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Abstract

This paper explores rational social learning in which everyone only sees
unordered random samples from the action history. In this model, herds need
not occur when the distant past can be sampled. If private signal strengths
are unbounded and the past is not over-sampled — not forever affected by any
individual — there is complete learning and a correct proportionate herd. With
recursive sampling, welfare almost surely converges under the new proviso that
the recent past is not over-sampled. In this case, there is almost surely complete
learning with unbounded beliefs and unit sample sizes. The sampling noise in
this Polya urn model induces a path-dependent structure, so that re-running
the model with identical signals generally produces different outcome.s
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1 INTRODUCTION

An infinite ordered sequence of individuals with identical preferences is faced with a
one-shot action choice from a finite menu with uncertain payoffs. Decisions optimally
reflect a private signal and the perfect knowledge of what all predecessors have done. In
the unique equilibrium, everyone eventually settles upon one action, possibly an unwise
one. This classic informational herding fable owes to Banerjee (1992) and Bikhchandani,
Hirshleifer, and Welch (1992), whose working paper offered the metaphor of the blind
leading the blind. Smith and Sørensen (2000) (hereafter, SS) later found that incorrect
action herds happen with positive probability exactly when the individuals’ signals are
uniformly bounded in informativeness. Otherwise, a herd on the correct action must occur.

This paper pursues a different theory of rational social learning grounded on anonymity,
i.e. the assumption at the heart of economics. We ask how well people learn when everyone
knows her own ordinal rank but only sees how many in her sample took each action. We
revisit claims in Surowiecki (2004) that “crowds” smartly aggregate information. We
hereby introduce a new metaphor for social learning: In a Polya urn, a ball is drawn
randomly from an urn containing black and white balls; its color is observed, and then it
and a new like-colored ball is replaced; the urn composition evolves as the process repeats.

This setting subsumes previous social learning models: observing aggregate action
statistics,1 random samples,2 or simply the immediate predecessor (Celen and Kariv
(2004)). For motivation, consider how SS derived their results by exploiting a “dynamic
discontinuity” in the herding model: By the overturning principle, a single violation of
a would-be herd can overturn the weight of arbitrarily many predecessors’ recorded ac-
tions. So a herd occurs since the absence of one precludes belief convergence, but this
is a contradiction, since a bounded martingale converges; meanwhile with unboundedly
strong private signals, any incorrect would-be herd that starts is eventually violated by a
well-enough informed successor. But this dynamic discontinuity is counterfactual for most
applied settings. For observing perfectly ordered actions histories is intuitively rare, and
overwhelmingly memory intensive. Second, individual choices are often lost in the crowd.3

Random sampling radically alters social learning. Anonymity subtracts enough infor-
1The earliest example is a continuum agent learning model in Smith (1991).
2The first published example we know is Banerjee and Fudenberg (2004) (hereafter, BF). Early mimeos

of BF and Sørensen (1996) were contemporaneous at MIT. Still, we profited from seeing their paper.
3SS also considered a variant on the herding model with noisy choices in which the overturning principle

failed because deviations from herds are eventually attributed mostly to error. That model is observa-
tionally distinct, as the noisy choices remained constant. Here, contrarian choices vanish with time.
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mation from the sequential history that the overturning principle fails. For instance, an
initial action sequence of AB is only seen as “either AB or BA” by #3. Whereas either
sequence may push a standard herding model into one cascade or another, the anonymity
assumption leaves #3 with no useful inference. So early actors are not as pivotal. Next
consider what happens if #3 chooses action B, after seeing AA. In the original herding
model, this effects a radical shift favoring B, by the overturning principle. But with random
sampling, an opposite message emerges: the history of AAB still favors A at this stage.
In other words, the very last individual is no longer pivotal, but instead sees his impact
muted by the crowd. All told, the dynamic discontinuity disappears, and settled message
of history herding model with anonymity is far less responsive to individual choices.

Our first finding is simple but notable: With random sampling from the entire action
history, a herd is impossible, unless it starts at the outset. For early deviants are forever
later sampled and able to mislead. While just an example, it reveals how herding is
no longer synonymous with information aggregation. In its stead, we introduce a new
benchmark of proportional herds, or convergent fractions of choices. Proposition 1 derives
the iff conditions for correct proportionate herds and complete learning, namely, that
samples eventually reveal the truth: the unbounded informativeness condition on private
signals of SS, and a new proviso: the distant past must not be “over-sampled” — not reliant
on anyone with boundedly positive chance. For instance, observing either the most recent
predecessor or a randomly drawn person from the past meet our sampling condition.

A key idea is that one does as well on average as a typical sampled predecessor
(Lemma 2), and more so with better quality signals. Mere imitation of a randomly drawn
action from the sample guarantees this. Corollary 1 finds that welfare is monotone and so
converges with recursive sampling, an intuitive special case where past sample chances are
discounted at a fixed rate. Corollary 2 leverages this and deduces that the best possible
sampling protocol with unit sample sizes is to observe the immediate predecessor.

We next turn to a deeper novelty that uniquely arises with random sampling. Social
learning from samples proceeds by comparing the chances of a sample in the two states of
the world. But does a sample of AB occur half the time because the urn is equally full of
A’s and B’s, or is it entirely A’s or entirely B’s with equal chance? These radically different
outcomes generate similar messages. We must therefore understand not just what is the
average behavior of the urn, but more strongly what is the realized path. The theory of
Polya urns is not yet advanced enough to allow a sharp conclusion here, but in the special
case of unit sample sizes, Proposition 2 deduces an almost sure limit. In this case, we
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find strong convergence of the action fractions with sample size one under one additional
assumption: the recent past must not be over-sampled. This assumption rules out sampling
just the immediate predecessor, and offers a big picture insight into the oscillation found
by Celen and Kariv (2004). In summary, too much weight on the distant past precludes
complete learning even in the presence of unbounded beliefs, while too much weight on
the recent past can lead to divergent behavior, such as oscillations.

Our analysis relies on a key technical innovation. The proof logic in SS exploited the
martingale character of public beliefs and their implied likelihood ratios. But here, the
pre-history of any two individuals is not commonly observed; thus, the information set is
not “growing” (i.e. a filtration), and a “public” belief is not a meaningful notion: Rather,
everyone recursively computes the chance of a sample in each state, and thereby deduces
sample beliefs via likelihood odds. We have nonetheless rescued a martingale analysis that
should prove generally useful in social learning. We exploit the fact that the cumulative
sums of one-period look-ahead forecast errors for any stochastic process is a martingale.

The social learning literature is large, but two papers stand out for relevance. We will
return in §B.2 to a detailed discussion of the elegant model of BF, since the continuum
model comparison is technical. We claim that not modeling the stochastic path dependence
makes it a poor approximation of the finite agent world. The continuum world essentially
secures its tractability by averaging over mutually exclusive histories of finite agent models.

Also closely related is Acemoglu, Dahleh, Lobel, and Ozdaglar (2008) (ADLO), recently
published in this journal. The original herding models assumed the simplest network
structure; following on work by Gale and Kariv (2003), ADLO characterizes complete
learning in social networks. Since people know precisely the identity of sampled individuals,
it is far from our paper exploring anonymity. But its complete learning characterization is
related to ours that the past not be over-sampled; we defer a careful comparison until §B.1.

Arthur and Lane (1994) also uses urn theory, but agents learn from past outputs, and
not actions. Building on our (1996) working paper, Celen and Kariv (2004) is an insightful
study of the predecessor sampling model, whose key divergence insight we revisit. Chamley
(2004) offers a gentle treatment of random sampling work, including our own, in §5.1.
Monzon and Rapp (2011) relax our informational assumption, denying individuals the
knowledge of their current decision rank; they derive similar complete learning conclusions.

Section 2 sets up the model. Section 3 develops two key lemmas for learning from signals
and samples. In sections 4 and 5, we study the expected and the stochastic evolution of the
model. The Appendix offers cautionary insights to help guide work on random sampling.
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2 THE MODEL

A. Private Signals. A probability space (Ω, E , ν) underlies all randomness. There
are two states (of the world): θ = H (‘high’) and θ = L (‘low’). So this partitions the
background state space Ω into events H and L, with common prior ν(H)=ν(L)=1/2.

An infinite sequence of exogenously ordered individuals n = 1, 2, . . . sequentially acts.
Each initially sees a private signal σ ∈ Σ about the state — assumed i.i.d. across individuals
conditional on the state. The signal is distributed according to the probability measure µθ

in states θ = H,L. Some signals are informative, so that µH ̸= µL, but no signal perfectly
reveals the state, so that µH and µL are mutually absolutely continuous. Thus, there exists
a positive and finite Radon-Nikodym derivative g=dµL/dµH :Σ → (0,∞) of µL w.r.t. µH .

Using Bayes’ rule, the individual computes his private belief p(σ) = 1/[g(σ)+1] ∈ (0, 1)

that the state is H. Conditional on the state, private beliefs are i.i.d. across individuals
because signals are. In states θ = H,L, the private belief p has distribution F θ on (0, 1),
where FH and FL have a common support supp(F ). By construction, the convex hull is
co(supp(F )) ≡ [p, p̄] ⊆ [0, 1] with 0 ≤ p < 1/2 < p̄ ≤ 1, since µL and µH are distinct. We
call the private beliefs bounded if 0 < p < p̄ < 1; if co(supp(F )) = [0, 1], private beliefs are
unbounded. To exhaust all possibilities we should also consider supports that are bounded
above and not below, and conversely, but this tedious exercise sheds no additional insights.

A restricted symmetric class of signals affords some tighter results. As with a weather
forecast, imagine first drawing a signal quality q from a distribution F over (0, 1), and
then learning one of two possible statistically true statements “with chance q, the state is
high/low”. Then F is symmetric, i.e. F (p) = 1− F (1− p), since a 70% or more chance of
rain is a 30% or less chance of sun. Given a flat prior, one’s private belief is q/[q+(1−q)] = q

after learning that θ = H has chance q, and is 1− q if told that θ = L with chance q. So
the private belief cdf obeys dFH(p) = pdF (p) in state H, and dFL(p) = (1 − p)dF (p) in
state L. These cdf’s inherit symmetry: FH(p) =

∫ p

0
dFH(r) =

∫ 1

1−p
dFL(r) = 1−FL(1−p).

For example, assume signal quality has a uniform distribution on [0, 1]. Then F (p) = p,
and so private beliefs are unbounded with cdf’s FH(p) = p2 and FL(p) = 2p− p2 on [0, 1].

B. Action Choices. Everyone chooses among actions a, b, seeking to take the action
that maximizes his expected payoff. We assume that a is a safe action, and b is a risky
action, better in state H. (The restriction to two actions is not crucial to our results,
except in §A.) Actions have common vNM payoffs uH(a) = uL(a) = 0, uH(b) = 2u, and
uL(b) = −2. In other words, a perfectly revealing signal yields expected payoff u (and so is
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our complete learning benchmark, for state H). Action b is best iff the posterior belief r
obeys ru− (1− r) ≥ 0, i.e., exceeds the threshold 1/(1+u). To avoid trivialities, 1/(1+u)
lies strictly inside the support of private beliefs — we do not start out in a cascade.

C. Random Sampling. Every individual n observes an unordered sample of actions
s = (sa, sb) ∈ S = {0, 1, 2, . . .}2 drawn from the pool of history, namely, the numbers sa
and sb of sampled predecessors who took the two actions. Two steps removed from the
standard herding model, an individual is neither apprised of the action sequence, nor what
samples were seen by predecessors. A sampling process Σ defines for each individual n
the chance of drawing each (possibly empty) subset J ⊆ {1, 2, . . . , n− 1} of predecessors.
The samples and signals sampled by n ̸= m are independent, and the sampling process is
independent of the state. For a given sampling process Σ, we can derive the chance that n
draws a sample of size j < n; we assume that nonempty samples occur with positive chance.
We can also compute the chance τ(n,m) that agent n samples predecessor m < n. We let
τ(n, 0) be the chance that individual n samples the empty sample, so

∑n−1
m=0 τ(n,m) = 1.

For a salient special case, assume that pairs of individuals sample the common past in
the same way: in other words, τ(n+ 1,m)/τ(n,m) = 1− πn constant for all m < n. This
sampling process is recursive since the induced measure over {1, . . . , n} consists of some
weight πn on n, and remaining weight 1−πn on the previous distribution over {1, . . . , n−1}.

The only stationary recursive sampling process involves geometric weighting, where
individual n samples m < n with frequency τ(n,m) ∝ πm+1Π

n
m+2(1−πi) = π(1−π)n−m−1,

where π < 1, and the limit proportional sampling world, where τ(n + 1,m) = 1/n for
all m ≤ n, and thus πn = 1/n. Think of 1 − π as a decay factor on the information in
old choices. This special case of our model in turn subsumes other studied social learning
models. In the limit π → 1, all information decays, as only the immediate predecessor
is sampled, as in Celen and Kariv (2004). For fixed π > 0, recent predecessors are more
heavily weighted, and the past is discounted. The limit π → 0 includes the cases where one
sees all predecessors’ actions without order (Smith (1991)), as well as BF’s proportional
finite sampling model, in which all predecessors are sampled with equal chance.4

D. The Dynamic Behavior of Sample Beliefs. Individuals n = 1, 2, . . . play
a Bayes-Nash equilibrium. Each learns from history by drawing samples of predecessors’
actions. For any given sampling process, the observation by individual n of any sample
depends stochastically on the true state and the realized history of length n. In equilibrium,
sampling actions allows one to make imperfect inferences about the sampled individuals’

4Since they assume a positive death rate, they too have a decay factor 1− π < 1 on old information.
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private signals. Since one can calculate the probabilities of making that observation in
either state, individual n can then form his sample belief qn in state H. This would be his
posterior belief in state H had he a purely neutral private belief.

As private signals are random, sample beliefs ⟨qn⟩∞n=1 are a stochastic process. Then
individual n forms his posterior belief rn from the sample belief qn and the private belief pn
using Bayes’ rule:

rn =
pnqn

pnqn + (1− pn)(1− qn)
. (1)

3 LEARNING FROM SIGNALS AND FROM SAMPLES

After seeing one’s private signal, further Bayesian updating must be in vain, but this
only holds if (dFH/dFL)(p) = p/(1−p). This no introspection condition from SS quantifies
how much more proportionately strongly signals in favor of a state occur in that state.

Lemma 1 (Signal Tails are Informative) The inequalities (1 − p)FH(p) ≤ pFL(p)

and (1 − p)(1 − FH(p)) ≥ p(1 − FL(p)) obtain for all p ∈ [0, 1]. Moreover, the first
inequality is strict when p > p, and the second is strict when p < p̄.

Proof: As a standard inequality for the monotone likelihood ratio property, we arrive at:

FH(p)

FL(p)
≤ dFH(p)

dFL
≤ 1− FH(p)

1− FL(p)

The no introspection condition finishes the inequality. Strictness follows since (1−p)FH(p)−
pFL(p) and (1− p)(1− FH(p))− p(1− FL(p)) strictly decrease on the support of p. 2

We next develop a useful insight that individuals can use their observed sample of
predecessors to obtain an expected welfare above that of the average sampled predecessor.
Given an observed sample of actions, an individual could randomly mimic one of the
sampled actions. We build on this nice insight from Lemma 1 in the deterministic model
of Banerjee and Fudenberg (2004), but additionally for our stochastic setting, we can
precisely measure the welfare improvement in terms of the private signal distribution.

The sampling process defines the chance that any subset of predecessors is drawn, as
well as the equilibrium chances of the actions taken, and thereby the chance P θ

s of any
sample s ∈ S in state θ. Also, let β(s) be the chance that a uniformly drawn individual
from s took action b.5 The probability that an average sampled predecessor takes action b

5So if j out of ℓ individuals in s choose b, then β(s) = j/ℓ. With sample size zero, we let β(s) be the
chance that an individual with posterior 1/2 chooses b.
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is therefore
Rθ =

∑
s∈S

β(s)P θ
s . (2)

This equivalently expresses the expected proportion of the predecessors who took action b.
Consequently, uRH −RL is the expected welfare of the average sampled population. The
sample belief resulting from the sample s is q(s) = PH

s /[P
H
s +PL

s ]. Outside of cascade, we
have p < PL

s /(uP
H
s +PL

s ) < p̄ for some s ∈ S. The sample and private beliefs produce the
individual’s posterior r, as in (1). Individual n takes action b exactly when ru−(1−r) ≥ 0,
i.e. exactly when the private belief p exceeds the threshold (1 − q)/[uq + (1 − q)]. The
probability that individual n chooses action b in state θ is then

Qθ =
∑
s∈S

P θ
s

[
1− F θ

(
PL
s

uPH
s + PL

s

)]
. (3)

Lemma 2 (Welfare Improvement) One’s expected welfare exceeds one’s average sam-
pled predecessor’s, and strictly so outside of a cascade. In the signal quality paradigm, the
improvement is greater given a mean-preserving spread of the signal quality distribution F .

Proof : Given (1− F )− β≡(1− β)(1− F )− βF , we can regroup terms in (2) and (3):

uQH
n −QL

n − uRH
n +RL

n

=
∑
s∈S

β(s)

{
PL
s F

L

(
PL
s

uPH
s + PL

s

)
− uPH

s F
H

(
PL
s

uPH
s + PL

s

)}
(4)

+
∑
s∈S

(1− β(s))

{
uPH

s

[
1− FH

(
PL
s

uPH
s + PL

s

)]
− PL

s

[
1− FL

(
PL
s

uPH
s + PL

s

)]}
.

=
∑
s∈S

{
PL
s F

L

(
PL
s

uPH
s + PL

s

)
− uPH

s F
H

(
PL
s

uPH
s + PL

s

)}
+
∑
s∈S

(1− β(s))(uPH
s − PL

s )

The desired inequality uRH − RL ≤ uQH −QL, and its strict version, owes to Lemma 1,
for p = PL

s /(uP
H
s + PL

s ). Finally, in the signal quality world, integration by parts yields:

pFL(p)− (1− p)FH(p) = p

∫ p

0

(1− t)dF (t)− (1− p)

∫ p

0

tdF (t) =

∫ p

0

F (p)

This increment rises with a mean-preserving spread in F (higher quality more likely). 2

In words, because signals are informative, the private belief tails favor the corresponding
correct state, and push individuals stochastically towards the correct action for each state.

7



4 PROPORTIONATE HERDS AND MEAN CONVERGENCE

We begin with a fundamental way that random sampling overturns the signature in-
formational herding message — namely, that herds may eventually start. To see this,
assume proportional sampling and a positive probability of boundedly finite sample sizes
|S| ≤ 2k − 1, some k > 0. Unless a herd starts by period k, there is a positive chance
that an infinite subsequence of individuals chooses a contrary action. To see why, assume
that a herd starts after period one with positive probability. Now, the initial k deviants
will almost surely be sampled by infinitely many successors in samples of size 2k − 1 or
less.6 But the herd persists only if the sample belief from history eventually overwhelms all
private beliefs.7 Perversely, this means that these early deviants carry tremendous weight
when sampled late enough. Nearly anyone drawing such a sample will eventually mimic
it, and choose the same suboptimal action. So, even if the chance that people take any
given action converges to one, an infinite subsequence takes the contrary action.

Abandoning hope of stochastic regularities for the total numbers choosing actions,
we focus instead on the strongest form of action convergence that we can hope for —
namely, proportionate herds, when the fraction of individuals taking an action converges
to one. So the share of b-takers converges to 1 in state H and to 0 in state L. Call
learning complete if sample beliefs eventually focus on the correct state. But this happens
iff samples do not mislead, and thus iff a correct proportionate herd arises. Define the
respective expected welfare Vn of individual n and Wn of his average sampled predecessor.
Then limn→∞ Vn = limn→∞Wn = u is both necessary and sufficient for complete learning.

Intuitively, learning is complete when the sampling mechanism casts a wide enough
net among sufficiently informed individuals. Social learning must be neither too forgetful
(seeing empty samples) nor too non-acquisitive (seeing just early deciders).

Definition The sampling process Σ does not over-sample the past if for all m ∈ N and
ε > 0, there exists M > m such that τ(n,m) < ε and τ(n, 0) < ε for all n ≥M .

In particular, a recursive sampling process described by (πk) does not over-sample the past
when the chance of sampling in {2, . . . , n} vanishes as n → ∞. By the independence of
the samples, this chance is Πn

k=2(1− πk), which vanishes when Π∞
k=2(1− πk) = 0.

We next claim that no over-sampling the past and unbounded private beliefs are jointly
sufficient for complete learning, and that learning is incomplete if either fails.

6For instance, with sample size one, each individual n+1 > N samples N with probability 1/n. Since∑∞
n=N+1 1/n = ∞, the Second Borel-Cantelli Lemma implies that individual N is sampled infinitely often.
7So the analog of a limit cascade happens, as SS deduce for the standard observational learning model.
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Proposition 1 (Complete Learning) (a) If Σ does not over-sample the past and pri-
vate beliefs are unbounded, learning is complete and a correct proportionate herd occurs.
(b) Learning is incomplete if Σ over-samples the past: lim infn→∞ Vn, lim infn→∞Wn < u.
(c) Learning is incomplete for bounded private beliefs and almost surely non-empty samples.

Proof of (b). When the past is over-sampled, fix m and ε > 0 and a subsequence nk of
individuals observing either m or nothing with chance at least ε. Ex ante, individual m
errs with some fixed positive chance since it is based on less than m private signals. As
samples are unordered, those including m (or no one) cannot achieve maximal welfare. So
Wnk

is bounded below u. From (2) it follows that there is positive probability of sample
beliefs bounded away from 0 and 1. Then (3) implies that Vnk

is bounded away from u.
Proof of (c). Assume bounded beliefs, no zero-size samples, and the past not over-

sampled. If #1 chooses action b with chance one, then so must all successors, since the
sample beliefs are unchanged. Complete learning cannot obtain in this case. Assume next
that #1 takes either action with positive probability. If there is complete learning, then
the probability QH

n with which individual n takes the correct action b in state H converges
to 1. Then there exists N so large that later individuals who observe pure b samples are
sufficiently convinced about the true state of the world, and so ignore their own signal.
In state L, the first N individuals all take action b with positive probability. Since this
history remains pure after individual N , QH

n cannot converge to 1 — contradiction. 2

The delicate contradiction proof of part (a) is in the appendix. For a direct intuition,
observe that — paraphrasing Newton — no over-sampling the past ensures that everyone
stands on the informational shoulders of giants, namely, sampling from those who have
sampled from predecessors, etc. in longer and longer chains. For instance, the definition
easily yields a threshold Mε(m) such that with chance at least ε > 0, no individuals in
{1, 2, . . . ,m} are sampled by any given n > Mε(m). Define any sequence by m1 ∈ N , and
recursively mk+1 =Mε(mk) for k = 1, 2, . . .. Then, for instance, with chance at least 1−ε,
individual m3 + 1 samples among {m2 + 1, . . . ,m3}, each of whom with chance at least
1− ε, sampled among {m1+1, . . . ,m2}, each of whom sampled a predecessor with chance
at least 1− ε. To wit, complete learning is possible given the accumulation of signals.

Let us see the role of the non-empty samples proviso in Proposition 1 (c). Inspired by
Sgroi (2002), let individuals 20, 21, 22, . . . be sacrificial lambs, unable to view predecessors’
actions. Assume that n observes the unordered sample containing every 2k < n before
acting. This sample consists of conditionally iid realizations, and thus its informativeness
explodes as kn does, even though individuals are sampled without order. So there is
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complete learning by all individuals except powers of 2, and thus by a fraction tending to 1.
Indeed, as Surowiecki (2004) writes in his popular book: “One key to successful group
decisions is getting people to pay much less attention to what everyone else is saying.”

This example speaks to the importance of how well the sampling process “mixes” over
histories. If groups of individuals just sample among themselves, or in one direction only
(as in the last example), then each group might well achieve different outcomes. But when
everyone is sampled the same proportionately, as with recursive sampling, a common limit
expected welfare emerges — irrespective of private beliefs. Since by Lemma 2, the expected
welfare of agent n exceeds the average sampled welfare among 1, . . . , n−1, we conclude:

Corollary 1 (Increasing Welfare) Assume recursive sampling. For all private signals:
(a) The expected welfare uRH

n − RL
n of the average sampled population weakly increases,

and so converges. The limit welfare is less than u in state H with bounded beliefs.
(c) Welfare strictly rises when not in a cascade.
(d) In the signal quality paradigm, welfare rises more with a mean-preserving quality spread.

This asserts that welfare converges, but not that a proportionate herd arises, or even that
the b-sampling chances (RH

n , R
L
n) separately converge. Also, our proof fails for nonrecursive

sampling mechanisms. For instance, assume a very weak signal. Then if everyone samples
his two immediate predecessors, the welfare sequence (0, 3, 2, 2.8, . . .) is consistent with
each individual beating his average sample. Individual 4’s average sampled welfare is 2.5

but 5’s is only 2.4. This roughly captures the logic of the welfare monotonicity failure.
Corollary 1 identifies the best recursive sampling mechanism with unit sample sizes.

Corollary 2 (Efficient Recursive Sampling) Sampling the immediate predecessor is
the most efficient recursive sampling mechanism with unit size.

The proof is instructive. Consider a recursive sampling mechanism in which individual n
samples the predecessor with chance πn ∈ (0, 1). By Corollary 1, we know that welfare
is monotone: V1 < V2 < V3 < · · · when not in a cascade. Let us call the values when
observing the predecessor V̂1 < V̂2 < V̂3 < · · · . Hereby, we assume that there is no cascade,
so that these inequalities are strict, for otherwise, values have converged, and the proof is
trivial. Suppose that individual n is given an additional signal about his sample, indicating
whether he is sampling his predecessor. Since the signal can be ignored, it weakly raises
the expected payoff. That Vn < V̂n follows from:

Vn ≤ πnV̂n + (1− πn)Vn−1 < πnV̂n + (1− πn)Vn
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5 ALMOST SURE CONVERGENCE VIA URNS

So far we have explored the unconditional properties of the model. But in any finite
agent stochastic learning model, convergence in mean possibly conceals complex patterns
reflecting the path dependence of the urn model. In fact, we argue that it does. For a
foretaste, Celen and Kariv (2004) found oscillations with sample size one. Also, as noted
in the introduction, opposing purification herds are unconditionally indistinguishable from
a fully mixed outcome. We now tackle head-on the problems of path dependence.

To this end, consider the Polya urn model. Eggenberger and Polya (1923) created it as
a model contagion, and we use it for “informational contagion.” At each stage, a randomly-
chosen ball is examined, and another of the same color (black or white) is added. Starting
with B0 black and W0 white balls, the limit fraction of white balls Wn/n converges to a
beta distribution β(W0, B0).8 Balls here are individuals, and colors the chosen actions.

The recursive sampling model with unit sample sizes therefore falls prey to methods in
Arthur, Ermoliev, and Kaniovski (1986) (henceforth AEK). They explore the evolution of
generalized Polya urns containing balls having a finite number of colors. Under stringent
conditions, AEK describe the limit distribution of balls in the urn.

We focused in §4 on the (time-0) expected chance Rθ
n = P θ

n(b) of sampling b among
{1, 2, . . . , n − 1} in state θ. We now turn to the realized chances Xn, in other words, the
chance given the history up to n’s predecessor; these reflect the realized urn composition.
There is almost surely complete learning if XH

n → 1 a.s. and XL
n → 0 a.s.9

Fix the state θ = H. Let in = 1 if individual n takes action b, and otherwise in = 0.
As a function of the current action proportion x, the chance χH

n (x) that in = 1 is

χH
n (x) = x

[
1− FH

(
RL

n

uRH
n +RL

n

)]
+ (1− x)

[
1− FH

(
1−RL

n

u(1−RH
n ) + (1−RL

n)

)]
.

Sampling b is more likely if θ = H, and thus RH
n > RL

n . Thus, x 7→ χH
n (x) is a positively

sloped linear function and a contraction. Since people eventually follow their sample with
large chance, this curve tends to the diagonal — where AEK’s theory has no bite.

Assume state H. Given recursive sampling with unit sized samples, the process (Xn)

obeys Xn+1 = (1− πn)Xn + πnin. So the forecast error ϵHn (XH
n ) = in −χH

n (X
H
n ) obeys the

recursion:
XH

n+1 −XH
n = πn

[
χH
n (X

H
n )−XH

n + ϵHn (X
H
n )

]
. (5)

8See Freedman (1965) and more recently, §3.2 of the book Mahmoud (2009).
9We let Xθ

n be the process Xn conditional on state θ.
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Since E[ϵHn (Xn)|Xn] = 0, its drift is πn(χH
n (x)− x). So a deterministic analogue of (5) is

RH
n+1 −RH

n = πn(χ
H
n (R

H
n )−RH

n ) (6)

swapping the argument of χH
n . When the functions χH

n are constant, AEK prove that
XH

n converges, and hence so does RH
n . The approach here is more subtle in our Bayesian

world because χH
n depends on RL

n and RH
n . Our next result finds a.s. convergence of the

“unexpected motion” XH
n −RH

n if both the past and recent past are not over-sampled.

Proposition 2 (Unit Sample Sizes) Assume everyone samples one predecessor, and
that sampling is recursive, with weights satisfying

∑∞
1 πn = ∞ and

∑∞
1 π2

n <∞.
(a) The forecast error Xθ

n −Rθ
n converges a.s. in states θ = L,H;

(b) There is a.s. complete learning if the private beliefs are unbounded.

Part (a) says that if the population mean converges, its composition almost surely does.
This premise is true, eg., for all private beliefs in the symmetric binary model found in
Appendix A, and always holds with unbounded beliefs, by Proposition 1 — hence part (b).

The twin premises of Proposition 2 capture the dynamic tension needed for almost sure
convergence. The weight πn on the last individual must be high enough that information
accumulates (

∑
πn = ∞), but low enough that the lesson of history can “settle down”

(
∑
π2
n <∞). The first condition demands that Σ sample the recent past enough (large πn),

or as we have put it, not over-sample the past.10 The second asks that Σ not over-sample
the recent past. Because over-sampling the past (

∑∞
n=1 πn < ∞) is a stronger condition

than not over-sampling the recent past, some recursive sampling regimes will exhibit mean
convergence but not almost sure convergence, like observing one’s immediate predecessor
(πn = 1). Proportional sampling (πn = 1/n) satisfies both conditions in Proposition 2, as
does any recursive sampling with a decay factor 1− πn≤1− π<1 bounded below one.

To see the necessity of not over-sampling the recent past, consider how Celen and Kariv
(2004) found that oscillations could arise when sampling one’s immediate predecessor.
For example, assume uniform quality signals, so that FH(p) = p2. If individual n sees
action j = a, b in state θ with chance P θ

n(j), then he copies any sampled action j when
his private beliefs are at least ψn(j) ≡ PL

n (j)/(P
L
n (j)+PH

n (j)). Symmetry yields PH
n (b) =

10Assume
∑∞

1 πn = ∞. Since 1 − x ≤ e−x for all x, the limit as N → ∞ of ΠN
1 (1 − πn) ≤ e−

∑N
1 πn

is zero. Conversely, assume
∑∞

n=1 πn < ∞. Then
∑∞

n=N πn < 1 for large N . Since one can prove (by
induction) that ΠN

n=1(1− πn) > 1−
∑N

n=1 πi for all N , Π∞
n=1(1− πn) = ΠN−1

n=1 (1− πn)Π
∞
n=N (1− πn) > 0.
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1−PL
n (b) = 1−ψn(b) = ψn(a). Then individual n chooses action b in state H with chance

PH
n+1(b) = PH

n (b)[1− ψn(b)
2] + (1− PH

n (b))[1− ψn(a)
2] = PH

n (b) + [1− PH
n (b)]2 (7)

given (3). This is obviously also the chance that individual n+ 1 samples action b.
When PH

n (b) is near the limit 1, the difference equation (7) is well-approximated by the
differential equation dP = (1 − P )2dt. To wit, 1 − PH

n (b) = O(1/n). Since
∑

1/n = ∞,
action a will a.s. be observed infinitely often in state H, by the Second Borel-Cantelli
Lemma (and independence). Since the mimicking chance is bounded away from 0, the
realized actions switch infinitely often from b to a, and of course, back again as PH

n (b) → 1.

Proof of Proposition 2: We first claim that the cumulative forecast error process µn =∑n
k=1 πkϵ

H
k (Xk) is a martingale with respect to the σ-algebra generated by (X1, . . . , Xn).

To see this, check that E[ϵHn (Xn)|Xn, H] = 0. Since ϵHn (Xn) and ϵHm(Xm) are uncorrelated
for m ̸= n and any Xn and Xm, the variance of µn is

∑n
k=1 π

2
k

[
Var(ϵHk (Xk))

]
≤

∑∞
k=1 π

2
k <

∞. Having verified this, we can apply the Martingale Convergence Theorem for bounded
variance random variables (Theorem 5.14 in Breiman (1968)) to deduce that µn converges
a.s. to a random limit µ∞. Since the cumulative tail forecast errors

∑∞
k=n πkϵ

H
k (Xk) vanish,

the Appendix proves that the drift of the system fixes its evolution. 2

An omitted part (c) might have considered bounded private beliefs. With unit sample
sizes and recursive sampling, everyone eventually mimics their sample — private informa-
tion is eventually ignored since welfare Wn converges, by Proposition 1. This behavior
corresponds to adding a same colored ball as the one sampled in Polya’s urn. This yields
an easy insight: the limit outcome cannot be a correct purifying herd in a cascade, since
samples would identify the state, and mimicking one’s sample would be optimal. But that
induces the Polya urn, whose long-run proportion of balls of each color — a beta distri-
bution with full support on [0, 1] — entails a mixed population. But in general, a cascade
never starts, and action proportions randomly evolve en route to the mimicking limit.

Assume weights are not unbounded as in Proposition 2. With unbounded beliefs,
eventually there are individuals with arbitrarily strong and incorrect beliefs.

6 CONCLUSION

Random sampling dramatically changes both the predictions and analysis of the social
learning paradigm. For it induces a richer path-dependent process, in which randomness
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owes not only to the variability of individual signals, but also to the vagaries of who
samples whom. Accordingly, re-running the model with the same private signals and
different realizations of the sampling process can induce a radically different outcome.

In this rich framework, we have found that if early deviants can be re-sampled, then
unlike the sequential social learning models, only proportionate herds can emerge. When
the past is not over-sampled, the condition in SS that private signals have unbounded
strength secures complete learning in mean, while learning is incomplete with bounded
beliefs. Under recursive sampling, we deduce monotone convergence of welfare, finding
that it is faster with better quality signals. Moreover, sampling the predecessor is the
best unit sampling mechanism. More strongly, when the recent past is not over-sampled,
as when one learns from a uniformly-drawn random predecessor, almost sure convergence
also obtains. Otherwise, realized and mean outcomes might unpredictably diverge.

The analysis of bounded beliefs remains a challenging and important open problem.
Equally important and even tougher is the analysis of random sampling with larger sample
sizes. We have long struggled on this point, since the Polya urn literature is less helpful.
Path dependent social learning is an important direction for future economic analysis.

A LEARNING FROM SAMPLES: CAUTIONARY INSIGHTS

Our social learning model defeats some many common sense insights.

1. Learning from More Informed Individuals. Lemma 2 showed that in the
signal quality model, it is better to sample from a more informed individual. But learning
from better informed individuals does not always yield a better signal. Assume two actions
and a posterior belief threshold r̄ = 2/3. Assume one observes an agent with posteriors
(.3, .7) having chances (.5, .5). Then the action reveals the belief, and the observer gets
the same belief distribution from action observation. Change the distribution by a mean
preserving spread (MPS) to (.3, .6, .8) with chances (.5, .25, .25), reflecting a sufficiency
improvement. Then the observer’s belief is (.4, .8) with chances (.75, .25), i.e. not a MPS.

In special cases, it is better to sample from more informed individuals. For instance,
assume the symmetric binary model, whose sampling chances PH

n (s), PL
n (s) obey PH

n (s) =

1 − PL
n (s). So each action occurs with ex ante probability 1/2, and the chance of taking

action a in state L and action b in state H rises with a MPS in PH
n (s), PL

n (s). A stronger
belief in state L arises from action a, and a stronger belief in state H from action b.

Recall that with bounded beliefs and recursive sampling, the welfare Wn = uRH
n −RL

n
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monotonically converges to a limit below u. We could not also conclude convergence of
the action proportions Rθ

n, but this now follows from symmetry, since RH
n = 1−RL

n . With
sample size one, Proposition 2 (a) would then imply a.s. convergence of Xn in each state.

2. Social Learning with Larger Samples. Welfare might fall when individuals
learn from larger samples. Using FH(p) = (5p−2)/(2p) and FL(p) = (5p−2)(p+2)/(8p2)

for beliefs p ∈ (2/5, 2/3), computer simulations reveal that individuals after n = 84 are
better off if everyone samples 49 instead of 50 predecessors.11 Assume that everyone has
been better off in the (sample size) 50-model so far. Sampling 50 actions in the 50-model
can still be less informative than sampling 49 actions in the 49-model because the former
actions are more strongly correlated, having relied less on their own private signals.12

3. Social Learning from Words or Polls and not Actions? The vehicle for
transmission of social learning in the literature is action observation. Yet the imprimatur
of rational social learning is learning from coarse signal of predecessors’ beliefs.13 Verbal
discourse has this form (see Shiller (1995)). Survey data often works this way, as individuals
indicate their strength of feeling on a 1–5 scale. How special is learning from actions?

Assume uniform sampling of one predecessor. The chance encounter yields one of two
posterior belief reports ρH and ρL arise with chances ψ(p) and 1 − ψ(p), respectively, if
the sampled agent has posterior p. The misperception function ψ : [0, 1] → [0, 1] is weakly
increasing. With action observations, ψ is a step function. Finally, posit both a symmetric
signal FH(p) = 1− FL(1− p) and misperception function ψ(p) = 1− ψ(1− p).

Let ϕθ(q) be the chance in state θ that someone who samples a predecessor who himself
faced the social belief q will receive an encouraging report ρH . Then:

ϕθ(q) =

∫ 1

0

ψ

(
pq

pq + (1− p)(1− q)

)
dF θ(p). (8)

By symmetry, the chance P θ
n in state θ that agent n+1 sees report ρH obeys PH

n = 1−PL
n .

If n observes ρ, he forms the sample belief qn(ρ), where qn(ρL) = 1−PH
n and qn(ρH) =

PH
n . In state H, individual n + 1 observes ρH with chance PH

n , resulting in a chance
11We assume that all predecessors’ (unordered) actions are observed by individuals 1, 2, . . . , 51. Com-

puter simulations ran to 200 individuals. The welfare ordering may reverse again for later individuals.
12Vives (1993) explains a related phenomenon in a Gaussian social learning environment.
13While one might imagine that individuals observe information about the payoff realizations of prede-

cessors (as in BF), we argue in §B.2 that it formally a standard private signal.
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ϕH(qn(ρ
H)) that the report from individual n will be ρH . Then

PH
n+1 =

n

n+ 1
PH
n +

n

n+ 1
(PH

n ϕ
H(PH

n ) +
(
1− PH

n

)
ϕH(1− PH

n )). (9)

For an example, assume the unbounded uniform quality example with FH(p) = p2.
Assume the piecewise linear misperception function, based on a parameter a ∈ [0, 1/2]:

ψ(p) =


0 for p ≤ a,

(p− a)/(1− 2a) for a < p < 1− a,

1 for p ≥ 1− a.

For a = 1/2, this is the action observation step function, and so complete learning obtains.
But for a < 1/2, the function ϕH only correctly conveys private beliefs near 0 and 1.
For (9) has a fixed point P ∗(a) ∈ (1/2, 1), where P ∗(1/2) = 1 and P ∗(a) strictly falls on
[1/2, 1]. A little misperception for intermediate beliefs then suffices to wreck the complete
learning outcome that arises with unbounded beliefs for action observations.

B COMPARISONS AMONG SOCIAL LEARNING MODELS

B.1 Social Learning In Networks

ADLO assume a network structure independently drawn at time zero, at which point
individuals observe those in their neighborhood. While our samples our drawn as play
progresses, from an individual’s perspective, this timing difference is moot (by the assumed
independence). Their network structure occasions a vast difference in theoretical analysis,
but their final conclusion for complete learning is related. Their condition is that beliefs
are unbounded and that the network has “expanding observations” — namely, in the limit,
rarely does one observe just the first K people who acted. This is a weaker condition than
our requirement of “not over-sampling the past”: For we ask that in the limit almost no
individual observes any of the first K people who acted. In other words, ADLO requires
that exclusively sampling from a given finite set of agents occurs with a vanishing chance,
whereas we ask that any sampling from a given finite set of agents occurs with a vanishing
chance. It is instructive to see why a weaker condition suffices. As a network model, they
assume sampling with names preserved, but we assume unordered anonymous samples. As
noted earlier, one early individual sampled in an anonymous model can be poisonous to a
Bayesian inference, since one might worry that he is the last to choose. But in a network
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setting, his identity is known, and he can be discounted as an early ill-informed choice.
All told, the papers are very complementary.

B.2 Discrete vs. Continuum Agent Learning

BF pursue an elegant continuum agent approach to rational social learning by random
sampling that eliminates aggregate randomness and renders moot strong convergence is-
sues. They find complete learning (only correct herds) with sample size two or more.

They assume a continuum of privately informed individuals of mass 1, who each act.
In an inessential difference, they endow everyone with a private signal by allowing payoff
observations — a function of the state of the world alone, and not the action history. That
learning is “word-of-mouth” is an inessential difference. Each period, a fraction α > 0 is
replaced by privately informed newcomers, who first sample from their predecessors.

In a discrete agent setting, social learning is doomed if it is based only on early private
signals — for any finite number may well mislead. But with a continuum of agents, enough
information is theoretically available at the outset, with the first continuum realization.
Sure enough, BF’s complete learning obtains even absent any new private information.14

We simplify BF’s model to render an easier comparison with ours. Assume no deaths
but a constant entry of mass 1 of agents each period. Assume a symmetric binary action
(u = 1), binary signal (private beliefs p > 1/2 and 1 − p < 1/2) and sample size two.
Assume that individuals after period 2 can observe history. In this case, one mimics pure
{a, a} or {b, b} samples, while one’s private signal is decisive for the mixed sample {a, b}.
With this simple decision rule, we may solve the model. First assume discrete agents. The
initially pure histories will forever remain pure. The chances in state H of the unordered
action histories (n, 0), (n− 1, 1), . . . (1, n− 1), (0, n) are then

• p2, 2p2(1− p), 2p(1− p)2, and (1− p)2 for n = 3,

• p2, 2(1 + 2p)(1− p)p2/3, 8p2(1− p)2/3, 2(3− 2p)(1− p)2p/3, and (1− p)2 for n = 4.

Taking expectations, the chances q̄n in state H of a random sampled individual of the
first n choosing action b are q̄2 = p, q̄3 = p(2− p)(1 + 2p)/3, q̄4 = p(1 + 3p− 2p2)/2, . . ..

In the continuum agent model, we cannot speak of separate history realizations. Rather,
only a single number q̂n is relevant: namely, the fraction of individuals choosing action b

14One might profitably view this also as a model of information transmission rather than social learning,
like the continuum agent model of Vives (1993). The finite agent analogue is a model where an initial
incredibly large cohort decides at time 0 on the basis of private information alone, and everyone else tries
to discern what these individuals knew.
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in the population in period n. By assumption, q̂2 = p, while it is easy to see that

q̂n = q̂n−1(1− 1/n) + (q̂2n−1 + 2q̂n−1(1− q̂n−1)p)/n. (10)

For a share 1 − 1/n of the population is old, while all new agents either chose b having
seen {b, b}, or because they saw a mixed sample but their private signal was pivotal. For
instance, q̂3 = p̄3 = p(2− p)(1 + 2p)/3 by (10), but the models then diverge with q̂4 ̸= q̄4.

This divergence occurs because individuals average over separate mutually exclusive
realizations of the discrete setting. In period three, this does not matter, as no learning
has yet taken place. But in period 4, those in the continuum setting update as if all
four mutually exclusive histories (3, 0), (2, 1), (1, 2), (0, 3) have been realized, weighted by
their chances. So “path-simultaneity” replaces path-dependence in the continuum model.
Averaging across disjoint stochastic outcomes of a discrete model as time passes is the
essence of the continuum model, and why the complete learning conditions are different.
Indeed, the solution to (10) satisfies q̂n → 1 as n → ∞; so there is complete learning in
the continuum model. But obviously, with chance at least p2 the fraction of individuals
choosing action b is 1; so there is expected incomplete learning in the discrete agent model.

C OMITTED PROOFS

C.1 Complete Learning: Proof of Proposition 1 (a)

Proof of (a). Since anyone may ignore his sample and rely on his private signal, Vn
has a lower bound strictly above −1. If the result fails, then some subsequence Vnk

tends
to v = lim inf Vn < u. Let a sampled predecessor of individual n choose action b with
chance Rθ

n in state θ = L,H. Since eventually uRH
nk

−RL
nk

= Wnk
≤ Vnk

< (u+ v)/2 < u,
the chance of all correct sampled actions RH

nk
(1 − RL

nk
) is bounded away from one. By

Lemma 2, there exists η > 0 such that eventually Vnk
> Wnk

+ η. Choose δ > 0 smaller
than η/3. Now there exists N with Vn > v − δ when n > N (by definition of v), and
|Vnk

−v| < δ when nk > N , as v is the limit of (Vnk
). Let 3ε = η/(1+u). Since Σ does not

over-sample the past, there exists an M > N so large that any n > M samples m ≤ N

with chance less than ε. Thus, the expected welfare of any nk > M obeys Vnk
> Wnk

+η ≥
ε(−1)+ (1− ε)(v− δ)+ η = v− ε(1+ v− δ)− δ+ η > v− η/3− η/3+ η > v+ δ. Since the
past is not over-sampled, if Vn converges to u, then so does the running average Wn. 2
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C.2 Almost Sure Convergence: Proof of Proposition 2

We prove that a.s. convergence of the cumulative forecast error process (µn) implies the
same of the deviations process (RH

n −Xn). So if the beliefs are unbounded, then RH
n → 1

by Proposition 1. Since RH
n is the state H mean of Xn, and Xn ≤ 1, we have Xn → 1 a.s.

Fix a realization with convergent accumulated forecast errors, and study the sequences
of real numbers (Xn) and (ϵHn ). Subtracting (5) and (6):

Xn+1 −RH
n+1 = Xn −RH

n + πn[χ
H
n (Xn)− χH

n (R
H
n ) +RH

n −Xn + ϵHn ] (11)

Since χH
n is an increasing contraction, we can merge factors in Xn−RH

n into the first term,
and get (Xn+1 −RH

n+1)
2 ≤ (Xn −RH

n )
2 + 4πn|ϵHn ||Xn −RH

n |+ π2
n|ϵHn |2. Simplify this using

|Xn −RH
n | ≤ 1 and |ϵHn | = |in − χH

n | ≤ 2, and thereby deduce the inequality for squares:

(Xn+1 −RH
n+1)

2 ≤ (Xn −RH
n )

2 + 4πnϵ
H
n + 4π2

n (12)

Now, equations (5) and (6) yields |Xn+1 − Xn| ≤ πn and also |RH
n+1 − RH

n | ≤ πn, by the
contraction character of χH

n . Since
∑∞

n=1 π
2
n < ∞, we have πn → 0 as n → ∞, and so the

step sizes of Xn and RH
n vanish. Hence, one of the following two alternatives holds:

(i) there exists N such that Xn > RH
n for all n > N , or Xn < RH

n for all n > N , or

(ii) there exists an infinite subsequence (nk) such that RH
nk

−Xnk
→ 0 as nk → ∞.

Consider first alternative (i). Note that |χH
n (Xn) − χH

n (R
H
n )| ≤ |Xn − RH

n |, as χH
n is

an contraction. Then χ(Xn)− χ(RH
n ) ≤ Xn −RH

n for n > N , since χ is increasing. Thus,
(11) implies

Xn+1 −RH
n+1 ≤ Xn −RH

n + πnϵn (13)

Let ω̄ = lim infn(Xn − RH
n ). We will prove that Xn − RH

n → ω̄. Fix ξ > 0, and choose
N ′ > N such that our cumulative forecast error process (µn) obeys |µn − µm| < ξ/2, for
all n,m > N ′. Choose N ′′ > N ′ such that XN ′′ −RH

N ′′ < ω̄ + ξ/2. Iterate (13) to give:

XN ′′+k −RH
N ′′+k ≤ XN ′′ −RH

N ′′ +
N ′′+k−1∑
n=N ′′

πnϵn = XN ′′ −RH
N ′′ + µN ′′ − µN ′′+k ≤ ω̄ + ξ.

for all k > 0. Thus, lim supnXn −RH
n ≤ lim infXn −RH

n , and hence the limit exists.
Next, consider alternative (ii). We prove that Xn − RH

n converges to zero. Fix ξ > 0.
Choose N ′ > N such that

∑∞
k=N ′ π2

k < ξ/6 and |µn − µm| < ξ/12 for all n,m > N ′. Pick
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N ′′ > N ′ with (XN ′′ −RH
N ′′)2 < ξ/3. We iterate inequality (12) to deduce for all k > 0,

(XN ′′+k−RH
N ′′+k)

2 ≤ (XN ′′ −RH
N ′′)2+2

N ′′+k−1∑
n=N ′′

π2
n+4

N ′′+k−1∑
n=N ′′

πnϵn ≤ ξ. 2
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