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Abstract

This paper explores a simple class of matching games in whichindividuals
meet pairwise, unwittingly passing along a bad in a contagion fashion. It may be
a private “bad”, like a counterfeit money or stolen art. Or itmay be a collective
“bad”, like a disease or a computer virus. Either way, individuals expend effort to
avoid acquiring the “bad”. With a private “bad”, these efforts are complements,
and the game is submodular. With a collective “bad”, they aresubstitutes, and the
game is supermodular.

The symmetric equilibria of these games share a common feature, that the
marketplace often produces fewer “infections” as the bad grows more prevalent.
One cannot, for instance, infer that counterfeiting is lesssevere when there is less
passed counterfeit money.
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1 Introduction

What do forged art and AIDS have in common? Answer: Both exchange hands when

two individuals meet, and at least the recipient unwittingly acquires it through inat-

tention or carelessness. This note introduces and exploresa new class of matching

games, characterized by individuals pairwise meeting, possibly unwittingly passing

along a “bad” in a contagion-like fashion. It may be a private“bad”, like counterfeit

money, stolen goods, or forged art. Or it may be a collective “bad”, like a disease,

email virus, or an undesirable accent. In either case, we assume that individuals may

expend effort to acquire or avoid the contagious good. In this synthesis, a common

theme emerges: the market place confounds the signals that emerge about the disease

prevalence. Individuals strive harder not to acquire the disease the more common it

becomes. When the Secret Service finds more passed counterfeit money, does that sig-

nal more circulating counterfeit money? When we observe more AIDS cases reported,

is AIDS a worse problem? At low levels of either, it turns out the answer is yes. But

at higher levels, this switches.

This paper relates to the growing literature on network games. We are aware of

only one paper that relates to our collective good contagiongame: Kremer (1996)

introduces choice of parter into an epidemiological context. The role of effort choice

here is completely different.

2 The Strategic Infection Games

Individuals meet pairwise. Each individuali exerts costly effort to acquire a filter of

quality qi ∈ (0, 1). We consider a “bad”χ like counterfeit money or a disease. IfA

hasχ andB does not, thenχ must pass through both filters to change hands.

For instance, ifχ is possibly counterfeit money, then one wishes to avoid acquiring

it. Since knowingly passing it on is illegal, it is worthlessif B discovers that it is

counterfeit; this has chanceqB if the noteA hands him is counterfeit, asA may briefly

study the money for authenticity. If a fractionγ of all notes are counterfeit, then the

chance thatA hands him counterfeit money isγ times the chance1− qA thatA misses

it. Of course,B may already possess counterfeit money, but each new acquisition

brings its own loss, and this is a true loss. Hence, the chancethatB acquires counterfeit

money when meetingA equalsγqA(1 − qB).

If χ is an infectious disease, thenB catches the disease with chance1 − qB if A

passes it on to him. For instance,A may sneeze and not cover his mouth, andB may
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directly inhale. The protective actions for STDs are more obvious. If a fractionγ of all

individuals are infected, then the chance thatA passes it to him isγ times the chance

1 − qA thatA misses it. The chance thatB acquires the disease when meetingA thus

equalsγ(1 − qA)(1 − qB). We now assume thatB is unaware of his disease status.

While this is a simplifying assumption, it is clearly realistic for many diseases, that

are latent and only revealed by blood tests until their symptoms emerge. He thus has

chance1 − γ of not having the disease. Altogether, the chance thatB newly acquires

the disease when meetingA equalsγ(1 − γ)(1 − qA)(1 − qB).

In our world, producing a greater screening actionq is naturally a costly endeavor.

We wish to assume an increasing and convex cost function, andshall focus onC(e) =

cer/r with r > 1. Here,c is the marginal cost of the maximum screening efforte = 1,

measured as a fraction of the unit magnitude of the gain or loss from matching.

collective consumption private consumption
“bad” −γ(1 − γ)(1 − ē)(1 − e) − C(e) −γ(1 − e)ē − C(e)

“good”’ γ(1 − γ)ēe − C(e) γe(1 − ē) − C(e)

Figure 1: Payoff Functions for the Infection Models. Here we imagine that one
individual chooses screening levele, and he faces someone choosing levelē.

collective bad private bad

“bad” submodular supermodular

“good” supermodular submodular

These examples fall into two separate economic camps that weexplore. First,

counterfeit money is a “bad” but is private: Neither desiresit, and by passing it on, one

loses it. A disease is a collective1 “bad”, being retained as it is passed on.

3 Private Bads

3.1 Equilibrium

We first consider private badsχ, like counterfeit money. We seek the symmetric Nash

equilibria, where everyone opts for the common verificationlevel ē. Given a meeting,

each individual maximizesπ(e, ē) = −γē(1 − e) − C(e) in e. Using the first order

1A disease is not non-rivalrous as it can only be possessed by the “club” of individuals infected.
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condition,γē = C ′(e) = cer−1 solved bye = ē. Theequilibrium first order condition

becomes

γē = cēr−1 ⇔ γ = cē(γ)r−2 (1)

The second order condition clearly holds in our paper, whenr > 1, for then costs are

convex and benefits are linear ine. There is one final possibility, which is a corner

solution ate = 0 or e = 1. No such corner solution exists whenr > 2 andγ ≤ c for

thenγē = cer−1 is always solvable with̄er−2 = γ/c ≤ 1. Observe thatlimγ→0 ē(γ) =

0 = ē(0) only if r ≤ 2. We assume thatr > 2 throughout this section.

The equationγ = cēr−2 defines a function̄e(γ) =
(

γ

c

)
1

r−2 . When the prevalence

of χ attainsγ = c, the equilibrium calls for̄e = 1 and new transmissions are choked

off. Observe that̄e(γ) < 1 exactly whenγ < c, which we have assumed.

Lemma 1 The screening effort rises inγ for a private bad with cost convexityr > 2.

Observe that with payoffπ(e, ē) = −γē(1 − e) − C(e), screening efforts for the

private bad are inefficiently high in equilibrium, as they confer a negative externality

on others. Since someone is eventually stuck with the private bad, individuals play

a zero sum game, and any effort is inefficient. For example, scrutinizing possibly

counterfeit currency that one is handed obviously hurts theindividual passing it to you.

One can check that the marginal value (to oneself) of others’efforts equalsπē(e, ē) =

−γ(1 − e) = −γ[1 −
(

γ

c

)
1

r−2 ] < 0 when e = ē. So this externality grows in the

prevalenceγ. To be sure, there is another equilibrium here: an efficient equilibrium

involves zero screening by everyone.

One can check that the cross-partial of efforts equals the prevalenceπēp(e, ē) =

γ > 0. Actions are therefore strategic complements: The more carefully others ex-

amines the currency you pass to them, the better one wishes toscrutinize the money

one is handed. In other words, own efforts raise the marginalproduct of others’ ef-

forts, so that game issupermodular. The equationπē(e, ē) = 0 defines the best re-

sponse functione(ē). The slope of the best response function is then found by solving

πppdp + πxēdē = 0. Sinceπxē > 0, the best response graphs is increasing functions

the others’ actions. Just as in Diamond (1982), this encourages multiple equilibria.

Further, asγ grows, the supermodularity works to ameliorate the negative externality,

since the greater others’ screening efforts, the steeper mymarginal product of screen-

ing, and the faster I raise it.
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3.2 The Market Response to Infections

Our focus is on the observable consequences of the contagiontransmission. Thenew

“infections” in equilibrium areI(γ) = ē(γ)[1 − ē(γ)]γ. This vanishes with zero

screening effort, for no one ever discovers the bad. Equallywell, it vanishes with

perfect screening, as the good is never passed on. Infections require some inattention

by the giver (̄e < 1), and diligence by the receiver (ē > 0).

Easily, if ē(γ) < 1/2 andr > 2, thenē(γ)[1− ē(γ)] rises inē(γ) and the screening

effort satisfies̄e′(γ) > 0. On balance, infections rise too, orI ′(γ) > 0. Our focus is

on the surprising case of a decreasing infection rate, wherethe marketplace response

entirely counteracts the adverse change in nature.

Proposition 1 Assume a private bad withr > 2. Infections move in opposition to the

prevalenceγ ≤ c when the bad is sufficiently common.

Proof: Observe that

ē′(γ) =
ē(γ)

(r − 2)γ
(2)

Substituting (1) into (2), we find that (wherea ∝ b if a, b have the same sign):

I ′(γ) = ē(1 − ē) + γ(1 − 2ē)ē′(γ) = ē(1 − ē) +
(1 − 2ē)ē

r − 2
∝ (r − 2)(1 − ē) + (1 − 2ē) = (r − 1) − rē

ThenI ′(γ) < 0 if and only if ē(γ) > 1−1/r, namely, if and only ifγ > c(1−1/r)r−2,

becausēe(γ) =
(

γ

c

)
1

r−2 . As r explodes, this says thatγ > c/e, wheree ≈ 2.718. �

Large levels of counterfeit money are not without precedent. For instance, during

the American Revolution, the British so successfully counterfeited American money

that the Continental currency soon became worthless — hencethe saying “Not worth a

Continental”. The Secret Service reports that later on, during the Civil War, one-third

to one-half of the circulating currency was counterfeit.

Clearly, infections cannot always move in opposition to theprevalenceγ, since

I(γ) vanishes whenγ = 0, and is otherwise positive. But Proposition 1 says that

infections thus move when the screening effort exceeds1/2 — which eventually holds

for large enoughγ, by Lemma 1.

The market for a private bad plays a zero sum game. As such, thegame per se

has obvious welfare properties. On the other hand, we have ignored an ex ante stage

where the private bad was introduced into the market place. Suppose that the gov-

ernment wishes to discourage the admission of new private bads, by somehow sub-
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Figure 2: Private Bads. This illustrates the screening effort and resulting infections
given the disease rateγ, assuming cost convexityr = 2.5 and cost parameterc = 0.1.
With a constant screening, new infections are forever rising in γ. But here effort levels
constantly rise in response to greaterγ, and thus the peak infection level is atγ ≈ 0.08.
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Figure 3: Feasible Parameters γ, r. All levels of the private badγ/c below 2 and
above the lower frontier(1−1/r)r−2 yield falling “infections” in the private bad level.
Providedc < 1 is small enough, infections may be falling at a low prevalenceγ.

sidizing or otherwise encouraging the screening efforte. Such efforts must surely

lessen the parameterc, and thereby raise the screening effortē(γ) = (γ/c)
1

r−2 . Since

I(γ) = ē(γ)[1 − ē(γ)]γ, we havedI(γ) ∝ −[1 − 2ē(γ)]γde(γ) < 0, for ē > 1/2.

3.3 The Prevalence Dynamics

Assume now an exogenous entry flow ofδ of the characteristicχ into the matching

pool. For instance, this may be new counterfeit money or forged art into the economy

by criminal elements. The infections now constitutes exitsfrom the prevalence pool.

Modifying the standard disease dynamics, we find that

γ̇ = δ − I(γ) = δ − ē(γ)[1 − ē(γ)]γ = δ − (γ/c)
1

r−2 [1 − (γ/c)
1

r−2 ]γ
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The steady-state level ofχ clearly satisfieṡγ = 0, or

(γ/c)
1

r−2 [1 − (γ/c)
1

r−2 ]γ = δ (3)

Proposition 2 Assume a private bad withr > 2. The steady-state prevalence ofχ is

rising in c if γ < 4c/2r, and falling ifγ > 4c/2r (for a sufficiently prevalent bad).

Proof: Just asx(1−x) falls in x whenx < 1/2, when the steady-state level ofγ obeys

(γ/c) < 22−r, the left side of (3) is falling inc. This inequality condition reduces to

γ < 4c/2r. Also, in order to maintain equality,γ is increasing inc over this range. But

above that, the steady-state level ofγ is falling in the costc of effort. �

The intuitive result isγ rising in c. But whenχ is prevalent enough, then paradox-

ically, cost-lowering efforts counter-productively the prevalence.

4 Collective Bads

4.1 Equilibrium

The analysis now entails maximizing−γ(1− ē)(1−e)−C(e) with respect toe, where

the symmetric Nash equilibrium withe = ē requires:

(1 − ē)γ = C ′(e) = cēr−1 (4)

Direct substitution reveals thate(0) = 0. As this cannot be solved in closed form, we

proceed indirectly.

Lemma 2 The screening effort rises inγ for a collective bad for any convexityr ≥ 1.

Proof: Immediately, (4) yields(1 − ē) − ē′(γ)γ = c(r − 1)ēr−2ē′(γ), and so

ē′(γ) =
1 − ē

γ + c(r − 1)ēr−2
=

ē(1 − ē)

γ(ē + (r − 1)(1 − ē))
> 0 (5)

where we have simplified the expression using (4). �

Observe that with the payoff function−γ(1 − ē)(1 − e) − C(e), screening efforts

will be inefficiently low in equilibrium, since they confer an unaccounted positive ex-

ternality on others. For instance, protecting oneself fromdisease transmission clearly

helps any individuals one encounters. The same effect is true in the matching setting of

Mortensen (1982), where individuals exert effort in advance that affects others’ prob-

abilistic futures. One can check that the marginal value of others’ efforts to oneself
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in equilibrium equalsγ(1 − ē) = γ[1 −
(

γ

c

)
1

r−2 ]. In other words, this is a dynamic

externality, at least initially growing in the prevalenceγ.

On the other hand, actions are strategic substitutes: The more carefully one pro-

tects against disease transmission, the more one lowers themarginal product of others

efforts. In other words, each individual’s actions lower the marginal product of oth-

ers’ actions, and the resulting game issubmodular. This means that the best response

graphs are decreasing functions of others actions, and precludes the possibility of mul-

tiple equilibria. One can check that the cross-partial of efforts equals the prevalence

−γ. Consequently, asγ grows, the supermodularity aggravates the negative external-

ity, since the greater others’ screening efforts, the smaller is the slope of my marginal

product of screening, and the slower I raise it.

4.2 The Market Response to Infections

Equilibrium infections are nowI(γ) = γ(1 − γ)(1 − ē)2. In other words, an infected

meets an uninfected individual, and the disease passes through both effort screens.

Proposition 3 Assume a collective bad andr > 1. New infections move in opposition

to the disease prevalence forγ > 1/2. In particular, whenr ≤ 2 it suffices that

γ > 1/2. Whenr > 2, it suffices thatγ > (r−1)c
2c(r−1)+1

, and so forγ > 1/2.

Proof: The slope of new infections equals

I ′(γ) = (1 − 2γ)(1 − ē)2 − 2γ(1 − γ)(1 − ē)ē′(γ)

= (1 − ē)2

[

1 − 2γ −
2(1 − γ)ē

ē + (r − 1)(1 − ē)

]

When1 < r ≤ 2, this is negative at least when[1 − 2γ − 2(1 − γ)ē] < 0, and thus

in particular whenγ > 1/2. On the other hand, whenr > 2, we haveI ′(γ) < 0 iff

(r − 1)(1 − 2γ) < ē/(1 − ē). Finally, first rewriting the premise inequality of this

proposition, and then applyinḡe2−r ≥ 1 and (4), we find that

(r − 1)(1 − 2γ) < γ/c ≤ (γ/c)ē2−r = ē/(1 − ē)

In other words,I ′(γ) < 0 given our condition onγ. �

How realistic is the conditionγ > (r−1)c
2c(r−1)+1

? Observe that we have normalized the

cost of the disease to 1, to secure a common model for collective and private goods.

We may however capture a more deadly or less disease within our model by simply
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Figure 4:Collective Bads. This illustrates the screening effort and resulting infections
with cost convexityr = 2.5 and cost parameterc = 0.1. With a constant screening
effort, new infections will peak atγ = 0.5, whenγ(1 − γ) is maximized. However, in
our behavioral model, individuals increase their effort levels in response to greaterγ,
and accordingly the peak infection level is at a lowerγ, here just over 0.1.

adjusting up or down the marginal costc of effort atē = 1. Returning to Proposition 3,

the combination of a sufficiently dangerous and common disease leads to the perverse

infection monotonicity.

4.3 The Disease Dynamics

Assume now an exit rateδ of those with the contagious characteristicχ. For a dis-

ease, exits may be accomplished by deaths or recovery. The infections now constitutes

entrants to the disease pool. Modifying the standard disease dynamics, we find that

γ̇ = I(γ) − δγ = [1 − ē(γ)]2γ(1 − γ) − δγ = [1 − (γ/c)
1

r−2 ]2γ(1 − γ) − δγ

The steady-state level ofχ clearly satisfieṡγ = 0, or

[1 − (γ/c)
1

r−2 ]2(1 − γ) = δ (6)

Proposition 4 Assume a collective bad. The steady-state disease prevalenceγ rises

in c for r > 2 and falls forr < 2.

Proof: The left side of (3) is rising inc for r > 2 and falling whenr < 2. In order to

maintain equality,γ is rising and falling in these respective parameter ranges.�

References

Brito, Dagobert, Eytan Sheshinski, Michael Intriligator,“Externalities and Com-

pulsory Vaccinations,”Journal of Public Economics(1991)45, 69–90.

8



Diamond, Peter “Aggregate Demand Management in Search Equilibrium”, Journal

of Political Economy(1982)90, 881–94.

Kremer, Michael, “Integrating Behavioral Choice into Epidemiological Models of

the AIDS Epidemic,”Quarterly Journal of Economics(1996), 549–573.

Mortensen, Dale, “Property Rights and Efficiency in Mating,Racing, and Related

Games”,American Economic Review(1982):72, 968–979.

9


