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Abstract

In the marriage model, Becker (1973) found that positive (or negative) sorting
is efficient with supermodular (or submodular) match payoffs. But characterizing
the optimal matching with general production remains unsolved decades later.

Rather than tackle this difficult open problem, we instead ask when match
sorting optimally increases. To do this, we first argue that the positive quadrant
dependence (PQD) stochastic order on bivariate cdf’s captures an economically
meaningful notion of increasing sorting — e.g. a higher correlation of partners.

Our theory turns on synergy: the local cross partial difference or derivative. A
natural guess fails: increasing synergies need not raise sorting. But sorting rises
if (1) synergy either everywhere increases or proportionately upcrosses through
zero, and (2) cross-sectionally, synergy is upcrossing or downcrossing in types.

Our proof develops and exploits new monotone comparative statics methods.
It proceeds by induction with finitely many types, and secures the continuum
type results by taking limits. Our main results are easy to apply. We illustrate
all theorems, applying them to the major post 1990 marriage model papers.
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1 Introduction
Assortative matching is the allocational theme in the vast literature on decentralized
matching. This finding by Becker (1973) has seen application in marriage, employment,
partnerships, optimal assignment, and pairwise trade. The power of this conclusion
is also its weakness — higher “men” match with higher “women,” without exception.
Since perfectly assortative matching is an ideal, how should we understand deviations
from it? Shimer and Smith (2000) asked if these can be seen as evidence of search fric-
tions. In this frictional lens, they found that weak positive sorting — individuals match
with lattice type sets — only holds under very strong complementarity assumptions.
Also, their matching set must be centered about Becker’s frictionless sorting partner.

And while Becker’s driving premise of supermodular output is easy to formulate, it
is intuitively very restrictive: a globally positive cross partial difference or cross partial
derivative. Chade, Eeckhout, and Smith (2017) explore many natural and some well-
cited economic matching settings where supermodularity fails, as we summarize in §3.
But a general theory of who matches with whom remains open. This void has greatly
limited the analytic reach of the matching literature in economics, except in some
closed form solvable cases, and focused excessive attention on the perfect sorting case.

We develop a tractable general theory of increasing sorting in the frictionless pair-
wise matching model with either finitely many or a continuum of types and transferable
utility (TU). By using old and new methods for monotone comparative statics, we make
predictions without ever solving the planner’s problem. Notably, we offer predictions
for the matching papers in §3 that have most influenced economics since Becker (1973).

We first introduce a partial order on matching measures to capture the notion of
increasingly assortative. The positive quadrant dependence (PQD) partial order ranks
bivariate measures by the probability mass in the southwest quadrant. According to
stochastic dominance theory, the expectation of any supermodular function increases
in the PQD order. So equipped, we derive three economically practical measures of
increased sorting in this sense: the average distance between matched types falls in
PQD, while the correlation of matched types, and regression coefficients of women on
their partners’ types rise in PQD (Lemma 2). In other words, our sorting comparative
statics conclusions are thus of direct empirical relevance in economics.

To illustrate the PQD order, consider the six possible complete matchings among
three men a, b, c and three women A,B,C (Figure 1). One can verify that each man
matches with a weakly closer partner in PAM than in NAM1 or NAM3, in turn each
closer than in PAM2 or PAM4, and finally than in NAM. We have thus a partial order:

PAM ≻PQD [NAM1, NAM3] ≻PQD [PAM2, PAM4] ≻PQD NAM (1)
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Figure 1: All 1-1 Matchings with Three Types. In addition to negative and pos-
itive assortative matching (NAM and PAM), there is negative assortative matching in
quadrants 1 and 3 (NAM1 and NAM3), and positive assortative matching in quadrants
2 and 4 (PAM2 and PAM4). Sorting is partially ranked according to (1).

Our assumptions on production functions rely on a local complementarity measure:
Synergy is the cross partial difference of production with finitely many types, and
with continuous types, the cross partial derivative, if it exists. Becker (1973) finds
that globally positive synergy induces positive sorting, and globally negative synergy
induces negative sorting. We consider intermediate cases, where synergy is sometimes
positive and sometimes negative. One might conjecture that sorting is higher with a
production function with globally higher synergy. But the example in Figure 2 dashes
any such hope, and underscores the subtlety of the problem, as the matching oscillates
between NAM1 and NAM3 as synergy rises. For since neither NAM1 nor NAM3 is
more assortative for arbitrary weights on men and women, sorting is not monotone.

To begin piecing together our logic, we first uncover a new formula for total match
output — it only depends on the matching via the dot product of synergy and the
cumulative match distribution (Lemma 1). Our formula yields Becker’s Result at
once by corollary, and shows how production only impacts match output via synergy.
This formula delivers a single crossing property linking synergy and sorting. But since
matching measure are not a lattice in the PQD order, existing monotone comparative
statics cannot imply that sorting is monotone. Nevertheless, sorting is nowhere de-
creasing over time if synergy globally increases in time, or is a linear function of time
(Proposition 1). The conclusion that sorting never falls is consistent with the match-
ing oscillation in Figure 2 as synergy increases. But as synergy rises, match partners
could on average move farther apart, or some match partner regression coefficient could
fall. This inconvenient truth highlights the need for a new approach altogether.

In our pursuit of an increasing sorting conclusion, we then shift to an inductive
approach. We work in the finite type world, and secure results for the continuum type
model by taking limits. The counterexample in Figure 2 also underscores the need for
more discipline on synergy. For notice that synergy rises in the woman’s types for the
least man, but falls in her type for the next man. We track the sorting premium on
type rectangles — namely, the net payoff change from negatively to positively sorting
any two women x1 < x2 matched to any two men y1 < y2. We assume that the sorting
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Match Payoffs
x1 x2 x3

y3 9 14 18
y2 5 2 14
y1 1 5 9

→
x1 x2 x3

y3 9 16 24
y2 5 3 16
y1 1 5 9

→
x1 x2 x3

y3 9 20 30
y2 5 6 20
y1 1 5 9

→
x1 x2 x3

y3 9 22 36
y2 5 7 22
y1 1 5 9

Cross Partial Differences of Match Payoffs
x1x2 x2x3

y2y3 8 −8
y1y2 −7 8

→
x1x2 x2x3

y2y3 9 −5
y1y2 −6 9

→
x1x2 x2x3

y2y3 10 −4
y1y2 −3 10

→
x1x2 x2x3

y2y3 11 −1
y1y2 −2 11

Figure 2: Sorting Need Not Rise in Synergy. In the top row, the unique most
efficient matchings alternates between NAM1 and NAM3. In the next row, all four
match synergies — or the cross differences of match payoffs — strictly increase as we
move right. So it is not true that increasing synergy leads to more sorting.

premium is strictly upcrossing in types, or as the type rectangle shifts to the northeast.1
We restrict to this class of production functions, as it precludes the example in Figure 2.
We then find that sorting increases if synergy is monotone — and more generally, if
the total synergy on all sets of potential couples is upcrossing (Lemma 4). This is our
core finding, and is proven by induction on the number of types. The rest of the paper
develops tractable local conditions that allow us to apply this finite type sorting result.

Our first local approach posits that synergy is either linear or monotone in time
(Proposition 2), which happens in more than one cited paper. Then with finitely
many types, sorting increases if the sorting premium is upcrossing or downcrossing in
types. But with a continuum of types, we need a marginal cross-sectional condition:
the increase in the x-marginal product over any interval of y types is monotone in x.
Our second purely local approach unifies time series and cross-sectional conditions. A
proportional upcrossing function of types and time obeys an inequality that ensures
that positive synergy increases proportionately more than absolute negative synergy.
This property guarantees upcrossing total synergy on all sets — as we prove in a
multi-dimensional aggregation extension of Karlin and Rubin’s 1956 classic upcrossing
preservation result (Theorem 2). All told, sorting is monotone when synergy is up-
or downcrossing in types, as well as proportionately upcrossing (Proposition 3).

Our last major finding deduces comparative statics predictions for type distribution
shifts (Corollary 1). Our proof exploits an equivalence with productive shifts.

Our theory greatly expands the predictive reach of matching theory. For instance,
with 100 men and 100 women, Becker (1973) makes predictions for just two possible

1Loosely, a function is upcrossing if it crosses the horizontal axis at most once, and if once, from
below, and downcrossing if it crosses the horizontal axis at most once, and if once, from above.
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synergy sign combinations. Our cross-sectional single crossing synergy encompasses a
total of 2 · 992 sign combinations — and ones that specifically arise in applications.2

Literature Review. Becker’s work sparked a vast economic literature on the
transferable utility matching paradigm. For he offered a quick way to check or identify
in data whether matching was perfectly assortative. Since complementarity is quite
economically intuitive, it was inevitable that models would arise without this property.
We offer comparative statics for these papers, and numerically illustrate the optimal
matchings; these plots reflect subtle and surprising global optimality considerations.

Kremer and Maskin (1996) was an early work that made a strong case for the mar-
riage model without complements. In this motivated twist on Becker, they proposed
a partnership model with defined roles. Match output was therefore the maximum
of two supermodular functions — one for each role assignment. They claim “there
is a body of work within the labor economics literature that assumes such imperfect
substitutability. There is also empirical evidence to justify the assumption”.

Others soon highlighted the importance of matching without supermodularity.
Legros and Newman (2002) noted that in the presence of imperfect credit constraints,
supermodular production does not induce supermodular match payoff functions. Our
nowhere decreasing theory subsumes their production function. But we instead focus
on Guttman’s (2008) dynamic extension of Ghatak’s (1999) model of group lending
with adverse selection — for which our stronger increasing sorting theory applies.

Another motivated twist on matching that undermines supermodularity is moral
hazard. Serfes (2005) investigates a pairwise matching model of principals and agents,
and shows that negative sorting — more risk averse agents with safer projects — arises
with a low disutility of effort, but positive sorting emerges for high disutility of effort.

Finally, even with supermodular static payoffs, Anderson and Smith (2010) show
that dynamic models with Bayesian updating need not inherit supermodularity. In our
subsequent work with evolving human capital (Anderson and Smith, 2012), we show
that preservation of supermodularity is highly exceptional. For general transition func-
tions of old types into new types, the dynamic match values are rarely supermodular.

Becker’s sorting result follows from standard monotone comparative statics results
for supermodular functions (pursued at length in §3.2 in Topkis (1998)). Our insights
hail from new results in monotone comparative statics, including two new ones. First,
our nowhere decreasing theory owes to a comparative static result for partially ordered
sets that are not lattices — the very character of bivariate matching distributions that
obey adding up conditions. Theorem 1 summarizes our key findings here.

All long proofs and new monotone comparative statics results are in the Appendix.
2For our upcrossing assumption, a sign change can occur after any of 99 men and 99 women.
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2 The Marriage Model
A. The Marriage Model with Global Complements or Substitutes.

Assume pairwise matching by a continuum of individuals either from two groups
(men and women, firms and workers, buyers and sellers) or the same set (partnerships).
In the general matching model, “women” and “men” have respective types x, y ∈ [0, 1]

with cdfsG andH. The matching market is balanced, with unit massG(1) = H(1) = 1.
We capture in parallel two models: absolutely continuous type distributions G and

H, and finitely many types, when G and H are discrete measures with equal weights on
female types 0 ≤ x1 < x2 < · · · < xn ≤ 1 and male types 0 ≤ y1 < y2 < · · · < yn ≤ 1.
We then relabel women as i ∈ Zn ≡ {1, 2, . . . , n} and men as j ∈ Zn.

We assume a C2 production function ϕ > 0, so that types x and y jointly produce
ϕ(x, y). In the finite type model, the output for match (i, j) is fij = ϕ(xi, yj) ∈ R.
Production is supermodular or submodular (SPM or SBM) for all x′ < x′′ and y′ < y′′

if:
ϕ(x′, y′) + ϕ(x′′, y′′) ≥ (≤) ϕ(x′, y′′) + ϕ(x′′, y′) (2)

Strict supermodularity (respectively, strict SBM) asserts strict inequality in (2).
Like Becker’s, our theory does not explore an extensive margin whether to match.

A matching is a bivariate cdf M ∈ M(G,H) on [0, 1]2 with marginals G and H. In the
finite type case, G and H put equal unit weight on {x1, x2, . . . , xn} and {y1, y2, . . . , yn}.
A finite matching is a nonnegative matrix [mij], with cdf Mi0j0 =

∑
1≤i≤i0,1≤j≤j0

mij,
and unit marginals

∑
imij0 = 1 =

∑
j mi0j for all men i0 and women j0. In a pure

matching, [mij] is a matrix of 0’s and 1’s, with everyone matched to a unique partner.
There are two perfect sorting flavors. In positive assortative matching (PAM), any

woman type of x at quantile G(x) pairs with a man of type y at the same quantile H(y),
and thus the match cdf is M(x, y) = min(G(x), H(y)). In negative assortative matching
(NAM), complementary quantiles match, and so M(x, y) = max(G(x) +H(y)− 1, 0).
Matched types are uncorrelated given uniform matching, and so M(x, y) = G(x)H(y).

The partnership (or unisex) model is a special case where types x and y share
a common distribution, G = H, the production function ϕ is symmetric (ϕ(x, y) =

ϕ(y, x)), and so too is the optimal matching distribution M(x, y) ≡ M(y, x). In this
case, PAM is therefore the matching y = x.

A social planner maximizes total match output, namely
∑n

i=1

∑n
j=1 fij(θ)mij with

finite types, or more generally
∫
[0,1]2

ϕ(x, y|θ)M(dx, dy), where we index output ϕ(x, y|θ)
by a (often suppressed) state θ ∈ Θ, a partially ordered set. Solving for optimal
matchings:

M∗(θ) = arg max
M∈M(G,H)

∫
[0,1]2

ϕ(x, y|θ)M(dx, dy) (3)
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Gretsky, Ostroy, and Zame (1992) deduce existence of M∗, and decentralize it as a
competitive equilibrium (which we exploit later in §6.2). We prove uniqueness in §6.

Maximization (3) has been solved in three cases: Every feasible matching is optimal
with modular production, while Becker solved the PAM and NAM extremes:3

Becker’s Result. Given SPM (SBM) production ϕ, the optimal matching exists and
is PAM (NAM). Given strict SPM (SBM), these pairings are uniquely optimal.

Proof: Assume finitely many types. Existence is immediate. To see uniqueness, assume
women x′ < x′′ and men y′ < y′′ are negatively sorted into matches (x′, y′′) and (x′′, y′).
Then output is not maximal, since SPM production (2) implies a higher payoff to the
matches (x′, y′) < (x′′, y′′). We offer a general proof of Becker’s Result early in §4. □

This paper derives comparative statics with neither SPM or SBM, when the optimal
matching is not PAM or NAM. We’ll see that this commonly arises in economics.

B. Production Synergy and Total Match Output.
Assume first finitely many types. We call the cross partial difference match synergy:

sij(θ) = fi+1j+1(θ) + fij(θ)− fi+1j(θ)− fij+1(θ)

With a type continuum, we call the cross partial derivative ϕ12(x, y|θ) match synergy.
Production is SPM when synergy is globally nonnegative. To understand matching

with signed synergy, we doubly sum or doubly integrate match output by parts.

Lemma 1 (Match Output). Fix and suppress θ. Given n types of men and women:∑n
i=1

∑n
j=1 fijmij =

∑n
i=1 fin −

∑n−1
j=1 [fnj+1 − fnj] j +

∑n−1
i=1

∑n−1
j=1 sijMij

Given men’s and women’s types [0, 1], if I ≡ [0, 1] and J ≡ (0, 1], then:∫
I2 ϕ(x, y)M(dx, dy) =

∫
I ϕ(x, 1)G(dx)−

∫
J ϕ2(1, y)H(y)dy+

∫
J 2 ϕ12(x, y)M(x, y)dxdy

Lemma 1 highlights that the matching distribution only impacts total match output
via synergy. Any two production functions with the same synergies have the same
matching, if everyone matches. For instance, synergy vanishes if production is linear
in types. In tis case, all match distributions yield the same output.

We do not solve the optimization (3), but instead ask how optimizers M∗(θ) change
as the state θ increases. Throughout, a time series property relates production to the
state (as in Figure 2), and a cross-sectional property relates production to the types.

3Koopmans and Beckmann (1957) decentralize the solution as a competitive equilibrium assuming
TU. Legros and Newman (2007) show that some NTU models can be mapped into the TU paradigm.
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3 Economic Applications of the Marriage Model
We now explore some illustrative or celebrated economic applications of the marriage
model not explained by Becker’s Result — for production is neither SPM nor SBM.

(a) Quadratic Production. We start with an instructive matching example.
Since empirical work often ventures quadratic production, posit ϕ(x, y) = αxy+β(xy)2.
Then synergy ϕ12(x, y) = α+4βxy is increasing in α and β. By Becker’s Result, PAM
is optimal when α, β ≥ 0, uniquely so if also α+β>0. Likewise, NAM is optimal when
α, β ≤ 0, and uniquely so with α + β < 0. But with either of α ≶ 0 ≶ β, SPM and
SBM fail, as synergy can be positive and negative; Becker’s Result is inapplicable.

(b) Principal-Agent Matching with Moral Hazard. Serfes (2005) explores
a pairwise matching model of principals and agents. Project variances y ∈ [y, y] vary
across principals, while agents differ by their risk aversion parameter x ∈ [x, x].

When agents share a common scalar dis-utility of effort θ > 0, Serfes derives (in
his equation (1)) the expected output and synergy of an (x, y) match:

ϕ(x, y|θ) = 1

2θ (1 + θxy)
⇒ ϕ12(x, y|θ) =

θxy − 1

2 (1 + θxy)3
(4)

Serfes applies Becker’s Result to deduce NAM for θ < θ and PAM for θ > θ. But
he is silent about all intermediate disutility of efforts, where 1/[y x] = θ < θ = 1/[yx].

(c) Group Lending with Adverse Selection. We consider Guttman’s (2008)
dynamic extension of Ghatak’s (1999) model of group lending with adverse selection.
Borrowers vary by their project success chance x; a success pays π and a failure nothing.
Pairs of borrowers sign lending contracts, and project outcomes are independent.

After seeing the project outcome, a borrower either repays the loan, or defaults.
Each pays d > 1 if both repay. If only one defaults, the other repays c+ d>d. Assume
π ≥ c + d, so that borrowers repay when their project succeeds. If both default, each
loses access to credit markets. Borrowers discount future payoffs by δ < 1, and default
if the project fails. The discounted payoff to the success chance pair (x, y) obeys:

ϕ(x, y) = x((π−d)− (1−y)c)+y((π−d)− (1−x)c)+ δ(1− (1−x)(1−y))ϕ(x, y) (5)

One can check that synergy ϕ12 is globally positive if δ ≤ δ∗ ≡ c/[c+(π−d)]. But with
more patience, δ > δ∗, synergy is positive for low (x, y) and negative for high (x, y).4

4Legros and Newman (2002) explore group borrowing to finance a joint project. In their model,
expected output is ϕ = (xy−q)1XY≥κ, where q is the cost of capital and κ ≥ q a financing constraint.
Output is globally SPM when κ = q, but is neither globally SPM nor globally SBM when κ > q.
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(d) A Partnership Model with Capital. For a match by worker types (x, y),
let ℓ(x, y) = (xη+yη)1/η be the effective labor. Inspired by Krusell, Ohanian, Ríos-Rull,
and Violante (2000), production depends on current technology via a capital index κ:

ϕ(x, y) = (ℓ(x, y)ρ + κρ)1/ρ ⇒ ϕ12(x, y) ∝ (ρ− η)κρ + (1− η)ℓ(x, y)ρ (6)

Assume there is greater complementarity between partner types than between labor
and capital, ρ < η < 1. Then synergy is negative ϕ12 < 0 for low types x, y, and
positive for high types when ρ > 0. But if instead, ρ < 0, then synergy is positive for
low types and negative for high types. In either case, Becker’s Result does not apply.

(e) Production with Defined Roles. In an early and influential paper,
Kremer and Maskin (1996) assume that agents can be assigned to the manager or
deputy roles, where xθy1−θ is output when x is the manager and y the deputy, and
θ ∈ [0, 1/2].5 As a unisex model, match output is then equal to the maximum of two
SPM functions:

ϕ(x, y|θ) ≡ max{xθy1−θ, x1−θyθ} (7)

But SPM is preserved by the minimum operator, and not the maximum operator,
and so this function is neither SPM nor SBM. Indeed, consider any match (x, y) for
0 < x < y. If z = y/x, the positive sorting minus negative sorting payoff difference is:

ϕ(y, y|θ) + ϕ(x, x|θ)− 2ϕ(x, y|θ) = y + zy − 2(zy)θy1−θ ⋛ 0 as θ ⋛ θ∗(z)

where θ∗(z) = (log(1 + z) − log(2))/ log(z) is an increasing function from (0, 1) onto
(0, 1/2). That is, PAM beats NAM among the types {x, y} when types are far apart
(small z), while NAM beats PAM when types are close together (z near 1).

(f) Dynamic Matching with Evolving Types.6 Assume pairwise matching
in periods one and two. Production is the symmetric, increasing and SPM function
ϕ0(x, y). But types evolve: If types x and y match in period one, they enter period two
as type x′ and y′ with chances τ(x′|x, y) and τ(y′|y, x). Given SPM output, PAM is
statically optimal in period two. But in period one, the social planner weights output
by (1− δ, δ), so that the payoff to an (x, y) match is:

ϕ(x, y) = (1− δ)ϕ0(x, y) + δ
2

[∫
ϕ0(x′, x′)τ(x′|x, y)dx′ +

∫
ϕ0(y′, y′)τ(y′|x, y)dy′

]
(8)

Becker’s Result lacks bite: ϕ need not be SPM even if ϕ0 is increasing and SPM.
5More generally, we could allow for the production max{g(x, y|θ), g(y, x|θ)}.
6This is based on Anderson and Smith (2012), which explored matching with evolving types.
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Figure 3: PQD Order. PQD increases for cdfs on [0, 1]2 raise the probability mass on
all lower left rectangles with corner vertices (0, 0) and (x0, y0), and so on all upper right
rectangle with corner vertices (x0, y0) and (1, 1). The right panel depicts Lemma 2(c).

4 How to Measure Increasing Sorting
Positive quadrant dependence (PQD) partially orders bivariate probability distribu-
tions M1,M2 ∈ M(G,H). We call M2 PQD higher than M1, or M2 ⪰PQD M1, if
M2(x, y) ≥M1(x, y) for all x, y. So M2 puts more weight than M1 on all lower (south-
west) orthants. Since M1 and M2 share marginals, M2 puts more weight than M1 on
all upper (northeast) orthants too. Easily, all match cdf’s are sandwiched by NAM and
PAM: max(G(x) + H(y) − 1, 0) ≤ M(x, y) ≤ min(G(x), H(y)) (the Fréchet Bounds).
As (1) notes, PQD only partially orders the six possible pure matchings on three types.

A key known result is that the PQD and SPM orders coincide in R2, i.e. increases
in the PQD order increase (reduce) the total output for any SPM (SBM) function ϕ:7

M2 ⪰PQD M1 ⇔
∫
ϕ(x, y)M2(dx, dy) ≥

∫
ϕ(x, y)M1(dx, dy) ∀ϕ SPM (9)

Observe that, by Lemma 1 and the Fréchet Bounds, Becker’s Result follows from (9).
For since SPM implies globally nonnegative synergy, ϕxy ≥ 0, output is highest when
the match cdf M(x, y) is maximal — namely, PAM, as it dominates all other matchings
in the PQD order. Similarly, SBM implies globally nonpositive synergy, ϕxy ≤ 0, and
thus output is highest when the match cdf M(x, y) is minimal, namely, for NAM.

The PQD sorting measure shows up in some economically relevant measures:

Lemma 2. Fix increasing functions u and v. Given a PQD order upward shift:
(a) the average geometric distance E[|u(X)−v(Y )|γ] for matched types falls, if γ ≥ 1;
(b) the covariance EM [u(X)v(Y )]− E[u(X)]E[v(Y )] across matched pairs rises;
(c) the coefficient in a linear regression of v(y) on u(x) across matched pairs rises.

7Lehmann (1973) introduced the PQD order. See 9.A.17 in Shaked and Shanthikumar (2007).
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Lemma 2 illustrates that the PQD order is scale invariant. To wit, if we claim that
educational sorting rises in the PQD order, then it does so regardless of whether it is
measured in highest degree attained, years of schooling, log years of schooling, etc.

Proof of (a): By inequality (9) it suffices that |u(x) − v(y)|γ is SBM for all γ ≥ 1.
Since −g(u−v) is SPM for all convex g, by Lemma 2.6.2-(b) in Topkis (1998), we have
−|u− v|γ SPM for all γ ≥ 1. Thus, |u(x)− v(y)|γ is SBM for all increasing u and v.

Proof of (b): Since the marginal distributions on X and Y is constant for all M ∈
M(G,H), and u(x)v(y) is supermodular for all increasing u and v, the covariance
EM [XY ]− E[X]E[Y ] between matched types increases in the PQD order by (9).

Proof of (c): The coefficient c1 = cov(u(X)v(Y ))/var(v(X)) in the univariate match
partner regression v(y) = c0 + c1u(x) increases in the PQD order, by part (b). □

When the optimal matchings M∗(θ1) and M∗(θ2) are each unique, we say sorting
is higher at θ2 than θ1 if M∗(θ2) ⪰PQD M∗(θ1). We often just say sorting increases.

For a useful counterpoint, posit a uniform type distribution on [0, 1]. Assume that
every x ≤ 1/2 matches with x+1/2. Since it is increasing on the domain of larger match
partners, Legros and Newman (2002) call this matching “monotone”. Notice that this
matching maximizes the average distance between partners. To wit, it minimizes total
match output for the supermodular production function f(x, y) = 1− |x− y|.

5 Nowhere Decreasing Sorting
Given the extreme NAM and PAM cases of Becker’s Result under SBM and SPM,
we first ask what happens if synergy increases everywhere. One might conjecture that
sorting increases, but Figure 2 refutes this conjecture — the uniquely optimal matching
oscillates back and forth between NAM1 and NAM3 as synergy increases.

By Lemma 1, the optimal matching maximizes
∑n−1

i=1

∑n−1
j=1 sij(θ)Mij with finitely

many types and
∫
ϕ12(x, y|θ)M(x, y)dxdy for continuous types. Were total output (3)

quasi-supermodular in M , and the constraint set a lattice, a single-crossing property in
(M, θ) would imply that the set of maximizers M∗(θ) increases in the strong set order
(SSO) (Milgrom and Shannon, 1994).8 But it is known that matching cdf’s are not a
lattice,9 and so quasi-supermodularity must fail. A new method of attack is required.

8M2 ⪰ M1 in the SSO if M1 ∨M2 ∈ M2 and M1 ∧M2 ∈ M1 for all M1 ∈ M1 and M2 ∈ M2.
Given M1,M2, the join M1 ∨M2 is their supremum, and their infimum is the meet M1 ∧M2.

9By (1), NAM1 and NAM3 are both upper bounds for PAM2 and PAM4, but there is no pure
least upper bound. More strongly, PQD does not induce a lattice, as there is no least mixed least
upper bound, M for PAM2 and PAM4. As shown in Proposition 4.12 in Müller and Scarsini (2006):
If M dominates PAM2 and PAM4, then M(2, 1) ≥ 1/3 and M(1, 2) ≥ 1/3, but M(1, 1) = 0 if NAM1
and NAM3 dominate M . So then M(2, 2) = 2/3, but then NAM1 cannot PQD dominate M .
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Theorem 1 in Appendix B.1 is a monotone comparative statics result for partially
ordered sets given only a single crossing property in (M, θ). For our case, the optimal
matching distribution cannot fall in the PQD order as θ rises, but might incomparably
shift. We say that sorting is nowhere decreasing in θ if for all θ2 ⪰ θ1, whenever
M1 ∈ M∗(θ1) and M2 ∈ M∗(θ2) are ranked M1 ⪰PQD M2, we have M2 ∈ M∗(θ1) and
M1 ∈ M∗(θ2). A nowhere increasing correspondence is analogously defined.

We say that weighted synergy is upcrossing10 in θ if the following is upcrossing in θ:

•
∫
ϕ12(x, y|θ)λ(x, y)dxdy for all nonnegative (measurable)11 functions λ on [0, 1]2

•
∑n−1

i=1

∑n−1
j=1 sij(θ)λij with types in Zn, for all positive weights λ ∈ R(n−1)2

+

Proviso (⋆): Synergy ϕ12 or sij is nondecreasing or linear in θ with negative intercept.

Proposition 1 (Nowhere Decreasing Sorting). Sorting is nowhere decreasing in θ if
weighted synergy is upcrossing in θ — and therefore if Proviso (⋆) holds.

Proof: First, M ′ ⪰PQD M iff λ ≡M ′−M ≥ 0. Since weighted synergy is upcrossing:∑n−1
i=1

∑n−1
j=1 sij(θ)(M

′
ij −Mij) ≥ (>) 0 ⇒

∑n−1
i=1

∑n−1
j=1 sij(θ

′)(M ′
ij −Mij) ≥ (>) 0∫

(0,1]2
ϕ12(·|θ)(M ′ −M) ≥ (>) 0 ⇒

∫
(0,1]2

ϕ12(·|θ′)(M ′ −M) ≥ (>) 0
(10)

Match output is single crossing in (M, θ) in the finite and continuous cases, by Lemma 1.
Then the optimal matching M∗(θ) (in the space of feasible matchings M(G,H)) is
nowhere decreasing in the state θ, by Theorem 1 in Appendix B. So monotone synergy
yields upcrossing weighted synergy, as does linear synergy, by Claim 1 in §C.1. □

Application: Production with Defined-roles. Now return to Kremer and
Maskin (1996) in §3. Their production function is not differentiable, and so is not
subject to our theory. But we can smoothly approximate their production function by:

ϕ(x, y) = xθyθ (xϱ + yρ)
1−2θ

ϱ → max{xθy1−θ, x1−θyθ} as ϱ→ ∞ (11)

In Appendix C.6, we deduce PAM iff ϱ ≤ (1 − 2θ)−1. In the ϱ → ∞ limit (Kremer
and Maskin, 1996), ϕ is never SPM, nor does PAM arise. Without solving for the
optimal matching, we sign the sorting comparative statics when ϱ > (1 − 2θ)−1. In
Appendix C.6, we prove that weighted synergy is upcrossing in θ and downcrossing in
ϱ, and so sorting is nowhere decreasing in θ and nowhere increasing in ϱ. See Figure 4.

10Let Z be a partially ordered set. The function σ : Z 7→ R is upcrossing if σ(z) ≥ (>)0 implies
σ(z′) ≥ (>)0 for z′ ⪰ z, downcrossing if −σ is upcrossing. Similarly, σ is strictly upcrossing if σ(z) ≥ 0
implies σ(z′) > 0 for all z′ ≻ z, with strictly downcrossing defined analoguously.

11To save space, we henceforth assume measurable sets for integrals whenever needed.
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Figure 4: Kremer-Maskin Payoffs. We plot the payoffs for three type (x, y) ∈
{1, 2, 6.5} matchings for (11) (NAM is dominated by PAM2=PAM4). On the left,
matching is nowhere decreasing, from PAM2=PAM4 (brown), to NAM1 (blue), to
NAM3 (green), to PAM (red) as θ rises (ρ = 100). On the right, matching is nowhere
increasing, from PAM (red), to NAM3 (green), to NAM1 (blue), as ϱ rises (θ = 0.32).

6 Increasing Sorting and Production Changes
6.1 Increasing Sorting with Finitely Many Types
We first pursue an increasing sorting theory for finitely many types i, j = 1, 2, . . . , n.

Lemma 3. An optimal matching is generically unique and pure for finite types.

Proof: The optimal matching is generically unique, by Koopmans and Beckmann
(1957). A non-pure matching M is a mixture M =

∑L
ℓ=1 λℓMk over L ≤ n + 1 pure

matchings M1, . . . ,Mn, with λℓ > 0 and
∑

ℓ λℓ = 1.12 As the objective function (3) is
linear, if the non-pure matching M is optimal, so is each pure matching Mℓ. □

We now introduce a cross-sectional assumption. The sorting premium S(r|θ) is the
total synergy on the lattice rectangle r = (i1, j1, i2, j2), i.e. all couples {(i, j) ∈ Z2

n :

(i1, j1) ≤ (i, j) ≤ (i2, j2)}. This is also the equally weighted synergy sum. More simply,
we have:

S(r|θ) ≡ fi1j1(θ) + fi2j2(θ)− fi1j2(θ)− fi2j1(θ)

By (2), production is SPM (SBM) if all sorting premia are nonnegative (non-positive).13

Rectangle r dominates r′ in the northeast order, written r ⪰NE r
′, if all coordinates

are weakly higher and r ≻NE r
′ if at least one is strictly higher. The sorting premium

is upcrossing (downcrossing) in types if S(r|θ) is upcrossing (downcrossing) in r, for
all θ. As we can reverse-order types, we just develop our theory for the upcrossing case.

Next, we consider a time series assumption weaker than monotone synergy. The
total synergy on a set of couples K ⊆ Z2

n is the sum of synergies sij for all (i, j) ∈ K.
12This follows from Carathéodory’s Theorem. It says that non-empty convex compact subset X ⊂

Rn are weighted averages of extreme points of X . The extreme points here are the pure matchings.
13By Proposition 1, sorting is nowhere decreasing if weighted synergy is upcrossing in θ. The sorting

premium uses a weighting function that places unit density on a rectangle, and zero weight elsewhere.
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Match Payoffs: fij(θ′) → fij(θ
′′) Synergy: sij(θ′) → sij(θ

′′)

x1 x2 x3
y3 6 6 11
y2 4 6 6
y1 0 4 6

→
x1 x2 x3

y3 7 6 11
y2 4 6 6
y1 0 4 7

x1x2 x2x3
y2y3 −2 5
y1y2 −2 −2

→
x1x2 x2x3

y2y3 −3 5
y1y2 −2 −3

Figure 5: Falling Matching with an Upcrossing Sorting Premium in Types
and θ. Left: The unique efficient matching falls from NAM3 to NAM as θ′ shifts up
to θ′′. Right: The sorting premium S is upcrossing in rectangles r for each θ, and the
signs of S(r|θ′) and S(r|θ′′) coincide for all r; thus, S is upcrossing from θ′ to θ′′. But
Lemma 4 does not apply, as the total synergy on Z2

3 \ {(1, 1)} falls from 1 to −1.

Total synergy is upcrossing in θ if the synergy sum is upcrossing for all sets K ⊆ Z2
n.

Lemma 4. Posit finitely many types and a generic production function with a unique
optimal matching at θ2 ≻ θ1. Sorting is PQD higher at θ2 than θ1 if total synergy is
upcrossing in θ and the sorting premium is one-crossing in types.

To see the necessity of the cross-sectional assumption, consider the example in §3(e)
from Kremer and Maskin (1996). In Appendix C.6, we show that its weighted synergy
is upcrossing in θ — and thus, so too is total synergy. But its sorting premium is not
one-crossing in types.14 And as seen in Figure 4, sorting is not increasing in θ.

Lemma 4 relaxes the time series assumption of Proposition 1 — as total synergy is a
special case of weighted synergy. To compensate for this weaker premise, it introduces
a cross-sectional restriction that the sorting premium is one-crossing. Could we impose
all assumptions on the sorting premium, positing S(r|θ) upcrossing in r and θ? No.
In Figure 5, the sorting premium is upcrossing in r and θ but sorting falls as θ rises.

We prove Lemma 4 — our theoretical core in C.2 — by induction on the number of
types. Let’s see how time series and cross sectional assumptions jointly force increasing
sorting with n = 3 types. First, the optimal matching cannot fall in the PQD order —
like from PAM4 to NAM. As woman 1 is matched to man 3 in NAM and PAM4, the
PAM4 payoff exceeds the NAM payoff by the sorting premium among women 2, 3 and
men 1, 2, i.e. the synergy s21(θ). If NAM and PAM4 are uniquely optimal respectively
at θ′′ ≻ θ′, then s21(θ

′′)<0<s21(θ
′), violating upcrossing total synergy.

To see that non-PQD comparable shifts cannot happen requires both time series
and cross sectional reasoning. Figure 6 traces the logic for the two possible non-PQD
comparable transitions: both NAM1 to NAM3, and PAM2 to PAM4 (recall (1)).

14As (x, y) 7→ xθy1−θ and (x, y) 7→ x1−θyθ are supermodular, the sorting premium is positive for
rectangles above or below the diagonal. But it is positive for small rectangles straddling the diagonal:
If y > x and 0<θ<1/2, the sorting premium is f(x, x|θ)+f(y, y|θ)−2f(x, y|θ) = x+y−2xθy1−θ < 0
for 1<y/x<1+ ε. For it vanishes at y=x, and its y derivative 1− 2(1− θ)(x/y)θ < 0 for small ε > 0.
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Figure 6: Precluding Unranked Shifts with n = 3 and Nonzero Synergies.
NAM1 at θ′ and NAM3 at θ′′ is impossible, as is PAM2 at θ′ and PAM4 at θ′′. The
synergy signs in Steps 1N and 1P reflect local optimality. Step 2N deduces s11(θ′) < 0
via upcrossing synergy from θ′′ to θ′. Given PAM on rectangles r = (1, 1, 2, 3), (1, 1, 3, 2)
at θ′, local optimality implies S(r|θ′) > 0. As the sorting premium is the sum of
synergies, the synergy signs in Step 3N follow — ruling out S(r|θ′) one-crossing in r,
a contradiction. Next, Step 2P deduces s12(θ′′) > 0 via upcrossing synergy from θ′ to
θ′′. Given NAM on rectangles r = (1, 1, 2, 3), (1, 1, 3, 2) at θ′, local optimality implies
S(r|θ′) < 0. Since the sorting premium is the sum of synergies, we can fully sign sij.
This sign pattern in Step 3P violates S(r|θ′′) one-crossing in r, a contradiction.

Application to Dynamic Matching with Evolving Types. Herkenhoff,
Lise, Menzio, and Phillips (2018) [HLMP] explore a new finite type infinite horizon
frictional matching model. Here, we consider the analogous frictionless two period
model in §3(f). HLMP assume a production function f 0

ij = i + j + (ip + jp)1/p. If
types i and j match, then type i increments to i+1 in the next period with probability
αij ≡ α+ᾱmax(0, j− i)−αmax(0, i− j). Altogether, the time-0 payoff function (8) is:

fij = (1− δ)f 0
ij + δ

(
αij

1
2
f 0
i+1,i+1 + (1− αij)

1
2
f 0
ii + αji

1
2
f 0
j+1,j+1 + (1− αji)

1
2
f 0
jj

)
= (1− δ)f 0

ij + δ(1 + 2
1−p
p ) (i+ j + 2α + (ᾱ− α)|i− j|) (12)

where the payoff function reflects how PAM emerges in period two (HLMP empirically
find f SPM, via p < 1), and thus the continuation payoff at type i is fii = i(2 + 21/p).

Since the dynamic term |i − j| is SBM, dynamic considerations favor NAM when
ᾱ > α, as HLMP empirically estimate. Synergy, and so weighted synergy, is falling in
δ and ᾱ− α. Proposition 1 implies that sorting is nowhere increasing in δ and ᾱ− α.

Next, consider Lemma 4. Its cross sectional premise fails, since the sorting premium
falls approaching the diagonal from above or below — as already shown for the example
of §3(e).15 Specifically, sorting can be non-monotone in δ and ᾱ − α (as in Figure 7).

15For while the productive sorting premium f0
ij is increasing in types, the dynamic sorting premium

vanishes for rectangles wholly above or below the diagonal (since |i − j| is linear i1 < i2 ≤ j1 < j2
or j1 < j2 ≤ i1 < i2), but is strictly negative for any rectangle straddling the diagonal (where |i− j|
is SBM). Altogether, whenever the sorting premium is not globally positive, it is positive above and
below the diagonal, but negative for small rectangles straddling the diagonal.
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Figure 7: HLMP Match Payoffs. We plot the payoff premium over NAM for all
three type x, y ∈ {1, 2, 7} matchings for (12) with ρ = 1/2, as δ rises (left) and ᾱ − α
rises (right). In both graphs, the optimal matching changes from PAM (red), to NAM3
(green), to NAM1 (blue), to PAM2 = PAM4 (brown), as the x- axis parameter rises.

This nonmonotonicity is a robust feature of models whose dynamic term is a convex
function of the type difference g(i−j). For then −g′′(i−j) < 0 cannot be co-monotone
in i and j, except in the knife-edged quadratic case g′′′ = 0.

But in an ad hoc model with falling dynamic synergy, as with a transition chance
αij = α + j − ij, since static synergy falls for the CES production f 0, the sorting
premium is downcrossing in types. In this case, sorting falls in δ, by Lemma 4.

6.2 Increasing Sorting with Linear or Monotone Synergy
We now add to Lemma 4 with the cross-sectional strength of Proviso (⋆). Define the
sorting premium16 on rectangles (x1, y1, x2, y2)∈ [0, 1]4, where x1<x2 and y1<y2:

S(x1, x2, y1, y2|θ) = ϕ(x1, y1|θ) + ϕ(x2, y2|θ)− ϕ(x1, y2|θ)− ϕ(x2, y1|θ)

In terms of the x-marginal product increments ∆x(x|y1, y2, θ) ≡ ϕ1(x, y2|θ)−ϕ1(x, y1|θ):

S(x1, x2, y1, y2|θ) =
∫ y2
y1

∫ x2

x1
ϕ12(x, y|θ)dxdy =

∫ 1

0
∆x(x|y1, y2, θ)1x∈[x1,x2]dx (13)

Any indicator function 1x∈[x1,x2] is a log-supermodular function of (x, x1) and (x, x2).17

By Karlin and Rubin’s classic 1956 result, if ∆x(x|y1, y2, θ) is upcrossing in x, then the
sorting premium last integral in (13) is upcrossing in x1 and x2, and so in (x1, x2). The
sorting premium is also the integrated y-marginal product increment ∆y(y|x1, x2, θ)≡
ϕ2(x2, y|θ)− ϕ2(x1, y|θ), and so upcrossing in (y1, y2). All told, the sorting premium is
upcrossing in types if both x- and y-marginal product increments are upcrossing.

16For simplicity, we still use the S notation for the sorting premium with a continuum of types.
17ϕ(x, y) ≥ 0 is log-supermodular (LSPM) if ϕ(x′, y′)ϕ(x′′, y′′) ≥ ϕ(x′, y′′)ϕ(x′′, y′) for all x′ ≤ x′′

and y′ ≤ y′′. Easily, we can check that the indicator is LSPM: If x ∈ [x1, x2] and x′ ∈ [x′
1, x

′
2] then

max(x, x′) ∈ [max(x1, x
′
1),max(x2, x

′
2)] and min(x, x′) ∈ [min(x1, x

′
1),min(x2, x

′
2)].
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Figure 8: Increasing Sorting with Quadratic Production. We depict positive
synergy (shade) and optimally matched pairs (blue dots) for a uniform distribution on
100 types. Sorting increases left to right in (α, β). The left plot is drawn for (α, β) =
(0.5,−1), the middle for (α, β) = (1.5,−1), and the right for (α, β) = (1.5,−0.6).

Proposition 2. Posit finitely many types and a one-crossing sorting premium in types,
or a continuum of types, with absolutely continuous G (or H) and strictly one-crossing18

x- and y-marginal product increments. Sorting is increasing in θ, given Proviso (⋆).

Finite Type Proof: By Proviso (⋆), total synergy is upcrossing in θ (Claim 1), while the
sorting premium is assumed one-crossing in types. Sorting increases in θ, by Lemma 4.

Continuum Types Proof Sketch: Fix θ2 ⪰ θ1. In §C.3, we perturb payoffs for a sequence
of finite type models to secure, by Lemma 4, unique PQD-ranked optimal matchings
Mn(θ2) ⪰PQD Mn(θ1). Also, these matchings converge to limit matchings M∗(θ1) and
M∗(θ2) optimal in the continuum model. By continuity, M∗(θ2) ⪰PQD M∗(θ1).

Next, strictly upcrossing marginal product increments implies unique optimal match-
ings, given our absolute continuity assumptions. Assume G absolutely continuous and
∆x(x|y1, y2) strictly upcrossing in x. For insight into uniqueness, decentralize the op-
timal matching by competitive wage functions v(x) and w(y). Then x and y match
if x = argmaxx′ ϕ(x′, y) − v(x′) and y′ = argmaxy′ ϕ(x, y

′) − w(y′). Notice that one
simple nonuniqueness cannot occur, when both sortings of two women x1 < x2 and
men y1 < y2 into couples are optimal. In this case, an optimal partner for y obeys two
sets of FOC: v′(x1) = ϕ1(x1, y2) = ϕ1(x1, y1) and v′(x2) = ϕ1(x2, y1) = ϕ1(x2, y2). But
this contradicts ∆x(x|y2, y1) ≡ ϕ1(x, y2)− ϕ1(x, y1) strictly upcrossing in x. □

Application to Quadratic or Cubic Production. For quadratic production
ϕ(x, y) = αxy+β(xy)2, match synergy ϕ12 = α+4βxy is strictly increasing in α and β.
Synergy is also strictly increasing in types when β > 0, and decreasing in types when
β < 0. So sorting is increasing in α and β for all β ̸= 0, by Proposition 2 (Figure 8).19

18Υ : R 7→ R is strictly upcrossing if Υ(x)≥0 ⇒ Υ(x′)>0, for all x′ > x. Easily, it is upcrossing.
19The left plot suggests that the unique continuum matching is not always pure, but fortunately,

none of our continuum model sorting results require purity.
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Figure 9: Increasing Sorting in the Principal-Agent Model. NAM is optimal
for low dis-utility of effort θ, PAM for high θ, and the optimal matching is mixed for
intermediate θ. These graphs depict optimally matched pairs (blue dots) for a discrete
uniform distribution on 100 types of principals and agents. The left plot is drawn for
θ = 0.65, the middle for θ = 0.72, and the right for θ = 0.82. In all plots, the matching
obeys local optimality — if the matching slopes up, then synergy is positive (shaded).
In all plots, the reverse implication fails due to subtle global optimality considerations.

With cubic production ϕ = αxy + β(xy)2 + γ(xy)3, the analysis is more nuanced.
Synergy ϕ12 = α + 4βxy + 9γ(xy)2 is increasing in α, β, and γ; and thus, sorting is
nowhere decreasing in all parameters, by Proposition 1. Also, synergy falls in types
when β, γ < 0, and rises in types when β, γ > 0 — so that Proposition 2 predicts
sorting increases in α, β, and γ. But when βγ < 0, synergy need not be one-crossing
in types, and sorting is nowhere decreasing, but not generally monotone in α, β, or γ.

Application to the Principal-Agent Matching with Moral Hazard.
We show that sorting is monotone in θ in the Serfes model, provided extremal types
obey x̄ȳ ≤ 2xy (‡). Assume θ′ > θ. If θx̄ȳ < 1, then synergy (4) is globally negative
at θ, and so NAM uniquely optimal. If θ′xy > 1, then synergy is globally positive at
θ′, and so PAM uniquely optimal. In both cases, sorting is weakly higher at θ′ then θ.

Assume θ′xy ≤ 1 < θx̄ȳ. Then by (‡) we have θ′x̄ȳ ≤ 2, and since the function
(1− t)/(1+ t)3 is increasing for t ∈ (0, 2], synergy (4) is increasing in the product θxy.
Thus, synergy is both proportionately upcrossing and strictly upcrossing in (x, y, θ).
Altogether, NAM obtains for θ ≤ (x̄ȳ)−1, PAM for θ ≥ (xy)−1, and sorting is increasing
in θ between these two extremes, by Proposition 2, as seen in Figure 9.

Application to Group Lending with Adverse Selection. The production
function (5) obeys the premise of Proposition 2. Indeed, differentiating (5) yields:

ϕ1(x, y) =
(π − c− d)(1− δy2) + 2cy

(1− δx− δy + δxy)2
> 0 (14)
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Figure 10: Increasing Sorting in the Group Lending Model. If parameters obey
δ < c/(c+π−d), the optimal is PAM; otherwise, the optimal matching is mixed. These
graphs depict optimally matched man-woman pairs (blue dots) assuming a uniform
distribution on 100 types for δ = 0.8. The left matching is drawn for (π, c, d) =
(10, 0, 2), the middle for (π, c, d) = (10, 2, 2), and the right for (π, c, d) = (4, 2, 2).

As ∂[ϕ1(x, y2)/ϕ1(x, y1)]/∂x < 0 for all y2 > y1,20 the function ϕ1(x, y2)/ϕ1(x, y1) − 1

is downcrossing. As ϕ1 > 0, the x-marginal product increment is strictly downcrossing
in x. Symmetrically, the y-marginal product increment is strictly downcrossing in y.

Next consider synergy as a function of θ = (c, d, π). Differentiating (14) yields:

ϕ12(x, y|θ) = ca(x, y) + (π − d)b(x, y)

for functions a(x, y) > 0 and b(x, y) ∈ R. Synergy is increasing in c and linear in π−d;
and thus, obeys Proviso (⋆). Altogether, sorting rises in repayments (c, d) and falls in
net payoff π − d, by Proposition 2 as illustrated in Figure 10.

On the other hand, sorting is not monotone in the discount factor δ. By the
derivative of (14), PAM obtains with enough impatience δ ≤ c/(c+ π− d) and perfect
patience δ = 1,21 as the sorting premium is globally positive. For intermediate δ ∈
(c/(c+π−d), 1), the sorting premium is not globally positive and PAM is not optimal.22

6.3 Increasing Sorting & Proportionately Upcrossing Synergy
Once more, we build on Lemma 4. We now develop a fully local approach to synergy
aggregation that simultaneously secures the needed cross-sectional condition and time

20Indeed, Dx[log (ϕ1(x, y2)/ϕ1(x, y1))] =
2δ(1−δ)(y1−y2)

[1−δ(x+y1(1−x))][1−δ(x+y2(1−x))] . The numerator is negative
by δ ∈ (0, 1) and y1 < y2, and the denominator is positive since x, y1, and y2 are probabilities.

21Payoffs are well defined when the implicit discount factor δ(1 − (1 − x)(1 − y)) < 1, where
(1− x)(1− y) is the chance that both projects fail, resulting in the borrowing partnership defaulting.

22Indeed, when δ ∈ (c/(c+ π − d), 1), the symmetric synergy function ϕ12(x, x) is strictly negative
for x close to 1. Thus, cross matching types x and x+ ε beats sorting them, for high x and low ε.
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series conditions — a sorting premium one-crossing in types, and total synergy upcross-
ing. Notice that for averages on very small sets, upcrossing total synergy is necessary
for upcrossing total synergy. We now seek a condition that renders it sufficient.

Our theory here exploits a new joint cross-sectional and time series upcrossing
aggregation result in §B.2. Given a real or integer lattice (Z,⪰) and a poset (T ,⪰),23

the function σ : Z ×T → R is proportionately upcrossing if for all z, z′ ∈ Z and t′ ⪰ t:

σ−(z ∧ z′, t)σ+(z ∨ z′, t′) ≥ σ−(z, t′)σ+(z′, t) (15)

Next, say that synergy is proportionately upcrossing if ϕ12(x, y|θ) is proportionately
upcrossing in z = (x, y) and t = θ with the usual vector order on Z = [0, 1]2 or the
reverse vector order; namely, (x, y) ⪰ (x′, y′) iff (x, y) ≤ (x′, y′). Analogous definitions
apply to the finite type case with σ(i, j, t) = sij(t) and z = (i, j) ∈ Z ≡ Z2

n.
Consider the cross-sectional implications of (15). With three types, synergies s11=

−1, s12=2, s21=−4, s22=3 are strictly upcrossing in i and j. But the associated sorting
premium is not upcrossing in types — for instance, s11+s12 = 1 > −1 = s21+s22. And
indeed, it is not proportionately upcrossing, since at z = (2, 1) and z′ = (1, 2), we have
s−z∧z′s

+
z∨z′ = 3 < 8 = s−z s

+
z′ . Intuitively, moving up in (i, j) space, the proportionate gain

in negative synergy swamps that in positive synergy s21/s11 = 4 > 3/2 = s22/s12. In
general, positive synergy proportionately rises more than the negative synergy rises.24

Next, consider the time series implications of (15). Easily, any monotonic synergy
function is proportionately upcrossing, since (z∨z′, θ′) ⪰ (z′, θ) implies σ+(z∨z′, θ′) ≥
σ+(z′, θ), and (z, θ′) ⪰ (z∧z′, θ) implies σ−(z∧z′, θ)≥σ−(z, θ′). Yet monotonicity is not
implied — proportionately upcrossing synergy need not be upcrossing, but only weakly
upcrossing in (z, θ); namely, σ(z, θ) > 0 implies σ(z′, θ′) ≥ 0 for all (z′, θ′) ⪰ (z, θ).25

Proportional upcrossing (15) survives multiplication by any nonnegative LSPM
function. In §B.3 we also show that smoothly LSPM functions, namely, whose pairwise
cross-derivatives σ(x, y, θ) = ϕ12(x, y|θ) obey σijσ ≥ σiσj, are proportional upcrossing.
For instance, given the production function ϕ(x, y|θ) = eθ(x−1)y, the synergy function
ϕxy = (x− 1)θ[2 + yθ]ϕ is smoothly LSPM, and therefore proportionately upcrossing.

Proposition 3. If synergy is one-crossing in types, upcrossing in θ, and proportionately
upcrossing, then sorting increases in θ in generic finite type models, or if G (or H) is
absolutely continuous, and synergy is strictly one-crossing in types.

23Denote by f+≡max(f, 0) and f−≡−min(f, 0) the positive and negative parts of a function f .
24Assume negative synergy at couple z, and positive at a higher couple z′ = z ∨ z′ ⪰ z ∨ z′ = z.

Then (15) says that: σ+(z′, θ′)/σ−(z, θ′) ≥ σ+(z′, θ)/σ−(z, θ).
25Fix θ = θ′ and suppress θ. If z′ ⪰ z, inequality (15) is an identity. If z ≻ z′, inequality (15)

becomes σ−(z′)σ+(z) ≥ σ−(z)σ+(z′), which precludes σ(z) < 0 < σ(z′).
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The proof in §C.4 shows that total synergy is upcrossing in θ and that the sorting
premium is upcrossing in types. By Lemma 4, sorting increases in θ for generic finite
type models. The continuum model logic parallels that given after Proposition 2.

Proposition 3 also sheds light on two economic applications.

Application to the Partnership Model with Capital. How do capital
changes impact sorting? Assume partners are more complementary than capital and
labor, but not much so: 1/2≤ρ<η<1 in (6). Synergy ϕ12(x, y|κ) is the product of:

ς(x, y|κ) ≡ (xy)η−1ℓ(x, y)ρ−2ηϕ(x, y)1−2ρ and χ(x, y|κ) ≡ (ρ− η)κρ + (1− η)ℓ(x, y)ρ

Then synergy ϕ12(x, y|κ) is falling in κ, ς(x, y|κ) ≥ 0 is LSPM in (x, y), and χ(x, y|κ)
is increasing in (x, y). Applying these properties in sequence, for all κ ≥ κ′:

ϕ−
12(z ∧ z′|κ)ϕ+

12(z ∨ z′|κ′) ≥ ϕ−
12(z ∧ z′|κ′)ϕ+

12(z ∨ z′|κ)
≥ ς(z, κ′)χ−(z ∧ z′|κ′)ς(z′, κ)χ+(z ∨ z′|κ)
≥ ς(z, κ′)χ−(z|κ′)ς(z′, κ)χ+(z′|κ)
= ϕ−

12(z|κ′)ϕ+
12(z

′|κ)

As synergy proportionately downcrosses in κ, sorting falls in κ (see Figure 11).

Trading Application. Our last pairwise matching application reaches outside
the standard realm of TU sorting results in economics, and inquires about a classic unit
trade model. We build on Shapley and Shubik (1971), and assume trading by house
sellers j = 1, . . . n with costs c1, . . . , cn and potential buyers i = 1, . . . , n with values
vij. Higher index buyers and sellers are more motivated — e.g. higher index houses
are in better condition, and higher index buyers are willing to pay more. Specifically,
vi′j > vij, for all i′ > i, and vij − cj rises in j, for every buyer i. Thus, match surplus
fij =max(vij − cj, 0) increases in i and j, when positive. We allow for an extensive
trading margin just this one time: buyers and sellers trade if and only if they have
indices i, j ≥ k∗(θ). For if a pair (i, j) traded, but either buyer i′ > i or seller j′ > j

did not trade, then aggregate production rises if i′ trades with j (or j′ trades with i).
Fix θ′′ ⪰ θ′ with the same trade volume: k∗(θ′′) = k∗(θ′). Assume uniquely optimal

trading assignments M̂(θ′) and M̂(θ′′) among k∗, . . . , n — as generically holds. Since
fij = vij − cj > 0 for all trading buyers and sellers, synergy for such types is only a
function of vij. Thus, if “buyer synergy” vi+1j+1(θ)+ vij(θ)− vi+1j(θ)− vij+1(θ) is one-
crossing and proportionately upcrossing, then M̂(θ′′) ⪰PQD M̂(θ′) by Proposition 3.
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Figure 11: Sorting in the Partnership Model with Capital. We assume ρ = 0.5,
and η = 0.7; capital rises left to right k = 1, 2, 3. Positive synergy is grey. We depict the
support of the optimal matching for a discrete uniform distribution on types (blue dots).

7 Increasing Sorting and Type Distribution Shifts
Distributional shifts can be formally embedded in production functions, and thus allow
us to use our comparative statics theory to deduce sorting predictions for changes in
the type distributions G(·|θ) and H(·|θ). We say that X types shift up (down) in θ if
G(·|θ) stochastically increases (decreases) in θ, i.e. G(·|θ′) ≤ G(·|θ) if θ′ ⪰ θ. Similarly,
Y types shift up (down) in θ if H(·|θ) stochastically increases (decreases) in θ.

PQD only ranks matching distributions with the same marginals. But a type change
generally impacts the marginals. To enable our theory, we consider the associated
bivariate copula C(p, q) = M(X(p, θ), Y (q|θ)), for quantiles p = G(X(p, θ)|θ) and
q = H(Y (q, θ)|θ). If the matching cdfs M ′ and M ′′ share the same marginals, then
quantile sorting increases if the associated copulas are ranked C ′′ ⪰PQD C ′.

While the production function ϕ(x, y) does not now depend on θ, the quantile
production function φ(p, q|θ)≡ϕ(X(p, θ), Y (q, θ)) does; and so too quantile synergy:

φ12(p, q|θ) = ϕ12(X(p, θ), Y (q, θ))Xp(p, θ)Yq(q, θ) (16)

In the Appendix, we apply Lemma 4 and Proposition 2 to prove our comparative static:

Corollary 1. Quantile sorting increases if types shift up (down):
(a) generically with finite types, if synergy is non-decreasing (non-increasing) in types;
(b) given G and H absolutely continuous, if synergy is increasing (decreasing) in types.

Applications to Examples in §6.3. With cubic production, synergy rises in
types when β, γ > 0 and falls in types when β, γ < 0. Hence, quantile sorting increases
if types shift up (down) when β, γ > 0 (βγ < 0), as illustrated in Figure 12.
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Figure 12: Increasing Sorting with Type Shifts for Quadratic Production.
These graphs depict optimally matched quantile pairs (blue dots) assuming an expo-
nential distribution on types G(x|θ) = 1−e−x/θ and H(y|θ) = 1−e−y/θ with quadratic
production xy− (xy)2. Since synergy is decreasing in types, Corollary 1 predicts quan-
tile sorting will increase as θ falls, left (θ = 1) to middle (θ = 2/3) to right (θ = 1/3).

In the moral hazard model of §3(b), given x̄ȳ ≤ 2xy (‡), synergy increases in types if
PAM is suboptimal. So quantile sorting increases when types shift up, by Corollary 1.

8 Conclusion
Becker’s insight that supermodularity yields positive sorting sparked a huge literature
on matching. But an impassable wall of mathematical complexity has prevented any
general theory for non-assortative matching since 1973. Nonetheless, as evidenced by
the many motivated models without perfect sorting, economists want to understand
this more general model. We provide a missing general theory for comparative statics
for such settings. We build on a economically-motivated notion of increasing sorting.
Bypassing the solution of the optimal matching, we answer when the match sorting
increases given monotone shifts in productivity or shifts in the type distributions.

The analysis succeeds, even though we first note that globally more synergistic
matching need not lead to more sorting. Rather, we can only conclude that sorting
does not fall. Our theory therefore requires cross-sectional discipline. We show that
if synergy one-crosses as types increase, then sorting increases if either (i) the total
synergy on all sets of couples increases, or (ii) synergy linearly or monotonely changes,
or (iii) synergy upcrosses through zero, and proportionately so, in a sense we define.

We revisit the beacons of the matching literature since 1990, quickly deriving and
strengthening their findings. Our paper offers a tractable foundation for future theo-
retical and empirical analysis of matching. A subtle and valuable direction for future
work is a multidimensional extension of our theory (see Lindenlaub (2017)).
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A Match Output Reformulation: Proof of Lemma 1

Finitely Many Types. Summing
∑n

i=1

[∑n
j=1 fijmij

]
by parts in j and then i yields:

n∑
i=1

[
fin

n∑
j=1

mij −
n−1∑
j=1

[fi,j+1 − fij]

j∑
k=1

mik

]

=
n∑

i=1

fin −
n−1∑
j=1

n∑
i=1

[fi,j+1 − fij]

j∑
k=1

mik

=
n∑

i=1

fin −
n−1∑
j=1

(
[fn,j+1 − fn,j]

n∑
ℓ=1

j∑
k=1

mℓk −
n−1∑
i=1

sij

i∑
ℓ=1

j∑
k=1

mℓk

)

=
n∑

i=1

fin −
n−1∑
j=1

(
[fn,j+1 − fnj] j −

n−1∑
i=1

sijMij

)

Continuum of Types. If ψ is C1 on [0, 1] and Γ is a cdf on [0, 1], integration by
parts yields: ∫

[0,1]

ψ(z)Γ(dz) = ψ(1)Γ(1)−
∫
(0,1]

ψ′(z)Γ(z)dz (17)

where the interval (0, 1] accounts for the possibility that Γ may have a mass point at 0.
Since M(dx, y) ≡M(y|x)G(dx) for a conditional matching cdf M(y|x), we have:

M(x, y) ≡
∫
[0,x]

M(y|x′)G(dx′) (18)

Applying Theorem 34.5 in Billingsley (1995) and then in sequence (17), (18) and Fu-
bini’s Theorem, (17), the objective function

∫
[0,1]2

ϕ(x, y)M(dx, dy) in (3) equals:∫
[0,1]

∫
[0,1]

ϕ(x, y)M(dy|x)G(dx)

=

∫
[0,1]

ϕ(x, 1)G(dx)−
∫
[0,1]

∫
(0,1]

ϕ2(x, y)M(y|x)dyG(dx)

=

∫
[0,1]

ϕ(x, 1)G(dx)−
∫
(0,1]

∫
[0,1]

ϕ2(x, y)M(dx, y)dy

=

∫
[0,1]

ϕ(x, 1)G(dx)−
∫
(0,1]

[
ϕ2(1, y)M(1, y)−

∫
(0,1]

ϕ12(x, y)M(x, y)dx

]
dy

which easily reduces to the expression in Lemma 1, using M(1, y) = H(y).
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B New Results in Monotone Comparative Statics

B.1 Nowhere Decreasing Optimizers
We now show that nowhere decreasing sorting is the appropriate partial order on sets
of maximizers of single-crossing functions on general partially ordered sets (posets).26

Let Z and Θ be posets. The correspondence ζ : Θ → Z is nowhere decreasing if
z1 ∈ ζ(θ1) and z2 ∈ ζ(θ2) with z1 ⪰ z2 and θ2 ⪰ θ1 imply z2 ∈ ζ(θ1) and z1 ∈ ζ(θ2).

Theorem 1 (Nowhere Decreasing Optimizers). Let F : Z × Θ 7→ R, where Z and Θ

are posets, and let Z ′ ⊆ Z. If maxz∈Z′ F (z, θ) exists for all θ and F is single crossing
in (z, θ), then Z(θ|Z ′) ≡ argmaxz∈Z′ F (z, θ) is nowhere decreasing in θ for all Z ′. If
Z(θ|Z ′) is nowhere decreasing in θ for all Z ′ ⊆ Z, then F (z, θ) is single crossing.

This result removes the assumption in Milgrom and Shannon (1994) that F is
quasisupermodular in z ∈ Z, and that the domain Z is a lattice.
(⇒): If θ2 ⪰ θ1, z1∈Z(θ1), z2∈Z(θ2), and z1 ⪰ z2, optimality and single crossing give:

F (z1, θ1) ≥ F (z2, θ1) ⇒ F (z1, θ2) ≥ F (z2, θ2) ⇒ z1 ∈ Z(θ2)

Now assume z2 /∈ Z(θ1). By optimality and single crossing, we get the contradiction:

F (z1, θ1) > F (z2, θ1) ⇒ F (z1, θ2) > F (z2, θ2) ⇒ z2 /∈ Z(θ2)

(⇐): If F is not single crossing, then for some z2 ⪰ z1 and θ2 ⪰ θ1, either: (i) F (z2, θ1)≥
F (z1, θ1) and F (z2, θ2)<F (z1, θ2); or, (ii) F (z2, θ1)>F (z1, θ1) and F (z2, θ2)≤F (z1, θ2).
Let Z ′ = {z1, z2}. In case (i), z2 ∈ Z(θ1|Z ′) and z1 = Z(θ2|Z ′) precludes Z(θ|Z ′)

nowhere decreasing in θ, since z2 /∈ Z(θ2|Z ′). In case (ii), z2 = Z(θ1|Z ′) and z1 ∈
Z(θ2|Z ′) precludes Z(θ|Z ′) nowhere decreasing in θ, since z1 /∈ Z(θ1|Z ′). □

For completeness, we note that Theorem 1 has a converse claim with implications
in our matching model: If M∗(θ) is nowhere decreasing in θ for all type distributions
G,H, then S(R|θ) is upcrossing in θ. For assume a two type model with women
(x1, x2) and men (y1, y2). Assume that S(R|θ) is not upcrossing in θ, i.e. for some
θ′′ ⪰ θ′ and rectangle R = (x1, y1, x2, y2), we have S(R|θ′′) ≤ 0 ≤ S(R|θ′) with one
inequality strict. These inequalities respectively imply that NAM is optimal at θ′′ and
PAM is optimal at θ′. Since one inequality is strict, either NAM is uniquely optimal at
θ′′ or PAM is uniquely optimal at θ′. Either case precludes nowhere decreasing sorting.

26This may be a known result. We include it for completeness, and as we cannot find any reference.
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B.2 Integral Preservation of Upcrossing Functions on Lattices
Given a real or integer lattice27 Z ⊆ RN and poset (T ,⪰), the function σ : Z×T → R
is proportionately upcrossing if it obeys inequality (15) ∀z, z′ ∈ Z and t′ ⪰ t.28

Theorem 2. Let σ(z, t) be proportionately upcrossing. Then Σ(t) ≡
∫
Z
σ(z, t)dλ(z) is

weakly upcrossing in t, and upcrossing in t if σ(z, t) is upcrossing in t.29

This generalizes a key information economics result by Karlin and Rubin (1956): If
σ0(z) is upcrossing in z ∈ R, and σ1≥0 is LSPM, then

∫
σ0(z)σ1(z, t)dλ(z) is upcross-

ing. Our result subsumes theirs when n = 1 and σ=σ0σ1 is proportional upcrossing.

Proof: Karlin and Rinott (1980) prove the following: If functions ξ1, ξ2, ξ3, ξ4 ≥ 0 obey
ξ3(z ∨ z′)ξ4(z ∧ z′) ≥ ξ1(z)ξ2(z

′) for z ∈ Z ⊆ RN , then for all positive measures λ:∫
ξ3(z)dλ(z)

∫
ξ4(z)dλ(z) ≥

∫
ξ1(z)dλ(z)

∫
ξ2(z)dλ(z) (19)

Now, if t′ ⪰ t, then (15) reduces to ξ3(z ∨ z′)ξ4(z ∧ z′) ≥ ξ1(z)ξ2(z
′) for the functions:

ξ1(z) ≡ σ+(z, t), ξ2(z) ≡ σ−(z, t′), ξ3(z) ≡ σ+(z, t′), ξ4(z) ≡ σ−(z, t)

Thus, by (19):∫
σ+(z, t′)dλ(z)

∫
σ−(z, t)dλ(z) ≥

∫
σ+(z, t)dλ(z)

∫
σ−(z, t′)dλ(z) (20)

This precludes
∫
σ+(z, t)dλ(z) >

∫
σ−(z, t)dλ(z) and

∫
σ+(z, t′)dλ(z) <

∫
σ−(z, t′)dλ(z),

simultaneously. And thus, Σ(t) > 0 implies Σ(t′) ≥ 0, proving weakly upcrossing.
We now argue Σ upcrossing. First assume Σ(t) > 0. Then

∫
σ+(z, t)dλ(z) >∫

σ−(z, t)dλ(z). By (20), either
∫
σ+(z, t′)dλ(z) >

∫
σ−(z, t′)dλ(z), or

∫
σ+(z, t′)dλ(z) =∫

σ−(z, t′)dλ(z) = 0. But the latter is impossible, since
∫
σ+(z, t′)dλ(z) = 0 implies∫

σ+(z, t)dλ(z) = 0, as σ(z, t) is upcrossing in t — contradicting Σ(t) > 0. So Σ(t′) > 0.
Next, posit Σ(t) = 0, then

∫
σ+(z, t)dλ(z) =

∫
σ−(z, t)dλ(z). By (20), either∫

σ+(z, t′)dλ(z) ≥
∫
σ−(z, t′)dλ(z), and so Σ(t′) ≥ 0. Or, we have

∫
σ+(z, t)dλ(z) =∫

σ−(z, t)dλ(z) = 0, whereupon
∫
σ−(z, t′)dλ(z) = 0 — as σ(z, t) is upcrossing in t, and

so σ−(z, t) is downcrossing. Thus,
∫
σ+(z, t′)dλ(z) ≥

∫
σ−(z, t′)dλ(z), or Σ(t′) ≥ 0. □

27We prove a stronger than needed result, as it applies to general lattices; we just need it for R2.
28This result is related to Theorem 2 in Quah and Strulovici (2012). They do not assume (15).

Rather, they assume σ is upcrossing in (z, θ), and a time a series condition: signed ratio monotonicity.
Our results are independent, but overlap more closely for our smoothly LSMP condition in §B.3.

29The proof for the integer lattice requires that λ be a counting measure. Also true: if λ does not
place all mass on zeros of σ, then Σ(t) ≡

∫
Z
σ(z, t)dλ(z) is upcrossing in t.

25



B.3 Proportionately Upcrossing and Logsupermodularity
We now introduce a sufficient condition for (15) that emphasizes the link between log-
complementarity and proportional upcrossing. Let θ ∈ R, and call σ(z, θ) smoothly
signed log-supermodular (LSPM) if its derivatives obey the inequality σijσ ≥ σiσj.

Theorem 3. If σ(z, θ) is upcrossing and smoothly signed LSPM, then σ obeys (15).

Step 1: Ratio Ordering. Abbreviate w = (z, θ) ∈ RN+1. Assume ŵ ≥ w, sharing
the i coordinate wi = ŵi, with σ(x̄, w−i) < 0 < σ(ŵ) for some x̄ > wi. Then we prove:

σi(x,w−i)σ(x, ŵ−i) ≥ σi(x, ŵ−i)σ(x,w−i) ∀ x ∈ [wi, x̄] (21)

Since σ is upcrossing, σ(x,w−i) < 0 < σ(x, ŵ−i) for all x ∈ [wi, x̄]. If (21) fails, then
for some x′ ∈ [wi, x̄]:

σi(x
′, w−i)

σ(x′, w−i)
>
σi(x

′, ŵ−i)

σ(x′, ŵ−i)

This contradicts smoothly LSPM, as (σi/σ)j ≥ 0 for all σ ̸= 0 and i ̸= j. So (21) holds.
Given σ(x, ŵ−i) ̸= 0, the ratio σ(x,w−i)/σ(x, ŵ−i) is non-decreasing in x on [wi, x̄], so
that:

σ(w)

σ(ŵ)
≤ σ(x̄, w−i)

σ(x̄, ŵ−i)
(22)

Step 2: σ obeys (15). By assumption θ′ ≥ θ (now a real). So if (z, θ′) ≤ (z ∧ z′, θ),
we have z ≤ z′ and θ′ = θ, in which case (15) is an identity. If not (z, θ′) ≤ (z ∧ z′, θ),
then let i1 < · · · < iK be the indices with (z, θ′)ik > (z ∧ z′, θ)ik for k = 1, . . . , K. Let’s
change w0 ≡ (z ∧ z′, θ) into wK ≡ (z, θ′) in K steps, w0, . . . , wK , one coordinate at a
time, and likewise ŵ0 ≡ (z′, θ) into ŵK ≡ (z ∨ z′, θ′), changing coordinates in the same
order. Notice that wk−1

ik
= ŵk−1

ik
= (z′, θ)ik < (z, θ′)ik and ŵk ≥ wk for all k.

Now, inequality (15) holds if its RHS vanishes. Assume instead the RHS of (15) is
positive for some θ′ ≥ θ, so that σ(z, θ′) < 0 < σ(z′, θ); and so, replacing ŵ0 = (z′, θ)

and wK = (z, θ′), we get σ(wK) < 0 < σ(ŵ0). But then since the sequences {wk}
and {ŵk} are increasing and σ is upcrossing, we have σ(wk) < 0 < σ(ŵk−1) for all k.
Altogether, we may repeatedly apply inequality (22) to get:

σ(z ∧ z′, θ)
σ(z′, θ)

≡ σ(w0)

σ(ŵ0)
≤ σ(wk)

σ(ŵk)
≤ · · · ≤ σ(wK)

σ(ŵK)
≡ σ(z, θ′)

σ(z ∨ z′, θ′)

So given σ(z ∧ z′, θ), σ(z, θ′) < 0 < σ(z′, θ), σ(z ∨ z′, θ′), inequality (15) follows from:

σ−(z ∧ z′, θ)
σ+(z′, θ)

≥ σ−(z, θ′)

σ+(z ∨ z′, θ′)
□
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C Omitted Proofs

C.1 One Crossing Weighted Synergy via Linear Synergy
Claim 1 (Linear Synergy). If synergy is linear in a parameter θ, say ϕ12(x, y|θ) =

A(x, y) + θB(x, y) or sij(θ) = Aij + θBij, and A is globally positive (negative), then
weighted synergy is strictly downcrossing (upcrossing) in θ, and so also is total synergy.

Proof : Assume the case with A > 0 globally. Then for all θ′′ > θ′ ≥ 0 and λ ≥ 0:∫
A(x, y)λ(x, y)+θ′

∫
B(x, y)λ(x, y) ≤ 0 ⇒

∫
A(x, y)λ(x, y)+θ′′

∫
B(x, y)λ(x, y) < 0

as A > 0 and θ > 0, together imply
∫
B(x, y)λ(x, y) < 0. Symmetric logic establishes

the finite type case and weighted synergy strictly upcrossing in θ when A < 0. □

C.2 Finite Type Increasing Sorting: Proof of Lemma 4
(a) We restrict to the generic case with unique optimal pure matchings µ, described

by men partners (µ1, . . . , µn) of women, or women partners ω = (ω1, . . . , ωn) of men.
(b) The total synergy Sn(K|θ) =

∑n−1
i=1

∑n−1
j=1 sij(θ)1(i,j)∈K on a couple set K ⊆

Z2
n−1. The sorting premium Sn(r|θ) is the total synergy on rectangle r in Z2

n−1.
(c) We consider the total synergy dyad (Sn(K|θ′),Sn(K|θ′′)) for generic θ′′ ⪰ θ′.

Let domain Dn be the space of total synergy dyads (Sn(K|θ′),Sn(K|θ′′)) that are each
upcrossing in K on rectangles R and upcrossing in θ on {θ′, θ′′} for any K ∈ R. The
domain D̂n ⊆ Dn further insists that they be upcrossing in θ for all sets of couples K.
Lemma 4 assumes that total synergy dyads are in D̂n for all n.

(d) Removing couple (i, j) from an n-type market induces sorting premium Sn−1
ij

among the remaining n− 1 types, satisfying the formula:

Sn−1
ij (r|θ) ≡ Sn(r + Iij(r)|θ) for Iij(r) = (1r1≥i,1r2≥j,1r3≥i,1r4≥j) (23)

where Iij(r) increments by one the index of the women i′ ≥ i and men j′ ≥ j, where
the type indices refer to the original model whenever removing types henceforth.

(e) To avoid ambiguity when changing the number n of types, we denote by (in, jn)

the ith highest woman and the jth highest man. Now, consider the sequence models
with κ = n + k, n + k − 1, . . . , n types induced by removing couple (i′κ, j

′
κ) at θ′ and

(i′′κ, j
′′
κ) at θ′′ from the κ type model. We say the sequence of couples has higher partners

at θ′ than θ′′ if (i′κ, j′κ) ≥ (i′′κ, j
′′
κ) and i′κ = i′′κ or j′κ = j′′κ.
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(f) Let domain D∗
n be the set of total synergy dyads (Sn(K|θ′),Sn(K|θ′′)) induced

by sequentially removing k optimally matched couples with higher partners at θ′ than
θ′′ from total synergy dyads (Sn+k(K|θ′),Sn+k(K|θ′′)) ∈ D̂n+k, for some k ∈ {0, 1, . . .}.

A. Key Properties of our Domains and Pure Matchings.

Fact 1. Given a total synergy dyad in D∗
n+1, removing couple (i′, j′) at θ′ and (i′′, j′′)

at θ′′ induces a total synergy dyad in D∗
n if (i′, j′) ≥ (i′′, j′′) and i′ = i′′ or j′ = j′′.

Fact 2. Given a total synergy dyad in Dn+1, removing couple (i′, j′) at θ′ and (i′′, j′′)

at θ′′ induces a total synergy dyad in Dn if ⟨i′ = i′′ and j′ ≥ j′′⟩ or ⟨j′ = j′′ and i′ ≥ i′′⟩.

Proof: We prove this for i′ = i′′ and j′ ≥ j′′. For any fixed θ, the sorting premium
Sn
ij(r|θ) is upcrossing in r, as fewer inequalities are needed. To see that total synergy is

upcrossing in θ on rectangular sets in Z2
n−1, assume Sn

ij′(r|θ′) ≥ (>)0 for some r. Then

Sn+1(r + Iij′(r)|θ′) ≥ (>)0 ⇒ Sn+1(r + Iij′′(r)|θ′) ≥ (>) 0

⇒ Sn+1(r + Iij′′(r)|θ′′) ≥ (>) 0

⇒ Sn
ij′′(r|θ′′) ≥ (>) 0

respectively, as (i) Sn+1(r|θ) is upcrossing for rectangles r, non-increasing Iij in j, and
j′′ ≤ j′, and (ii) Sn+1(r|θ) is upcrossing in θ for rectangles r, and (iii) by (23). □

Fact 3. The domains are nested: D̂n ⊆ D∗
n ⊆ Dn.

Proof: Trivially, D̂n ⊆ D∗
n, since we may set k = 0 in the definition of D∗

n.
To get D∗

n ⊆ Dn, pick any (Sn(K|θ′),Sn(K|θ′′)) ∈ D∗
n. This dyad is induced by

removing k optimally matched couples with higher partners at θ′ than θ′′ from a dyad
(Sn+k(K|θ′),Sn+k(K|θ′′)) ∈ D̂n+k ⊆ Dn+k, for some k ≥ 0. For ℓ = 1, . . . , k, induce
total synergy dyads (Sn+k−ℓ(K|θ′),Sn+k−ℓ(K|θ′′)) by sequentially removing optimally
matched couples. Then (Sn+k−ℓ(K|θ′),Sn+k−ℓ(K|θ′′)) ∈ Dn+k−ℓ for ℓ = 1, . . . , k, as
removed couples are ordered, as Fact 2 needs. So (Sn(K|θ′),Sn(K|θ′′)) ∈ Dn. □

Fact 4. If M ̸=M̂ are pure n-type matchings, µ̂i>µi at some i and ω̂j>ωj at some j.

Proof: Since M ̸= M̂ , there is a highest type man j matched with woman ω̂j > ωj.
Logically then, woman i = ω̂j is matched to a lower man under M , i.e. j = µ̂i > µi. □

Adding a couple (i0, j0) to a matching µ creates a new matching µ̂ with indices of
women i ≥ i0 and men j ≥ j0 renamed i + 1 and j + 1, respectively. Equivalently,
this means inserting a row i and column j into the matching matrix m — with all 0’s
except 1 at position (i, j) — and shifting later rows and columns up one.

28



Fact 5. Adding respective couples (1, m̂) ≤ (1,m), or (ŵ, 1) ≤ (w, 1), to the n-type
matchings µ̂ ⪰PQD µ preserves the PQD order for the resulting n+ 1 type matchings.

Proof: We just consider adding couples (1, m̂) ≤ (1,m), as the analysis for (ŵ, 1) ≤
(w, 1) is similar. For pure matchings µ, let Cµ(i0, j0) count matches by women i ≤ i0
with men j ≤ j0, and so call Cµ(0, j) = Cµ(i, 0) = 0. So µ̂ ⪰PQD µ iff C µ̂ ≥ Cµ.

By adding a couple (1,m), the new count is:

Cµ
m(i, j) ≡ Cµ (i− 1, j − 1j≥m) + 1j≥m for all i, j ∈ {1, 2, . . . , n+ 1}

To prove the step, we must show that if µ̂ ⪰PQD µ, then Cµ̂
m̂ ≥ Cµ

m for all m̂ ≤ m.
By assumption µ̂ ⪰PQD µ and thus, C µ̂ ≥ Cµ. So since m̂ ≤ m:

.Cµ̂
m̂(i, j)− Cµ

m(i, j) =


C µ̂(i− 1, j)− Cµ(i− 1, j) ≥ 0 for j < m̂

C µ̂(i− 1, j − 1) + 1− Cµ(i− 1, j) ≥ 0 for m̂ ≤ j < m

C µ̂(i− 1, j − 1)− Cµ(i− 1, j − 1) ≥ 0 for j ≥ m

To understand the middle line, note that this match count can be written as

C µ̂(i− 1, j − 1)− Cµ(i− 1, j − 1)− [Cµ(i− 1, j)− Cµ(i− 1, j − 1)− 1]

As Cµ(i−1, j)−Cµ(i−1, j−1)≤1, this is at least C µ̂(i−1, j−1)−Cµ(i−1, j−1)≥0. □
B. The Induction Proof. We use induction on the number of types. Let M ′

n

and M ′′
n be uniquely optimal n type matchings at θ′ and θ′′. Lemma 4 assumes total

synergy dyads in D̂n. We prove the result on the larger domain D∗
n:

Induction Premise Pn: If the total synergy dyad is in D∗
n, then M ′′

n ⪰PQD M ′
n.

Step 1. Base Case P2 holds: If the total synergy dyad is in D∗
2, then M ′′

2 ⪰PQD M ′
2.

Proof: If not, then NAM is uniquely optimal at θ′′ and PAM at θ′. Since D∗
2 ⊆ D2

by Fact 3, the sorting premium is upcrossing in θ. This precludes a negative sorting
premium at θ′′ (NAM) and a positive sorting premium at θ′ (PAM). □

• A pair refers to two couples, such as (i1, j1) and (i2, j2).
• A pair is a PAM pair is (i1, j1) < (i2, j2), and a NAM pair is i1 < i2 and j1 > j2.

Step 2. If the total synergy dyad is in D∗
n+1, then neither M ′

n+1 nor M ′′
n+1 includes a

matched NAM pair that exceeds a matched PAM pair.

Proof: By Fact 3, D∗
n+1 ⊆ Dn+1. So Sn+1(r|θ) is upcrossing in rectangles r for θ′

and θ′′. Also, PAM (NAM) is optimal for a pair iff Sn+1(r|θ) ≥ (≤)0 on rectangle r.
As the optimal matching is unique, Sn+1(r|θ) ̸= 0 for all optimally matched pairs. □
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Steps 3–8 impose premises P2, . . . ,Pn, but not Pn+1, and arrive at a contradiction:

(‡‡): In a model with total synergy dyads in D∗
n+1, the uniquely optimal matchings at

θ′′ ≻ θ′ are not ranked µ′′ ⪰PQD µ′ (ω′′ ⪰PQD ω′).

Step 3. At states θ′ and θ′′, the matchings obey µ′′
1 = µ′

1 +1 ≥ 2 and ω′′
1 = ω′

1 +1 ≥ 2.

We establish the first relationship. Symmetric steps would prove the second.

Proof of µ′′
1 > µ′

1: If not, then µ′′
1 ≤ µ′

1. In this case, remove couple (1, µ′
1) at θ′,

and couple (1, µ′′
1) at θ′′. The remaining matching is PQD higher at θ′′, by Induction

Premise Pn and Fact 1. By Fact 5, if we add back the optimally matched pairs (1, µ′
1)

and (1, µ′′
1), then the PQD ranking still holds with n+ 1 types, given µ′′

1 ≤ µ′
1, namely

µ′′ ⪰PQD µ′. This contradiction to (‡‡) proves that µ′′
1 > µ′

1. □

Proof of µ′′
1 < µ′

1 + 2. If not, then µ′′
1 ≥ µ′

1 + 2. By Fact 4, choose a woman i > 1 with
µ′′
i < µ′

i. Remove couples (i, µ′
i) at θ′, and (i, µ′′

i ) at θ′′. Since µ′′
i < µ′

i, the resulting
matching is PQD higher at θ′′ than θ′, by Fact 1 and Premise Pn. In the resulting
model, woman 1 is not matched to a higher man at θ′′ than θ′. This is impossible if
µ′′
1 ≥ µ′

1+2, as µ′′
1 −µ′

1 falls by at most 1 when removing man µi at θ′ and µ′′
i at θ′′. □

Step 4. The couple (ω′′
1 , µ

′′
1) is matched at θ′, namely, µ′

ω′′
1
= µ′′

1 and ω′
µ′′
1
= ω′′

1 .

Proof of µ′
ω′′
1
≥ µ′′

1 and ω′
µ′′
1
≥ ω′′

1 : We prove the first inequality. If not, then µ′
ω′′
1
< µ′′

1.
As man µ′

1 = µ′′
1 − 1 is matched at θ′ by Step 3, µ′

ω′′
1
< µ′′

1 − 1 = µ′
1. Remove couple

(ω′′
1 , µ

′
ω′′
1
) at θ′ and (ω′′

1 , 1) at θ′′. This new matching is PQD higher at θ′′, by Pn and
Fact 1. As man µ′

ω′′
1

removed at θ′ and man 1 removed at θ′′ are below µ′
1 = µ′′

1 − 1,
the match count weakly below (1, µ′

1) is unchanged at θ′′ and θ′. By Step 3, this count
is higher at θ′ than θ′′, contradicting the n type matching PQD higher at θ′′. □

Proof of ω′
µ′′
1
= ω′′

1 and µ′
ω′′
1
= µ′′

1: Just one strict inequality in part (a) is impossible,
as it overmatches some type: ω′

µ′′
1
> ω′′

1 and µ′
ω′′
1
= µ′′

1 or ω′
µ′′
1
= ω′′

1 and µ′
ω′′
1
> µ′′

1. Next
assume two strict inequalities in part (a). As µ′

ω′′
1
> µ′′

1, the θ′ matching includes the
PAM pair (1, µ′

1) < (ω′′
1 , µ

′
ω′′
1
) — by Step 3 — and the higher NAM pair (ω′′

1 , µ
′
ω′′
1
) and

(ω′
µ′′
1
, µ′′

1). NAM pairs above PAM pairs violate Step 2 (left panel of Figure 13). □

The middle panel of Figure 13 depicts the takeout of Steps 3–4. We iteratively use
this matching patter to show how (‡‡) greatly restricts the matching at θ′ and θ′′.

Step 5. µ′
1 ≥ µ′

i = µ′′
i − 1 for i = 1, . . . , ω′

1 and ω′
1 ≥ ω′

j = ω′′
j − 1 for j = 1, . . . , µ′

1.

Proof: We proved this for i = 1 and j = 1, and now prove the claimed ordering
µ′
1 ≥ µ′

i = µ′′
i − 1 for i = 2, . . . , ω′

1. By symmetry, ω′
1 ≥ ω′

j = ω′′
j − 1 for j = 2, . . . , ω′

1.
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Figure 13: Steps 4 and 5 in the Induction Proof. In the counterfactual logic in
Step 4 and 5, stars and dots denote respective proposed matched pairs at θ′ and θ′′.
The left panel depicts the NAM pair (green) above the PAM pair (yellow) in Step 4.
The middle panel depicts the conclusion of Step 4: man µ′′

1 and woman ω′′
1 must match

under θ′. The right panel depicts the NAM pair above the PAM pair in Step 5-(a).

Part (a): µ′
i < µ′

1 for i = 2, . . . , ω′
1. If not, then µ′

i ≥ µ′
1 for some 2 ≤ i ≤ ω′

1. And
since µ′

i = µ′
1 entails overmatching, we have µi > µ1 for i = 2, . . . , ω′

1. Thus, µ′ involves
a PAM pair (1, µ′

1) < (i, µ′
i). We claim that (i, µ′

i) and (ω′′
1 , µ

′′
1) constitutes a higher

NAM pair, violating the upcrossing of S(r|θ) in r, by Step 2. Indeed, i ≤ ω′
1 < ω′′

1 (by
the premise above, and Step 3, respectively). Also, µ′

i > µ′′
1, since we have assumed

µ′
i > µ′

1, and deduced µ′
1 = µ′′

1 − 1 in Step 3, and, in Step 4, that µ′′
1 is matched to ω′′

1

at θ′, and we just showed ω′′
1 > i. (See the right panel of Figure 13.) □

Part (b): µ′
i < µ′′

i for i = 2, . . . , ω′
1. If not, then µ′

i ≥ µ′′
i for some 2 ≤ i ≤ ω′

1. Since
µ′
i ≥ µ′′

i , if we remove couple (i, µ′
i) at θ′ and couple (i, µ′′

i ) at θ′′, then the resulting
matching is PQD higher at θ′′, by Fact 1 and Pn. In the resulting matching, woman 1’s
partner is thus not higher at θ′′ than θ′. But µ′′

1 = µ′
1 + 1 by Step 3, and µ′

1 > µ′
i ≥ µ′′

i

by part (a) and the premise of (b). Both removed men µ′
i and µ′′

i are then strictly
below µ′

1. So, woman 1’s partner is still 1 higher at θ′′ than θ′. Contradiction. □
Part (c): µ′

i ≥ µ′′
i − 1 for i = 2, . . . , ω′

1. If not, then µ′
i∗ < µ′′

i∗ − 1 for some
2 ≤ i∗ ≤ ω′

1. Remove couple (ω′′
1 , µ

′′
1) at θ′ (matched, by Step 4), and the couple (ω′′

1 , 1)

at θ′′. By Fact 1 and Assumption Pn, the resulting matching is PQD higher at θ′′.
But since ω′′

1 > ω′
1 by Step 3, all women i = 1, . . . , ω′

1 remain. Each has a weakly
lower partner at θ′ than θ′′, since we started with µ′

i < µ′′
i for i = 1, . . . , ω′

1 by Step 3
for i = 1, and part (b) for i > 1. Also, woman i∗ ≤ ω′

1 has a strictly lower partner, as
µ′
i∗ < µ′′

i∗ − 1. The resulting matching cannot be PQD higher at θ′′. Contradiction. □

Step 6. The matching µ′′ is NAM among men and women at most ω′′
1 = µ′′

1 ≥ 2.

Proof of ω′′
1 = µ′′

1. By Steps 3 and 5, we get µ′′
1 = µ′

1+1 ≥ µ′′
i for i = 1, . . . , w′

1 = ω′′
1 −1

and µ′′
1 ≥ 2 > 1 = µ′′

w′′
1
. So in matching µ′′, women i ≤ ω′′

1 match with men j ≤ µ′′
1.

Hence, µ′′
1 ≥ ω′′

1 . Ditto, by Steps 3 and 5, ω′′
1 ≥ ω′′

j for j = 1, . . . , µ′′
1, and in matching

ω′′, men j ≤ µ′′
1 match with women i ≤ ω′′

1 . Hence, µ′′
1 ≤ ω′′

1 . Thus, µ′′
1 = ω′′

1 ≥ 2. □
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Proof of µ′′
i = µ′′

1 − i+ 1 for 1, . . . , ω′′
1 . This is an identity at i = 1 and true at i = ω′′

1

by ω′′
1 = µ′′

1 (just proven) and µ′′
ω′′
1
= 1. So, henceforth assume i ∈ {2, . . . , ω′′

1 − 1}. We
claim that for all such i, µ′

1 ≥ µ′′
i . Indeed, by Steps 3 and 5, µ′′

1 = µ′
1 + 1 ≥ µ′′

i ; and
since we do not over match, µ′′

1 ̸= µ′′
i for i ̸= 1. Since µ′

1 ≥ µ′′
i , Step 5 yields equality

ω′
j = ω′′

j − 1 at j = µ′′
i , and so ω′

µ′′
i
= ω′′

µ′′
i
− 1 = i− 1. But then since ω′

µ′
i−1

= i− 1 and
each woman has a unique partner, ω′

µ′′
i
= i− 1 implies µ′′

i = µ′
i−1. As µ′

i−1 = µ′′
i−1 − 1

by Step 5 and i ≤ ω′′
1 − 1 = ω′

1 (by our premise and Step 3), we have µ′′
i = µ′′

i−1 − 1. □
An n-type pure matching µ is NAM∗ if µn = n and µi = n− i for i = 1, . . . , n− 1,

i.e. NAM among types 1, . . . , n− 1, so that NAM∗ = NAM3 when n = 3.

Step 7. The matching µ′ is NAM∗ among men and women at most ω′′
1 = µ′′

1 ≥ 2.

Proof: Steps 3, 5 and 6 imply µ′
i = µ′′

i − 1 = µ′′
1 − i for i = 1, . . . , ω′

1 = ω′′
1 − 1. Couple

(ω′′
1 , µ

′′
1) matches under µ′, by Step 4. So µ′ is NAM∗ for types 1, . . . , µ′′

1 = ω′′
1 . □

By Steps 6–7, µ′′ is NAM and µ′ is NAM∗ on types 1, . . . , ω′′
1 = µ′′

1 ≡ k ≥ 2. Since
NAM∗ ≻PQD NAM, if k < n + 1 then Premise Pk fails. Step 8 finishes the proof by
showing that NAM at θ′′ and NAM∗ at θ′ is also impossible for k = n+ 1 types.

NAM for men {i1, . . . , iℓ} and women {j1, . . . , iℓ} is {(i1, jℓ), (i2, jℓ−1), . . . , (iℓ, j1)}.
Rematching to NAM∗, {(i1, jℓ−1), (i2, jℓ−2), . . . , (iℓ, jℓ)} changes payoffs by∑ℓ−1

u=1(fiu,jℓ−u
−fiu,jℓ+1−u

)+fiℓ,jℓ−fiℓ,1 =
∑ℓ−1

u=1

[
(fiℓ,jℓ+1−u

− fiℓ,jℓ−u
)−(fiu,jℓ+1−u

− fiu,jℓ−u
)
]

So the payoff of NAM∗ less that of NAM on any subset of ℓ types equals (suppressing
the superscript on S) ∑ℓ−1

u=1 S(iu, jℓ−u, iℓ, jℓ+1−u) (24)

Step 8. NAM at θ′′ and NAM∗ at θ′ is impossible for total synergy dyads in D∗
n+1.

Part (a): Contradiction Assumption. For n + 1 types, posit NAM∗ and NAM
uniquely optimal at θ′ and θ′′ (Figure 14, panel 1). Total synergy dyads in D∗

n+1 are in-
duced by removing k−1 ≥ 0 optimally matched couples with higher partners at θ′ than
θ′′ (building block (f)) from a total synergy dyad (Sn+k(K|θ′),Sn+k(K|θ′′)) ∈ D̂n+k.
The θ′ matching here is NAM∗ for men i′ = (i′1, . . . , i

′
n+1) and women j ′ = (j′1, . . . , j

′
n+1),

while the θ′′ matching with these n + k types is NAM for men i′′ = (i′′1, . . . , i
′′
n+1) and

women j ′′ = (j′′1 , . . . , j
′′
n+1), with (i′, j ′) ≤ (i′′, j ′′) (Figure 14, panel 2).

Part (b): couple sets U ′, U ′′ with Sn+k(U ′′|θ′′) < 0 < Sn+k(U ′|θ′). For rectangles
r′u≡(i′u, j′n+1−u, i

′
n+1, j

′
n+2−u) and r′′u≡(i′′u, j

′′
n+1−u, i

′′
n+1, j

′′
n+2−u) define “upper sets”:

• U ′ ≡ ∪n
u=1r

′
u, the union of the grey and orange rectangles in panel 2 of Figure 14
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Figure 14: Step 8 of Induction Proof. We rule out NAM for θ′′ (dots) and NAM∗

for θ′ (stars) with n + 1 types (left). Middle: These matches with n + k > n + 1
types, after adding couples weakly higher at θ′ than θ′′. Let KG, KO, KP , KY be the
grey, orange, pink, and yellow regions. By (24), the NAM∗ minus NAM difference is
Sn+k(KG∪KO|θ′) > 0, as NAM∗ is optimal for θ′. But Sn+k(KO|θ′) < 0, as KO is the
union of of rectangles, each below a NAM pair for θ′′. So Sn+k(KG|θ′) > 0. By (24), the
NAM∗ minus NAM difference is Sn+k(KG∪KP∪KY |θ′′) < 0, negative by NAM optimal
for θ′′. Finally, Sn+k(KY |θ′),Sn+k(KP |θ′) > 0, as the yellow and pink rectangles are
each above a PAM pair for θ′. So Sn+k(KG|θ′′) < 0. But since Sn+k(KG|θ′) > 0, this
contradicts upcrossing total synergy in θ. The right panel illustrates Step 8(c).

• U ′′ ≡ ∪n
u=1r

′′
u, the union of the grey, yellow, and pink regions

Since NAM∗ is uniquely optimal for the subsets of men i′ and women j ′ at θ′, it
payoff-dominates NAM. So linearity of total synergy at ℓ = n+ 1 in (24) yields

Sn+k(U ′|θ′) =
∑n+1

u=1 S
n+k(r′u|θ′) =

∑n+1
u=1 S

n+k(i′u, j
′
n+1−u, i

′
n+1, j

′
n+2−u|θ′) > 0

Likewise, NAM uniquely optimal for subsets i′′ and j ′′ at θ′′ implies Sn+k(U ′′|θ′′) < 0.

Part (c): Sn+k(KG|θ′) > 0 for KG ≡ U ′∩U ′′. First, U ′ = ∪n
u=1(i

′
u, j

′
n+1−u, i

′
n+1, j

′
n+1),

i.e., a union of rectangles with fixed upper corner (Figure 14, panel 3). Likewise, we
have U ′′ ≡ ∪n

u=1r
′′
u. Since (i′, j ′) ≤ (i′′, j ′′) (part (a)), if (i, j) ∈ U ′ \ U ′′ = U ′ \ KG

(orange shade, Figure 14, panel 2), then (i′u∗ , j′n+1−u∗) ≤ (i, j), and i ≤ i′′u∗ or j ≤
j′′n+1−u∗ , with at least one strict, at some u∗. So couple (i, j) is below the meet of the
θ′′ matched NAM pair (i′′u∗ , j′′n+2−u∗) and (i′′u∗+1, j

′′
n+1−u∗). As the sorting premium is

upcrossing in types, sij(θ′′) < 0. Then sij(θ
′) < 0, as synergy is upcrossing in θ. Then

Sn+k(U ′\KG|θ′) < 0, as this holds for all (i, j) ∈ U ′\KG. Since total synergy is additive
and Sn+k(U ′|θ′) > 0 (part (b)), Sn+k(KG|θ′) = Sn+k(U ′|θ′)− Sn+k(U ′ \KG|θ′) > 0.

Part (d): Sn+k(KG|θ′′) < 0. Since (i′, j ′) ≤ (i′′, j ′′) (part (a)), define rectangles KY ≡
(i′′1, j

′
n+1, i

′
n+1, j

′′
n+1) and KP ≡ (i′n+1, j

′′
1 , i

′′
n+1, j

′
n+1) (resp., yellow and pink regions,

Figure 14, panel 2). Then U ′′ \KG = KY ∪KP . As total synergy is linear:

Sn+k(KG|θ) = Sn+k(U ′′|θ)− Sn+k(KY |θ)− Sn+k(KP |θ) (25)
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Rectangle KY is above the rectangle defined by the θ′ PAM pair (i′1, j′n) and (i′n+1, j
′
n+1).

So Sn+k(KY |θ′′) > 0, as total synergy is upcrossing on rectangles and θ. Likewise,
KP is above the rectangle defined by the θ′ PAM pair (i′n, j

′
1) and (i′n+1, j

′
n+1). So

Sn+k(KP |θ′′) > 0. Then Sn+k(KG|θ′′) < 0, since Sn+k(U ′′|θ′′) < 0 (part (b)) and (25).
Since Sn+k(KG|θ′) > 0 (part (c)), we cannot have (Sn+k(K|θ′),Sn+k(K|θ′′))∈D̂n+k;

and thus, by part (a) we have contradicted dyads (Sn+1(K|θ′),Sn+1(K|θ′′))∈D∗
n+1, and

thus conclude that NAM at θ′′ and NAM∗ at θ′ is impossible. □

C.3 Increasing Sorting via Proviso (⋆): Proof of Proposition 2
Claim 2. An optimal matching is unique given an absolutely continuous cdf G (or H)
and the x- and y- marginal product increments strictly one crossing, and sorting is
increasing in θ if also total synergy is upcrossing in θ, for example given Proviso (⋆).

This claim proves Proposition 2. We prove continuum type upcrossing in Step 1.
Steps 2–3 produces finite mesh approximations to the continuum, and prove sorting by
Lemma 4. In Steps 4–6, we secure a PQD ordering in the unique continuum limit.

Step 1. The continuum sorting premium is strictly upcrossing in types.

Proof: In §6.2, we proved that S(x1, y1, x2, y2) =
∫ x2

x1
∆x(x|y1, y2)dx is upcrossing in

(x1, x2), where x1 < x2. Since ∆x(x|y1, y2) is strictly upcrossing, if S(x′1, y1, x′2, y2) = 0

then ∆x(x
′
1|y1, y2) < 0 < ∆x(x

′
2|y1, y2). So Sx1(x

′
1, y1, x

′
2, y2) = −∆x(x

′
1|y1, y2) > 0

and Sx2(x
′
1, y1, x

′
2, y2) = ∆x(x

′
2|y1, y2) > 0. Then S(x′′1, y1, x

′′
2, y2)> 0 for all (x′′1, x′′2) >

(x′1, x
′
2). By symmetric reasoning, S strictly upcrosses in (y1, y2). □

Step 2. Uniquely optimal finite type matchings exist for a payoff perturbation with
total synergy upcrossing in θ.

Proof: Let X n={xn1 , . . . , xnn} and Yn={yn1 , . . . , ynn} be equal quantile increments, with
G(xn1 )=H(yn1 )=1/n andG(xni )=G(xni−1)+1/n andH(ynj )=H(ynj−1)+1/n. LetGn and
Hn be cdfs on [0, 1], stepping by 1/n at X n and Yn (resp.). Put fn

ij(θ) = ϕ(xni , y
n
j |θ).

The set Mn(θ) of pure optimal matchings is non-empty, by Lemma 3.
Since unique optimal matchings are pure, we restrict to pure matchings. These are

uniquely defined by the male partner vector µ = (µ1, . . . , µn). Call the pure match-
ing M̂ lexicographically higher than M iff its male partner vector µ̂ lexicographically
dominates µ. Let M̄n(θ) (resp. µ̄n(θ)) be the optimal pure matching highest in the
lexicographic order, and Mn(θ) (resp. µn(θ)) the lowest. Easily, each is well-defined.

Fix θ′′ ≻ θ′. Let ι(j) = µ̄n
j (θ

′)− 1 and pick ε > 0. Perturb synergy down at θ′:

snεij (θ
′) ≡ sij(θ

′)− εj1(i,j)=(ι(j),j) (26)

34



We prove that M̄n(θ′) is uniquely optimal at θ′ for any production function with ε-
perturbed synergy (26), for all small ε > 0. Similar logic will prove that Mn(θ′′) is
uniquely optimal at θ′′ with snεij (θ

′′) ≡ sij(θ
′′) + εj1(i,j)=(µn

j
(θ′′),j) for all small ε > 0.

Pick a matching M that is not optimal at ε = 0. Since M̄n(θ′) is optimal at ε = 0,
M̄n(θ′) yields a higher payoff than M for all small ε > 0.

As µ̄n(θ′) is the lexicographically highest optimal matching at θ′, another optimal
µ obeys (µ̄n

1 (θ
′), . . . , µ̄n

ℓ−1(θ
′)) = (µ1, . . . , µℓ−1), and first diverges at µ̄n

ℓ (θ
′) > µℓ, for

some woman ℓ < n. Using Mij =
∑j

k=1 1µk≤i, Lemma 1, and (26), the payoff M̄n(θ′)

exceeds that of M ∈ Mn(θ′) by
∑n−1

i=1

∑n−1
j=1 s

nε
ij (θ

′)
[
M̄n

ij(θ
′)−Mij

]
. This expands to:

n−1∑
j=1

εj
[
Mι(j)j − M̄n

ι(j)j(θ
′)
]

= εℓ +
n−1∑

j=ℓ+1

εj
j∑

k=ℓ+1

[
1µk≤ι(j) − 1µ̄n

k≤ι(j)

]
Altogether, limε→0 ε

−ℓ
∑n−1

i=1

∑n−1
j=1 s

nε
ij (θ

′)
[
M̄n

ij(θ
′)−Mij

]
= 1 > 0. □

Step 3. If θ′′ ≻ θ′, then M̄n(θ′′) ⪰PQD Mn(θ′) for all n.

Proof: Since Snε(r|θ) is continuous in ε, there exists ε̂n > 0 such that, for all r =

(i1, j1, i2, j2) and 0≤ε<ε̂n, if Sn0(r|θ) ≶ 0 then Snε(r|θ) ≶ 0. By the contrapositives:

Snε(r|θ) ≥ 0 ⇒ Sn0(r|θ) ≥ 0 and Snε(r|θ) ≤ 0 ⇒ Sn0(r|θ) ≤ 0. (27)

We claim that Snε(r|θ) is strictly upcrossing in r for all 0 < ε < ε̂n. For if not, then
Snε(r′′|θ) ≤ 0 ≤ Snε(r′|θ) for some r′′ ≻NE r′. But then Sn0(r′′|θ) ≤ 0 ≤ Sn0(r′|θ)
by (27), contradicting Sn0(r|θ) strictly upcrossing in r, as follows from Step 1.

Continuum total synergy is upcrossing in θ by assumption; and thus, finite total
synergy

∑n−1
i=1

∑n−1
j=1 s

nε
ij (θ)1(i,j)∈K for all finite approximations. Then, Σnε(K|θ) ≡∑n−1

i=1

∑n−1
j=1 s

nε
ij (θ)1(i,j)∈K is upcrossing in θ, since snεij (θ

′) is non-increasing in ε and
snεij (θ

′′) is non-decreasing in ε by construction (26).
Altogether, for all ε ∈ (0, ε̂n), the sorting premium Snε(r|θ) is strictly upcrossing

in r and total synergy Σnε(K|θ) upcrossing in θ, for all couple sets K ⊆ Z2
n. Given

M̄n(θ′),Mn(θ′′) uniquely optimal, Mn(θ′′)⪰PQD M̄
n(θ′) for all n, by Lemma 4. □

Step 4. There exists a subsequence of matchings {Mnk(θ)} that converges to an optimal
matching in the continuum model.

Proof: Define a step function ϕn(x, y|θ) = fnεn
ij (θ) for (x, y) ∈ [xni−1, x

n
i ) × [ynj−1, y

n
j ),

where εn = ε̂n/n. By construction, {Gn} and {Hn} weakly converge to G and H as
n → ∞, while ϕn uniformly converges to ϕ. By Theorem 5.20 in Villani (2008), the
associated optimal matching cdfs have a convergent subsequence {Mnk(θ)} with limit
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point M∞(θ) optimal in the continuum model.30 □

Step 5. M∞(θ′′) ⪰PQD M∞(θ′) for all θ′′ ⪰ θ′

Proof: Fix θ′′ ⪰ θ′, and let {nk} be a subsequence along which the sequence of finite
type matchings {Mnk(θ′)} converges to M∞(θ′), as defined in Step 4. Now, since cdfs
{Gnk} and {Hnk} weakly converge to G and H, and ϕnk(x, y|θ′′) converges uniformly to
ϕ(x, y|θ′′), there exists a subsequence {nkℓ} of {nk}, along which the sequence of finite
type matchings {Mnkℓ (θ′′)} converges to M∞(θ′′) by Theorem 5.20 in Villani (2008).
Further, by Step 3, Mnkℓ (θ′′) ⪰PQD Mnkℓ (θ′). But then, the limits must be ordered
M∞(θ′′) ⪰PQD M∞(θ′) by Theorem 9.A.2.a in Shaked and Shanthikumar (2007). □

Step 6. An optimal matching is unique given an absolutely continuous cdf G (or H)
and the x- and y- marginal product increment strictly one-crossing.31

Proof: Assume G is absolutely continuous and ∆x(x|y1, y2) ≡ ϕ1(x, y2) − ϕ1(x, y1)

strictly upcrossing in x, for y2 > y1. By Theorem 5.1 in Ahmad, Kim, and McCann
(2011), there is a unique optimal matching for absolutely continuousG if the production
function ϕ is C2, and when the critical points of (their “twist difference”) ϕ(x, y2) −
ϕ(x, y1) include at most one local max and one local min, for all y1, y2. If y1 < y2, then
∆x(x|y1, y2) is upcrossing in x, and any critical point of the twist difference is a global
minimum. Similarly, then any critical point is a global maximum if y1 > y2. □

C.4 Increasing Sorting: Proof of Proposition 3

Finite Types Proof. We verify the premise of Lemma 4. First, by Theorem 2,
total synergy

∑n−1
i=1

∑n−1
j=1 sij(θ)1(i,j)∈K is upcrossing in the parameter t = θ. Next, to

see that the sorting premium S(r|θ) =
∑n−1

i=1

∑n−1
j=1 sij(θ)1(i,j)∈r is upcrossing in r, we

apply Theorem 2 to the parameter t = r ∈ R4. By a similar proof to footnote 17, the
indicator function 1(i,j)∈r is a non-negative LSPM function of (i, j, r), since a rectangle r
is a sublattice.32 Then sij(θ)1(i,j)∈r obeys inequality (15) in z = (i, j) and r, since sij(θ)
obeys (15) for fixed θ. The sorting premium is then upcrossing in r, by Theorem 2. □

30Namely: Fix a sequence {ϕk} of continuous and uniformly bounded production functions con-
verging uniformly to ϕ. Let {Gk} and {Hk} be cdf sequences and Mk an optimal matching for ϕ,
given Gk and Hk. If Gk and Hk weakly converge to G and H, then some subsequence of {Mk} weakly
converges to a matching M∗ optimal for ϕ, G, and H.

31We call any function Υ : R 7→ R strictly upcrossing if, for all x′ > x, we have Υ(x)≥0 ⇒ Υ(x′)>0.
Easily, a strictly upcrossing function is upcrossing.

32Theorem 2 assumes t ∈ T , a poset. Here we exploit the fact that the space of rectangular sets of
couples is a sublattice of Z2, even though the PQD order on distributions over couples is not a lattice.
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Continuum of Types Proof. We apply Claim 2. By Theorem 2, total synergy∫
Z
ϕ12(x, y|θ)dxdy is upcrossing in t = θ. Next, the x-marginal product increment∫
ϕ12(x, y)1y∈[y1,y2]dy is strictly upcrossing in x. Let x′′>x′. Posit for a contradiction:∫

ϕ12(x
′′, y)1y∈[y1,y2]dy ≤ 0 ≤

∫
ϕ12(x

′, y)1y∈[y1,y2]dy (28)

As synergy ϕ12(x, y) is strictly upcrossing in x and y, by (28), there exist zeros y′, y′′ ∈
(y1, y2) such that ϕ12(x

′, y) ⋚ 0 for y ⋚ y′ and ϕ12(x
′′, y) ⋚ 0 for y ⋚ y′′. Easily, these

zeros are ordered y′′ < y′. But then inequalities in (28) are simultaneously impossible,
for:

0 ≤
∫
ϕ12(x

′, y)1y∈[y1,y2]dy <
∫
ϕ12(x

′, y)1y∈[y1,y′′]1y∈[y′,y2]dy

⇒ 0 <
∫
ϕ12(x

′′, y)1y∈[y1,y′′]1y∈[y′,y2]dy <
∫
ϕ12(x

′′, y)1y∈[y1,y2]dy

by Theorem 2, since
∫
ϕ12(x, y)λ(y)dy is upcrossing in t = x for any non-negative λ(y)

— because ϕ12(x, y) is proportionately upcrossing in types and upcrossing in y. □

C.5 Type Distribution Shifts: Proof of Corollary 1
Proof: Throughout we WLOG assume types shift up in the parameter θ.

Total Quantile Synergy is Upcrossing. In part (b), total quantile synergy (16)
over a set of quantile pairs Z ⊆ [0, 1]2 is:

Υ(θ) ≡
∫ ∫

φ12(p, q|θ)1(p,q)∈Zdpdq =
∫ ∫

ϕ12(x, y)1(G(x|θ),H(y|θ))∈Zdxdy

by the change of variables x = X(p, θ) and y = Y (q, θ) (equivalently, p = G(x|θ) and
q = H(y|θ)); and thus, dx = Xpdp and dy = Yqdq. Since distributions G and H fall in
θ, the cdf associated with pdf λ(x, y|θ) ≡ 1(G(x|θ),H(y|θ))∈Z/[

∫ ∫
1(G(x|θ),H(y|θ))∈Zdxdy] is

stochastically increasing in θ. And thus, since ϕ12(x, y) is strictly increasing:

0 ≤ Υ(θ) ⇒ 0 ≤
∫ ∫

ϕ12(x, y)λ(x, y|θ)dxdy ≤
∫ ∫

ϕ12(x, y)λ(x, y|θ′)dxdy ⇒ 0 ≤ Υ(θ′)

Identical logic establishes average synergy upcrossing in θ in the finite type case (a).

Case (a): The Quantile Sorting Premium is Upcrossing. The sorting pre-
mium is upcrossing in types when synergy is non-decreasing in types. Because types
X(p, θ) and Y (q, θ) are non-decreasing in the quantiles p and q, the quantile sorting
premium S(X(p1, θ), Y (q1, θ), X(p2, θ), Y (q2, θ)) upcrosses in (p1, q1, p2, q2). Hence, the
quantile sorting increases in θ by Lemma 4.

Case (b): Quantile Marginal Product Increments Strictly Upcross.
Non-decreasing synergy is proportionately upcrossing; and thus ∆x(x|y1, y2) strictly
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upcrosses in x as shown in §C.4. Given G(x|θ) absolutely continuous Xp > 0; and so,

∆p(p|q1, q2, θ) = ∆x(X(p, θ)|Y (q1, θ), Y (q2, θ))Xp(p, θ)

is strictly upcrossing in p. Similarly, ∆q(q|p1, p2, θ) is strictly upcrossing in q. All told,
we’ve seen that quantile sorting increases in θ, by Step 1 and Claim 2. □

C.6 Nowhere Decreasing in Kremer-Maskin Example (§5)
Step 1. PAM is not optimal if ϱ>(1−2θ)−1, and is uniquely optimal for ϱ<(1−2θ)−1.

Proof: In a unisex model, PAM is optimal iff the symmetric sorting premium S(x, x, y, y)

is globally positive. Its sign is constant along any ray y = kx, and proportional to:

s(k) ≡ 2
1−2θ

ϱ (1 + k)− 2kθ(1 + kϱ)
1−2θ

ϱ (29)

Since s(1) = s′(1) = 0, s′′(1) ∝ (1 + ϱ(2θ − 1)), and θ ∈ [0, 1/2], we have s(k) < 0

close to k = 1 precisely when ϱ > (1− 2θ)−1 ≥ 1. In this case, the symmetric sorting
premium is negative in a cone around the diagonal, and PAM fails.

Conversely, posit ϱ < (1−2θ)−1. Then s(k) > 0 for all k ∈ [0, 1]. Since S(x, x, y, y)
is symmetric about y = x, it is globally positive and PAM is uniquely optimal. □

Step 2. If ϱ≥(1− 2θ)−1 then weighted synergy is upcrossing in θ, downcrossing in ϱ.

Proof: Change variables y = kx. If ∆(k) =
∫ 1

0
λ(x, kx)dx, weighted synergy is∫ ∫

ϕ12(x, y)λ(x, y)dydx = 2
∫ 1

0

∫ 1

0
xϕ12(x, kx)λ(x, kx)dkdx =

∫ 1

0
σ(k, θ, ϱ)∆(k)dk

where σ = σAσB for σA ≡ 2kθ−1(1 + kϱ)
1−2θ−2ϱ

ϱ and σB ≡ θ(1− θ)(1 + k2ϱ) + (1− ϱ +

2θ(θ − 1 + ϱ))kϱ. As ϱ ≥ (1 − 2θ)−1, σA > 0 is LSPM in (k, θ, ϱ), σB is increasing in
(θ,−k,−ϱ) for k ∈ [0, 1]. So σ = σAσB is proportionately downcrossing in (k, θ) and
(k,−ϱ). Weighted synergy is upcrossing in θ, downcrossing in ϱ, by Theorem 2. □

Step 3. Sorting is nowhere decreasing in θ and nowhere increasing in ϱ.

Proof: Pick θ′′ > θ′. If ϱ < (1 − 2θ′′)−1, then PAM is uniquely optimal at θ′′ (Step 1)
and sorting increases from θ′ to θ′′. If ϱ ≥ (1−2θ′′)−1, then ϱ > (1−2θ′)−1 and weighted
synergy is upcrossing on [θ′, θ′′] (Step 2) and sorting is non-decreasing (Proposition 1).

Now pick any θ and ϱ′′ > ϱ′. If ϱ′ < (1 − 2θ)−1, then PAM is uniquely optimal at
ϱ′ (Step 1) and sorting is decreasing from ϱ′ to ϱ′′. If, instead, ϱ′ ≥ (1 − 2θ)−1, then,
necessarily, ϱ′′ > (1 − 2θ)−1, weighted synergy is downcrossing from ϱ′ to ϱ′′ (Step 2)
and sorting is non-increasing in ϱ, by Proposition 1. □
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