Matching among those trading sellers and buyers is irrelevant.
I Matching among sellers and buyers not trading is irrelevant.
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Matching Model is a Foundation for Supply and Demand
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Competitive Equilibrium in a Double Auction

Proposition (Double Auctions)

(a) If ξN < c1, there is no trade. Assume c1 ≤ ξN henceforth.
(b) The k∗ highest value buyers purchase from the k∗ lowest cost
sellers, where k∗ is the largest k with ck ≤ ξN+1−k .
(c) The law of one price holds, with a common price

p∗ ∈ [max(ck∗ , ξN−k∗),min(ck∗+1, ξN+1−k∗)]

(d) Any competitive equilibrium is efficient, and therefore
maximizes the sum of gains from trade.
(e) The final allocation is immune to side bribes.

I When supply balances demand, we say markets clear

I To understand deviations from the law of one price, which we
see everywhere, one really needs to add search frictions to the
model (as I teach in advanced theory).
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Is There One Price? What is it?

I Proof of (c): The social planner equally values buyer j ’s
shadow value wj = ξj − pi > 0 in any optimal trade, namely
from low cost sellers i , by the Becker Marriage Theorem

⇒ Seller prices pi cannot vary with i , assuming they trade

I The price p∗ encourages last transaction: ck∗ ≤ p∗ ≤ ξN+1−k∗

I The price p∗ deters another transaction: ξN−k∗ ≤ p∗ ≤ ck∗+1

I Hence, crossing of supply and demand determines quantity:

max(ck∗ , ξN−k∗) ≤ p ≤ min(ck∗+1, ξN+1−k∗)

I The competitive price is not pinned down unless the last trade
yields no surplus, whereupon the last unit needn’t be traded

I “Walrasian auctioneer” secures a competitive equilibrium by
raising the price with excess demand and reducing the price
with excess supply

I Opening stock market prices are set to clear the market
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Double Auction Example
I Consider 20 agents, numbered from 1 to 20
I Even agents are buyers, and odd agents are sellers
I Buyer valuations are ξi = 2i and sellers costs are cj = 3j .
I Ordering the valuations from high to low:

40, 36, 32, 28, 24, 20, 16, 12, 8, 4

I Ordering costs from low to high:

3, 9, 15, 21, 27, 33, 39, 45, 51, 57

I An efficient matching clears the market: the high value buyers
and low cost sellers ⇒ k∗ = 4 (but actual pairing irrelevant)

I The price p∗ encourages the value 28 buyer and cost 21 seller
to trade:

21 ≤ p∗ ≤ 28

I The price p∗ deters the value 24 buyer and cost 27 seller from
trading:

24 ≤ p∗ ≤ 27

I any price in the interval [24, 27] clears the market 73 / 76



Gains from Trade

I All traders earn positive surplus: e.g. at p∗ = 25, the marginal
buyer earns 28− 25 = 3 and the marginal seller 25− 21 = 4

I Heterogeneity is good and the source of all gains from trade.
I If everyone had identical valuations, then no consumer secures

consumer surplus at the market clearing price
I the more heterogeneous are consumers or producers, the larger

the total gains from trade.
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How Paternalism Reduces Gains from Trade

I Example: Volunteer vs. Draft Army
I A volunteer army maximizes gains from trade: it sets a wage

so that the people who most want to serve willingly do so.
I Milton Friedman’s opposition the Draft helped end it in 1973.

I Example: Regifting and scalping
I U.S. Ticket Resale Laws vary hugely (my advisee Axel

Anderson and football tix)
I Jay Leno’s freely gave away Tonight Show tickets to

unemployed in Detroit in 2009. People tried resold tickets on
eBay and Leno objected.

I Example: Gift giving often means value < cost
I Waldfogel (1993), “The Deadweight Loss of Christmas’
I Lost surplus was about ten billion dollars per holiday season!
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Market Power

I Question: What if all women form a cartel?
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