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Abstract

When is the weighted sum of quasi-concave functions quasi-concave? We answer this, extending an 
analogous preservation of the single-crossing property in QS: Quah and Strulovici (2012). Our approach 
develops a general preservation of n-crossing properties, applying the variation diminishing property in 
Karlin (1956). The QS premise is equivalent to Karlin’s total positivity of order two, while our premise uses 
total positivity of order three: The weighted sum of quasi-concave functions is quasi-concave if each has an 
increasing portion more risk averse than any decreasing portion.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

We comment on Quah and Strulovici (2012) (QS), who posed an important question: When 
is the sum of two single-crossing functions also single-crossing (SC)? They deduced a property 
on pairs of functions, signed-ratio monotonicity (SRM), asking that whenever they have opposite 
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signs, the positive one increases proportionately faster than the negative one. They showed that 
the sum of single-crossing functions obeying SRM is single-crossing; they applied this condition 
to Bayesian equilibria and decisions under uncertainty.

This paper builds on the classic variation diminishing property (VDP) of Karlin (1956, 1968). 
Assume that a kernel operator is totally positive of order n, meaning that it has n positive prin-
cipal determinant signs. The VDP asserts that if a function has at most m ≤ n − 1 sign changes, 
then so too does its integral transform. Log-supermodularity, the simplest case of total positivity 
of order two, preserves single-crossing properties (Karlin and Rubin, 1955).1 In fact, the main 
result in QS follows from the single-crossing n = 2 case of the VDP. For aggregation can be writ-
ten as a kernel transformation, and QS impose the same properties on the aggregated functions as 
Karlin puts on the kernel. Indeed, let f+ and f− be the positive and negative parts of a function f , 
so that K(x, 1) ≡ f− + g− and K(x, 2) ≡ f+ + g+ are nonnegative. Consider single-crossing 
functions f and g, and assume WLOG f (x) > 0 > g(x) for an interval of x. SRM requires 
f+(x)/g−(x) to be non-decreasing in this interval. Since K(x, 2)/K(x, 1) = f+(x)/g−(x) in 
this interval, SRM says that K(x, i) is totally positive of order two, i.e. K(x, 2)/K(x, 1) is non-
decreasing in x. So the sum f +g = −K(x, 1) +K(x, 2) = K(x, 1)[K(x, 2)/K(x, 1) −1] single 
crosses.

Our novel contribution pursues the two-crossing n = 3 case of the VDP. Finding that total 
positivity of order three admits a simple economic formulation using risk aversion, we derive a 
novel condition for quasi-concavity preservation under summation and integration: the weighted 
integral of quasi-concave functions is quasi-concave if the increasing portion of each is more 
risk averse than any decreasing portion (à la Arrow–Pratt). We conclude by noting that decom-
positions for preservation of single crossing and quasi-concavity are special cases of n-crossing 
preservation and n-turning point preservation.

2. Total positivity and the variation diminishing property

Let X and Z be linearly ordered space, namely endowed with a complete order relation, like 
the reals. Let σ be a sigma-finite positive measure on Z. A function K : X × Z → R is totally 
positive of order n (T Pn) if for each k = 1, . . . , n, and each x1 < · · · < xk and z1 < · · · < zk , 
the determinant of the k × k matrix [K(xi, zj )] is nonnegative. In particular, K is a non-negative 
kernel. Any strictly positive bivariate function is T P2 if and only if it is log-supermodular. If K
is T Pn for all n, then K is totally positive (TP).

For m = 1, 2, . . . , let (xi) have s(x1, x2, · · · , xm) sign changes, discarding zero terms. 
For example, s(1, 0, 0, 1, −1) = s(1, 1, −1) = 1, as the 0 terms are dropped. Let S[f ] =
sup s(f (x1), · · · , f (xm)) be the number of sign changes of any function f : X → R over all 
x1 < · · · < xm, where m < ∞ is arbitrary. If S[f ] ≤ n, call f an n-crossing function.

Assume that K and h are bounded Borel functions and that f (x) = ∫
Z

K(x, z)h(z)dσ (z) is a 
finite kernel transformation. Then:

Theorem (Variation diminishing property). If K(x, z) is T Pr and S[h] = n ≤ r − 1, then 
S[f ] ≤ n. Also, if h is piecewise-continuous and S[f ] = S[h], then f and h have the same 
sign sequence when their arguments traverse their domains from left to right.

1 Descartes’ well-known “Rule of Sign” is an old manifestation of the VDP, but the VDP has seen applications in 
convolutions, mixture models (Lindsay and Roeder, 1993), and the comparative statics of risk aversion with many risk 
sources (Jewitt, 1988).
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Define γ (x, y) as the primary function and μ a sigma-finite positive measure on an arbitrary 
measurable space Y . In many economic applications, we are confronted with aggregation prob-
lems of the form:

F(x) =
∫

Y

γ (x, y)dμ(y) (1)

where F is the aggregation function. For instance, μ may be a probability measure over an 
uncertain economic index or agent’s type y, and F(x) the agent’s expected payoff. When γ is 
n-crossing in x for each y, when can we conclude that F is at most n-crossing?

Since the primary function γ is n-crossing, it is sometimes negative and thus it cannot repre-
sent any totally positive kernel. One might therefore deem the VDP inapplicable. This is not so. 
To apply the VDP, decompose γ into a sum γ (x, y) =�n+1

i=1 �i(x, y)(−1)i , for the non-negative 
sign-enumerated function � : {1, 2, . . . , n + 1} × X × Y → R+. Define the kernel K by

K(i, x) ≡
∫

Y

�i(x, y)dμ(y). (2)

Lemma 1. If K(i, x) is T Pn+1, then F(x) in (1) has at most n sign changes. If S[F ] = n, then 
F(x) has the same sign sequence as (−1)i for i = 1, . . . , n + 1.

Proof. The function (−1)i is n-crossing in i over {1, 2, . . . , n + 1}, while K(i, x) is T Pn+1. 
Since F(x) = ∫

Y
γ (x, y)dμ(y) = ∫

Y

[
�i(−1)i�i(x, y)

]
dμ(y) = �n+1

i=1 K(i, x)(−1)i , the VDP 
gives the result by integrating in i using the counting measure. �

Lemma 1 only imposes conditions on the endogenous kernel K . Depending on the goal, 
one can be creative in decomposing the primary function γ into a T Pn+1 kernel. If n = 1, 
it is natural to decompose γ into positive and negative parts. This is essentially the decom-
position in QS, since sign ratio monotonicity ensures that K is T P2 (log-supermodular). Put 
differently, given K(2, x)/K(1, x) non-decreasing by T P2 and K > 0, the product F(x) =
[K(2, x)/K(1, x) − 1]K(1, x) has at most one sign change (− to +). In §3, we preserve quasi-
concavity by decomposing γ into a decreasing and an increasing part.

3. Quasi-concavity preservation

Quasi-concavity plays a crucial role in economics — from reducing optimization theory to 
first order conditions, modeling preference for diversification, to justifying the median voter 
theorem (see Jewitt, 1988, Schmeidler, 1989 and Black, 1948). A function f : R → R is quasi-
concave (QC) if its upper contour set f −1[c, ∞) is convex for all c ∈ R. Then f is QC if and 
only if S[f (x) − c] ≤ 2 for all c ∈ R, and where f (x) − c has the sign sequence −, +, − if 
S[f (x) −c] = 2. Using the VDP with T P3 kernels, we derive sufficient conditions for 2-crossing 
and sign sequence preservation, and thereby QC preservation.2

Assume X, Y ⊆ R. For y ∈ Y , define the global supremum γ̂ (y) ≡ supx′ {γ (x′, y)} of the 
bounded QC primary function γ , the running max γ ∗(x, y) ≡ supx′ {γ (x′, y)|x′ ≤x}, and con-
tinuation max γ ∗∗(x, y) ≡ supx′ {γ (x′, y)|x′ ≥ x}. Then γ ∗(x, y) =γ (x, y) when it increases 

2 Jewitt (1988) used T P3 for justifying the first order approach for solving moral hazard problems.
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Fig. 1. (Left) Decomposition of a QC function γ (x, y) into �1(x, y) and �3(x, y). (Right) To preserve QC, it suffices 
to check that −�1(x, 1) grows proportionally faster than �3(x, 2). The proportional growth condition (5) is met because 
(a) when either −�1(x, 1) or �3(x, 2) is flat, condition (5) is satisfied, and (b) when both functions are rising (the area 
between the vertical dashed lines), �3(x, 2) is relatively more concave than −�1(x, 1).

in x, and is otherwise constant, and γ ∗∗(x, y) = γ (x, y) when it falls in x, and is otherwise 
constant. Parse γ into decreasing and increasing portions with the sign enumerated functions:

�1(x, y) ≡ a1 − γ ∗(x, y) (3)

�3(x, y) ≡ a2 − γ ∗∗(x, y) + γ̂ (y) (4)

and one constant portion �2(x, y) ≡ a1 + a2 − c, for any c ∈ R, and constants a1, a2 ensuring 
that �i(x, y) > 0 for all i, x and y, given c. Fig. 1 (left panel) illustrates two examples of such 
decompositions. Note that γ (x, y) − c = �3

i=1�i(x, y)(−1)i . By integrating over y, we have 
F(x) − cμ(Y ) = �3

i=1K(i, x)(−1)i where K follows (2).
We now introduce a comparison of any two increasing functions, like −�1(x, y) and �3(x, y). 

Renaming a concept in Pratt (1964), say that a weakly increasing function g grows proportion-
ately faster than f , another weakly increasing function, if for any x3 ≥ x2 ≥ x1:

[
f (x2) − f (x1)

] [
g(x3) − g(x2)

] ≥ [
f (x3) − f (x2)

] [
g(x2) − g(x1)

]
. (5)

This applies to weakly increasing, not necessarily continuous, functions. If f and g are strictly 
increasing and continuous, then (5) reduces to f more concave than g, i.e. f (x) = φ[g(x)], 
for some increasing and concave function φ. When f and g are twice differentiable, then (5)
becomes −f ′′(x)/f ′(x) ≥ −g′′(x)/g′(x) for all x, or f more risk averse than g.3

Proposition 1. If the primary function γ (x, y) is bounded and QC in x, for y∈Y , then the aggre-
gation function F(x) in (1) is QC for all positive measures μ if and only if the sign-enumerated 
function �3(x, y′) grows proportionately faster than −�1(x, y′′), if y′, y′′ ∈ Y .

In the only related result in the literature that we have found, Debreu and Koopmans (1982)
and later Crouzeix and Lindberg (1986) explore conditions so that f (x) = �m

i=1fi(xi) is quasi-
convex if the summand functions fi : Xi → R are quasi-convex. This differs from our problem 
in two key respects: We allow for general measures, and the domain of our aggregation function 
is scalar, but the domain here is the Cartesian product ×m

i=1Xi .

3 Theorem 1(e) in Pratt (1964) adds an extra degree of freedom to (5). Pratt states the next two definitions, but his 
equivalence proofs assume differentiability. We can dispense with differentiability (proof omitted).
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Proof. (⇐) We use Lemma 1. Fix c ∈ R. If the resulting K(i, x) in (2) is T P3, then we have 
S[F(x) − cμ(Y )] ≤ 2, and F(x) − cμ(Y ) has sign sequence −, +, − if S[F(x) − cμ(Y )] =2.

Now, K(i, x) ≡ ∫
Y

�i(x, y)dμ(y) is respectively decreasing, constant and increasing in x, 
as i = 1, 2, 3, since this is true of �i(x, y) for all y. As a result, K(3, x)/K(2, x) and 
K(2, x)/K(1, x) are both non-decreasing in x, and so K(i, x) is T P2. To verify that K is T P3, 
it thus suffices to verify the next determinant condition, that for any x3 ≥ x2 ≥ x1

4:

[K(1, x1) − K(1, x2)][K(3, x3) − K(3, x2)]
≥ [K(1, x2) − K(1, x3)][K(3, x2) − K(3, x1)].

For a proof, put f (x) =−�1(x, y′) and g(x) =�3(x, y′′) in (5), and integrate in y′, y′′:∫

Y

[�1(x1, y) − �1(x2, y)]dμ(y)

∫

Y

[�3(x3, y) − �3(x2, y)]dμ(y)

≥
∫

Y

[�1(x2, y) − �1(x3, y)]dμ(y)

∫

Y

[�3(x2, y) − �3(x1, y)]dμ(y).

(⇒) If the proportional growth proviso fails at some x3 >x2 >x1 and y′, y′′ ∈ Y , then for some 
α > 0:

�3(x2, y
′) − �3(x1, y

′)
�1(x1, y′′) − �1(x2, y′′)

> α >
�3(x3, y

′) − �3(x2, y
′)

�1(x2, y′′) − �1(x3, y′′)
. (6)

We claim that the aggregation function F(x) ≡ γ (x, y′) + αγ (x, y′′) obeys F(x2) < F(x1). 
Now, �1(x2, y′′) > �1(x3, y′′) implies γ (x3, y′′) > γ (x2, y′′), by (3). Then γ (x, y ′′) is increas-
ing in x for all x < x3, since γ is QC in x. Thus, γ (x2, y′′) − γ (x1, y′′) = �1(x1, y′′) −
�1(x2, y′′) > 0 because x1 < x2 < x3. Similarly, �3(x2, y′) > �3(x1, y′) implies γ (x2, y′) −
γ (x1, y′) = �3(x1, y′) − �3(x2, y′), by (4). By the left inequality in (6):

F(x2) − F(x1) < γ (x2, y
′) − γ (x1, y

′)

+ �3(x2, y
′) − �3(x1, y

′)
�1(x1, y′′) − �1(x2, y′′)

[γ (x2, y
′′) − γ (x1, y

′′)] = 0.

A similar argument shows that F(x3) > F(x2), and consequently, F is not QC. �
If γ (x, y) is (i) differentiable in x and (ii) has no flat regions,5 then QC preservation reduces 

to SC preservation of the derivative γx(x, y), or equivalently the comparison of absolute risk 
aversion coefficients (recalling Proposition 1). To see this, decompose γ into any increasing and 
decreasing portions, namely, γ = γI + γD , where γI (x, y) and −γD(x, y) increase in x for all 
y ∈ Y . The “only if” assertion of the Proposition 1 implies:

Corollary 1. The aggregation function F in (1) is QC for all μ if (a) γI (x, y′) is more con-
cave than −γD(x, y′′) for all y′, y′′ ∈ Y , or (b) γI and −γD are twice differentiable in x, with 
−γD(x, y′′) more risk averse than γI (x, y′) for all y′, y′′ ∈ Y .

4 The determinant condition is independent of the constant K(2, x) because the sign of the determinant of the 3 × 3
matrix [K(i, xj )] is unaffected by the value of any such positive constant.

5 If γ (x, y) is constant for some interval of x, then γx(x, y) possibly might not be SC in x, and thus one cannot apply 
SRM to the SC preservation of γx(x, y). Fig. 2 illustrates this point.
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Fig. 2. As QC functions may have flats, SC preservation of slopes does not imply QC preservation. Here, f and g are 
QC, and f ′ and g′ obey SRM, but f + g is not quasi-concave.

Proposition 1 assumes neither continuity nor differentiability of γ (x, y), and so allows aggre-
gation of QC step functions.6 Non-differentiable functions γ (x, y) naturally arise in economics 
applications. For example, time series data is naturally discrete. We consider three such examples 
of QC preservation of discontinuous or non-differentiable functions.

Example 1 (Median voter theorem). Assume majority voting by a population over linearly or-
dered alternatives. By Black (1948), we can apply the median voter theorem (MVT) to predict 
the outcome of this game if preferences are single-peaked.7 Suppose instead that preferences 
are uncertain independent random draws from a set of single-peaked preferences. If voting oc-
curs before voters’ preferences are realized, then by Proposition 1 each voter’s expected utility 
is single-peaked if the decreasing part of every utility function grows faster than the increasing 
part of any other utility function. Then the MVT applies.

Example 2 (Quasi-convex comparative statics with uncertainty). An agent chooses an action 
x ∈ X to maximize utility U(x, s). Here, s ∈ S is a parameter, and X and S are ordered sets. 
Milgrom and Shannon (1994) show that the optimizer set increases in s if [U(x2, s) − U(x1, s)]
is SC in s, for all x2 > x1. In the same spirit, if U(x, s) is QC in x for all s, then the optimal 
choice x∗(s), if unique, is quasi-convex in s if [U(x2, s) − U(x1, s)] is quasi-convex in s, for all 
x2 > x1 (see Lemma 2 below).8

Enriching this with uncertainty, define U(x, s) ≡ ∫
Y

u(x, s, y)dμ(y). By Theorem 1 in QS, for 
all x2 > x1 and y ∈ Y , if δ(s, y) ≡ [u(x2, s, y) − u(x1, s, y)] is SC in s, and if all pairs δ(s, y′), 
δ(s, y′′) obey SRM, then [U(x2, s) − U(x1, s)] is SC. The optimizer set then increases in s. 
Instead, assume U(x, s) is QC in x, with a unique maximizer x∗(s) for all s. By Proposition 1, 
[U(x2, s) − U(x1, s)] is quasi-convex in s if δ(s, y) is quasi-convex in s, and if the increasing 

6 Proposition 1 implies that the integral of QC step functions (with multiple jumps and flat areas) is QC for all measures 
μ if and only if for every pair of functions f , g, whenever f is increasing and g decreasing, (i) they jump at the same 
points and (ii) the ratio of the size of the jump of g and f is increasing in x.

7 Black (1948) showed that if all individual preferences are single peaked, then the social preference, as generated by 
majority rule applied to all pairs of alternatives, is complete and transitive.

8 For intuition, let U be differentiable. Here, QC is not needed. Assume Ux(x, s) is quasi-convex in s for all x, so 
that Uxs(x, s) is SC in s. Now, x∗

s (s) and Uxs(x
∗(s), s) share the same sign, by the Envelope Theorem. If x∗

s (s̄) =
Uxs(x

∗(s̄), ̄s) = 0 at some s̄, then dUxs(x
∗(s), s)/ds ≥ 0 at s = s̄, as Uxs is SC in s. Then dx∗

s (s)/ds ≥ 0 at s̄ since 
x∗
s (s) and Uxs(x

∗(s), s) share the same sign. Hence, x∗(s) is quasi-convex.
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part of δ(s, y′) grows proportionally faster than the decreasing part of δ(s, y′′), for every y′, y′′. 
By Lemma 2, the optimal choice x∗(s) is quasi-convex in s.

Example 3 (Profit maximization with stochastic production cost). We apply Proposition 1 to 
preserve QC under some conditions. Let firm revenues r(x, y) be twice differentiable and strictly 
concave in x. To see how aggregation of discontinuous functions works, assume the firm employs 
one piecewise linear and discontinuous technology for x ≤ x̄ and another for x > x̄. For example, 
the firm may use another factory when output exceeds x̄, and factory productivity is stochastic. 
The high output technology has a lower fixed cost than the low output technology in the good 
state y = G. It has a higher fixed and marginal cost than the low output technology in the bad 
state y = B:

c(x,G) = cGx − b1{x>x̄} and c(x,B) = cBx + (e + dx)1{x>x̄},

where b, cG, cB, d, e > 0. Then c(x, G) jumps down at x = x̄ and c(x, B) jumps up at x = x̄, 
and grows steeper afterwards. Let x̂y maximize the primary function γ (x, y) ≡ r(x, y) −c(x, y), 
where x̂G > x̄ > x̂B . This ensures γ (x, y) is quasi-concave in x.

The firm chooses an output level x to maximize the expected profits F(x) that aggregates 
the profit function γ (x, y) as in (1). By Proposition 1, F is single-peaked for all measures μ
provided the ratio of the jump sizes b/(e + dx̄) is (i) at least the right limit of the ratio of the 
slopes limx↓x̄ −γx(x, G)/γx(x, B) and (ii) at most the left limit, namely:

lim
x↓x̄

γx(x,G)

−γx(x,B)
≤ b

e + dx̄
≤ lim

x↑x̄

γx(x,G)

−γx(x,B)
. (7)

For since γ is quasi-concave, γ (x, G) is increasing and γ (x, B) decreasing near x̄. Equation 
(7) requires that the ratio of slopes of decreasing and increasing parts −γx(x, G)/γx(x, B) falls 
in x. For the jump ratio b/(e+dx̄) = −γx(x, G)/γx(x, B) at x = x̄ because γ (x, B) and γ (x, G)

are left continuous at x̄. Finally, the gap between the RHS and LHS of (7) vanishes if d = 0, 
whereupon the ratio b/e of jumps is pinned down. The proof is in §B.2.

4. Conclusion: general ordinal aggregation via Karlin

We conclude by observing how our aggregation results generalize to higher dimensions. First, 
SC aggregation very naturally generalizes to n-crossing aggregation. To do so, we use sign-
enumerated functions �i(x, y) = |γ (x, y)| if x lies between the (i − 1)th and ith sign change of 
γ (x, y), and otherwise zero:

�i(x, y) ≡ |γ (x, y)|1{ sup
x1<···<xm<x

s(γ (x1, y), . . . , γ (xm, y), γ (x, y)) = i − 1}.

By Lemma 1, the aggregation function F in (1) is n-crossing if the kernel in (2) is T Pn+1.
Next, a function changes monotonicity at a turning point, from increasing to decreasing, or 

conversely. Naturally, a function is monotone if and only if it has no turning point, and is QC if it 
has one turning point, and from increasing to decreasing. Proposition 1 uses Lemma 1 to ensure 
S[F(x) − c] ≤ 2 for all c, and so guarantees that the aggregation function F in (1) has at most 
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one turning point. Generalizing this logic, F has at most n turning points if S[F(x) − c] ≤ n + 1
for all c, assuming the kernel is at least T Pn+1.9

Appendix A. Single crossing preservation

This section better relates our theory to QS by using the VDP to derive a necessary and 
sufficient condition for single crossing preservation; we thereby find that the main result in QS 
is in fact equivalent to the VDP. A function f (x) is single crossing (SC) if f (x1) ≥ 0 implies 
f (x2) ≥ 0, and f (x1) > 0 implies f (x2) > 0, both for all x2 > x1. So if f satisfies S[f ] ≤ 1
with the sign sequence −, + when S[f ] = 1, then f is SC provided proviso (	) holds: namely, 
f (x) �= 0 except at the sign change.

We apply Lemma 1 to the sign-enumerated functions �1(x, y) = max{−γ (x, y), 0} and 
�2(x, y) = max{γ (x, y), 0}, respectively, the negative and positive parts of γ (x, y).

Corollary 2. If the primary function γ (x, y) is SC in x, for all y ∈ Y , then the aggregation func-
tion F in (1) is SC for all positive measures μ if and only if the sign-enumerated functions obey:

�1(x1, y
′′)�2(x2, y

′) ≥ �1(x2, y
′′)�2(x1, y

′) for all y′, y′′ ∈ Y and x2 > x1. (8)

For insight, define the fictitious kernel k(i, x|y′, y′′) = −�1(x, y′′)1{i=1} + �2(x, y′)1{i=2}. 
Then inequality (8) is the assertion that k is T P2 in (i, x) for any y′, y′′ ∈ Y , namely that:

k(1, x1|y′, y′′)k(2, x2|y′, y′′) ≥ k(1, x2|y′, y′′)k(2, x1|y′, y′′)
for all y′, y′′ ∈ Y and x2 > x1.

Proof of Corollary 2. (⇐) For any x2 > x1, integrating (8) over all y ′, y′′ yields
∫

Y

�1(x1, y)dμ(y)

∫

Y

�2(x2, y)dμ(y) ≥
∫

Y

�1(x2, y)dμ(y)

∫

Y

�2(x1, y)dμ(y).

Thus, K(i, x) is T P2: By Lemma 1, F(x) = K(2, x) − K(1, x) changes from − to +.10

(⇒) Assume (8) fails for some y ′, y′′ ∈ Y and x2 > x1. Then

�1(x1, y
′′)�2(x2, y

′) < �2(x1, y
′)�1(x2, y

′′). (9)

Since γ (x, y) is SC in x, and �1(x2, y′′) > 0 by (9), we have γ (x, y′′) = −�1(x, y′′) for x ≤ x2. 
Likewise, �2(x1, y′) > 0 implies γ (x, y′) = �2(x, y′) for x ≥ x1. Put F(x) ≡ μ1γ (x, y′) +
μ2γ (x, y′′) where μ1 ≡ �1(x1, y′′) and μ2 ≡ �2(x1, y′). Then trivially, F(x1) = 0 while (9)
implies F(x2) < 0. Hence, F(x) is not SC. �

9 For example, one could decompose γ into n + 1 monotone functions, namely γ (x, y) = �n+2
i=2 �i(x, y)(−1)i , where 

for i > 1, �i(x, y) = γ (x, y)(−1)i if x lies between the (i − 2)th and (i − 1)th turning point of γ (x, y), and otherwise 
is constant. Also, let �1 = c. Then by Lemma 1, F has at most n-turning points if the kernel in (2) is T Pn+2 for all c.
10 Proviso (*) holds: Assume F(x1) = F(x3) = 0 �= F(x2) for some x1 < x2 < x3. If F(x2) > 0 then K(2, x3)/

K(1, x3) ≥ K(2, x2)/K(1, x2) implies F(x3) > 0. If F(x2) < 0 then K(2, x2)/K(1, x2) ≥ K(2, x1)/K(1, x1) implies 
F(x1) < 0. So F(x2) = 0.



M. Choi, L. Smith / Journal of Economic Theory 168 (2017) 1–11 9
QS defined signed-ratio monotonicity (SRM) for two SC functions f (x) and g(x) if:

(a) −g(x1)/f (x1) ≥−g(x2)/f (x2) for all x2 > x1 at any x1 ∈ X with f (x1) >0 >g(x1)

(b) −f (x1)/g(x1) ≥−f (x2)/g(x2) for all x2 > x1 at any x1 ∈ X with g(x1) >0 >f (x1)

Theorem 1 in QS asserts that F(x) is SC for all measures μ if and only if γ (x, y′) and γ (x, y′′)
obey SRM for y′, y′′ ∈ Y . Since SRM is (8), Corollary 2 yields their Theorem 1.

To complete the circle, we argue that Theorem 1 in QS implies the VDP in the SC case.

Proposition 2. Theorem 1 in QS is equivalent to the VDP in the SC case.

Proof. Consider f (x) = ∫
Z

K(x, z)h(z)dσ (z). Write the integrand as γ (x, z) = K(x, z)h(z), 
where h satisfies S[h] ≤ 1 with sign sequence −, +, and K is T P2. To see that γ (x, z′) and 
γ (x, z′′) satisfy SRM for any z′, z′′ ∈ Z, suppose not, so that γ (s, z′′) > 0 > γ (s, z′) for some z′, 
z′′ and s. Since K ≥ 0, we have h(z′′) > 0 > h(z′). Then z′′ > z′ because h changes sign once 
from − to +; therefore, we have the SRM condition −γ (s, z′′)/γ (s, z′) ≤ −γ (s′, z′′)/γ (s′, z′)
for all s′ > s because −h(z′′)/h(z′) > 0 and K(s, z′′)/K(s, z′) ≤ K(s′, z′′)/K(s′, z′) since K is 
T P2. By Theorem 1 in QS, f obeys SC, and so S[f ] ≤ 1. �
Appendix B. Omitted proofs

B.1. Proof of Example 2

Lemma 2. Let u(x, s) be QC with a unique max x∗(s) for all s ∈ S, and [u(x2, s) −u(x1, s)]
quasi-convex in s if x2>x1. For any s3>s2>s1, if x∗(s2) >x∗(s1), then x∗(s3) ≥x∗(s2).

Proof. By definition u[x∗(s2), s2] − u[x∗(s1), s2] > 0 > u[x∗(s2), s1] − u[x∗(s1), s1]. These 
two inequalities are strict since x∗(s2) > x∗(s1) and the max is unique. Since s2 > s1 and 
u[x∗(s2), s] − u[x∗(s1), s] is quasi-convex in s, u[x∗(s2), s] −u[x∗(s1), s] > 0 for all s ≥ s2.

Suppose x∗(s3) < x∗(s1), then u(q, s3) is not QC since u[x∗(s3), s3] > u[x∗(s2), s3] >
u[x∗(s1), s3] but x∗(s3) < x∗(s1) < x∗(s2). Hence, x∗(s3) ≥ x∗(s1).

Suppose x∗(s3) ∈ [x∗(s1), x∗(s2)). Then u[x∗(s2), s1] − u[x∗(s3), s1] ≤ 0 by the QC of 
u(·, s1). Also u[x∗(s2), s2] − u[x∗(s3), s2] > 0, as x∗(s2) �= x∗(s3) and the max of u(·, s2) is 
unique. So u[x∗(s2), s3] −u[x∗(s3), s3] > 0 given these two inequalities and the quasi-convexity 
of u[x∗(s2), s] − u[x∗(s3), s]. This contradiction proves x∗(s3) ≥ x∗(s2). �
B.2. Proof of Example 3

Since we have assumed γ (x, G) and γ (x, B) are QC in x with maximizers x̂G > x̂B , they 
both are increasing on [x̂B, ∞) and decreasing on (−∞, x̂G]. To prove the aggregation function 
is QC, it suffices to focus on [x̂B, x̂G], where γ (x, G) and γ (x, B) are respectively rising and 
falling. Then Proposition 1 requires that −γ (x, B) grows proportionately faster than γ (x, G), 
namely for any x̂B ≤ x1 < x2 < x3 ≤ x̂G:

γ (x3,G)−γ (x2,G)

γ (x2,B)−γ (x3,B)
≤ γ (x2,G)−γ (x1,G)

γ (x1,B)−γ (x2,B)
. (10)

Recalling γ (x, y) = r(x, y) − c(x, y), where r is strictly concave in x, and c is linear in x except 
at x = x̄, all factors in (10) are positive. Now, γ (x, G) is concave and −γ (x, B) is convex for 
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x < x̄ or x ≥ x̄. Since γ (x, G) is more concave than −γ (x, B), the latter grows proportionately 
faster, proving (10) for x̄ > x3 > x2 > x1 or x3 > x2 > x1 ≥ x̄.

Next, for x̄ ∈ (x2, x3), we prove that (7) implies (10). First, we find a lower bound for the RHS 
of (10). Since γ (x, G) is more concave than −γ (x, B) for x < x̄, we have:

limx↑x̄ γ (x,G) −γ (x2,G)

γ (x2,B) − limx↑x̄ γ (x,B)
≤ γ (x2,G)−γ (x1,G)

γ (x1,B)−γ (x2,B)
. (11)

Since γ (x, G) jumps up by b at x = x̄, and γ (x, B) jumps down by e + dx̄ at x = x̄, we have 
limx↑x̄ γ (x, G) = γ (x̄, G) − b and limx↑x̄ γ (x, B) = γ (x̄, B) + e + dx̄. Hence:

γ (x3,G)−γ (x2,G)

γ (x2,B)−γ (x3,B)
= γ (x3,G)−γ (x2,G) + limx↑x̄ γ (x,G) − γ (x̄,G) + b

γ (x2,B)−γ (x3,B) − limx↑x̄ γ (x,B) + γ (x̄,B) + e + dx̄
.

(12)

To prove (10), it suffices that the LHS of (11) be an upper bound for (12). To this end, note that:

b

e + dx̄
≤ lim

x↑x̄

γx(x,G)

−γx(x,B)
≤ limx↑x̄ γ (x,G) −γ (x2,G)

γ (x2,B) − limx↑x̄ γ (x,B)
. (13)

The first inequality is (7) and the last is the proportional growth condition.11 Next,

γ (x3,G)− γ (x̄,G)

γ (x̄,B) −γ (x3,B)
≤lim

x↓x̄

γx(x,G)

−γx(x,B)
≤lim

x↑x̄

γx(x,G)

−γx(x,B)
≤ limx↑x̄ γ (x,G) −γ (x2,G)

γ (x2,B) − limx↑x̄ γ (x,B)

(14)

The first and last inequalities are true because the proportional growth condition holds for x ≥ x̄

and x < x̄ respectively. The middle inequality is by (7). Combining (13), (14) and (12), we have12

γ (x3,G)−γ (x2,G)

γ (x2,B)−γ (x3,B)
≤ limx↑x̄ γ (x,G) −γ (x2,G)

γ (x2,B) − limx↑x̄ γ (x,B)
.

This inequality and (11) imply (10). The case for x̄ ∈ (x1, x2] is similar and thus is omitted. �
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