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m Wisdom of Old Dead Dudes

Natura non facit saltus. - Leibniz, Linnaeus, Darwin, Marshall

Examples:
Model
Payoltsm e Tipping points in neighborhoods with “white flight”
Quantile
Hurmp- @ Bank runs
Shaped
Quiz?ile @ Land run
Preferences
Comparative o gOId rUSh
Statics . ., )
Aoplcations ¢ Fundamental payoff “ripens” over time peaks at a

“harvest time”, and then “rots”
@ This forces rushes, as in plots
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@ Continuum of identical risk neutral players i € [0, 1].
@ Players choose stopping times 7 on [0, o)

@ Anonymous summary of actions: Q(t) = the cumulative
probability that a player has stopped by time 7 < ¢.

@ With a continuum of players, Q is the cdf over stopping
times in any symmetric equilibrium.

@ At any time ¢ in its support, a cdf Q is either absolutely
continuous or jumps, i.e. Q(r) > Q(t—).

@ This corresponds to gradual play, or a rush, where a
positive mass stops at a time-r atom.
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@ Payoffs depend on the stopping time ¢ and quantile g.
@ Common payoff at 7 is u(z, Q(¢)) if # is not an atom of Q

@ If Q0 has an atom attime 7, say Q(r) =p > Q(1—) = g,
then each player stopping at 7 earns:

14
/ u(t, x) I
q pP—q
@ A Nash equilibrium is a quantile function QO whose
support contains only maximum payoffs.
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@ For fixed ¢, payoffs u are quasi-concave in t, strictly
rising from 7 = 0 (“ripening”) until a harvest time t*(g),
and then strictly falling (‘rotting”).

@ uniquely optimal entry time!!!!
@ For all times s, payoffs u are either monotone or
log-concave in ¢, with unique peak quantile g*(s).

@ payoff function is log-submodular, eg. u(t, g) = (t)v(q)
= harvest time 1*(¢) is a decreasing in ¢

= peak quantile ¢*(s) is decreasing in time s.

@ Stopping in finite time beats waiting forever:
lim u(s,q"(s)) < u(t,q) Vt,q finite

§—00
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@ To ensure pure strategies, label players i € [0, 1], and
assume assume that i enters at time
T(i) = inf{r € Ry|Q(¢) > i} € [0, 00), the “generalized
inverse distribution function” of Q
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@ Because of payoff indifference, our equilibria are
subgame perfect too, for suitable off-path play
- Assume fraction x € [0, 1) of players stop by time 7 > 0.
- induced payoff function for this subgame is:

M(T,X)(t7 Q) = M(t—|— T, X+ Q(l _x))

- u(7,x) Obeys our assumptions if (7,x) € [0,00) x [0, 1).
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@ Our equilibria are strictly subgame perfect for a nearby
game in which players have perturbed payoffs:

@ As in Harsanyi (1973), payoff noise purifies strategies
e Index players by types ¢ with C! density on [—4, ]
o stopping in slow play at time ¢ as quantile g yields payoff
u(t,q,¢) to type e.
e ¢ = 0 has same payoff function as in original model:
u(t,q,0) = u(t, q), u(t,q,0) = u,(t, ), uy(t,q,0) = uy(t,q).
o u(t,q,¢) obeys all properties of u(z, g) for fixed ¢, and is
log-supermodular in (¢,¢) and (z, ¢)
= players with higher types ¢ stop strictly later
@ For all Nash equilibria Q, and A > 0, there exists § > 0

s.t. for all § < 6, a Nash equilibrium Q5 of the perturbed
game exists within (Lévy-Prohorov) distance A of Q.
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u(t,qo)

harvest time




m Payoffs and Quantile

peak quantile

rising quantile falling

Model | preferences | quantile
Monotone | pl‘eferences
Payoffs in |
Quantile Lt(lo, q) | u(th q) | u(t07 q)
Hump- | |
Shaped | |
Quantile
Preferences | |
Comparative I |
Statics | |
Applications ] 0 |

0 q q*(t) 1 q 10 1 ¢

hump-shaped monotone
quantile preferences quantile preferences
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@ Tradeoff Between Time and Quantile

@ Since players earn the same Nash payoff w, indifference
prevails during gradual on an interval:

Model u(t, Q([)) = w

Monotone

Gunrtls @ So it obeys the gradual play differential equation:

Hump-

Quanile ug (1, 0(1))Q'(1) + ui(1, Q(t)) = 0

Preferences

Comparative @ The stopping rate is the marginal rate of substitution, i.e.
Statics

Atp;Iications Q/(t) - _ut/uq

@ Since Q'(r) > 0, slope signs u, and u, must be
mismatched in any gradual play phase (interval):
e Pre-emption phase: u, > 0 > u, = time passage is
fundamentally beneficial but strategically costly.
o War of Atirition phase: u, < 0 < u, = time passage is

&y fundamentally harmful but strategically beneficial.
11/41



Pure War of Attrition: u, > 0
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@ If u, > 0 always, gradual play begins at time ¢*(0).

@ So the Nash payoff is u(r*(0),0), and therefore the war of
attrition gradual play locus Iy solves:

u(t,Tw(z)) = u(¢*(0),0)

Y



@ Alarm and Panic

Model

Monotone
Payoffs in
Quantile
Hump-
Shaped
Quantile
Preferences

Comparative
Statics

Applications

13/41

@ running average payoffs: Vo(t,q) = g~ [ u(t, x)dx
@ Fundamental growth dominates strategic effects if.

mqax Vo(0,q) < u(r*(1),1) (1)

@ When (1) fails, stopping as an early quantile dominates
waiting until the harvest time, if a player is last.

@ There are then two mutually exclusive possibilities:
- alarm when V(0,1) < u(r*(1),1) < max, V(0, q)
- panic when u(r*(1),1) < Vp(0,1).

@ Given alarm, there is a size go < 1 alarmrush att =0
obeying Vy(0, qo) = u(t*(1),1).
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@ If u, < 0 always, gradual play ends at time *(1).
@ So the Nash payoff is u(¢*(1), 1), and therefore:

u(t, Tp(r)) = u(r(1),1)

@ If u(0,0) > u(r*(1),1), there is alarm or panic = a time-0
rush of size gy and then an inaction period along the
black line, until time 7y where u(qo, o) = u(1,7*(1)).

1“ u(0,0) < u(t*(1),1) 14; u(0,0) > u(t*(1),1)
Ip

a1, q(f)

0 0

0 1) 0 (1)
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[Equilibria]

@ With increasing quantile preferences, a war of attrition
starts at the harvest time in the unique equilibrium.
©@ With decreasing quantile preferences, a pre-emption
game ends at the harvest time in the unique equilibrium.
o With alarm there is also a time-0 rush of size g obeying
Vo(0,g0) = u(¢*(1), 1), followed by an inaction phase, and
then a pre-emption game ending at (1)
e With panic, there is a unit mass rush at time ¢ = 0.
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@ Purely gradual play requires that early quantiles stop
later and later quantiles stop earlier: u; s 0asu, =20

@ We cannot have more than one rush, since a rush must
include an interval around the quantile peak

@ There is exactly one rush with an interior peak quantile.

@ By our logic for rushes, we deduce that equilibrium play
can never straddle the harvest time.

@ So all equilibria are early, in [0,¢*], or /ate, in [t*, c0).



@ Peak Rush Locus
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@ A iterminal rushincludes quantiles [¢;, 1].
@ An initial rush includes quantiles [0, go].

@ The peak rush locus secures indifference between
payoffs in the rush and in adjacent gradual play:

u(t, IL(¢)) = Vi(t, IL;(1))

@ Since “marginal equals average” at the peak of the
average, we have ¢;(t) € argmax, Vi(t,q), fori =0, 1



Early and Late Rushes
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@ We generalize the first and last mover advantage.

@ Fear at timet if u(t,0) > fo (¢, x)dx.
Extreme case: peak quantlle is O (pure pre-emption)

@ Greedattimerifu(t,1) > fo u(t,x)dx.
Extreme case: peak quantile is 01 (pure war of attrition)

@ Greed and fear at t are mutually exclusive, because
payoffs are single-peaked in g.



m Early and Late Equilibrium Characterization
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[Equilibria with Rushes] For a hump-shaped quantile
preferences, all Nash equilibria have a single rush. There is
either:

@ A pre-emption equilibrium: an initial rush followed by a
pre-emption phase interval ending at harvest time t*(1)
iff there is not greed at time t*(1).

© A war of attrition equilibrium: a terminal rush preceded
by a war of attrition phase interval starting at harvest
time t*(0) iff there is not fear at time r*(0) and no panic.

© A unit mass rushes, but not at any positive time with
strict greed or strict fear.



m Stopping Rates in Gradual Play
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@ Recall the gradual play differential equation:

g (, Q(1)Q'(r) + w (1, 0(1)) = 0

@ Since u,(t*(g), q) = 0 at the harvest time, Q'(¢;) = 0.
@ Differentiate, and substitute for Q’, into:

Q” = - [”tt + 2”‘th/ + uqq(Q/)z] /uq

[Stopping Rates] If the payoff function is log-concave in t, the
stopping rate Q' (t) increases from 0 during a war of attrition
phase, and decreases during a pre-emption game phase
down to 0. Proof if u, <0: As u is logconcave in ¢,
logsubmodular in (z, g):

log @'(1)]" = [log(—us/ug)]" = [log(—us/u)];—[log(ug/u)]; > 0—0
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Pre-Emption Game War of Attrition

fffffffffffffffff /raing o

Rising O’

Time Ir
Figure: Stopping Rates.

@ Wars of attrition: waxing exits, culminating in a rush.

@ Pre-emption games begin with a rush and conclude with
waning gradual exit.



Refinement: Safe Equilibria
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@ c-safe equilibria are immune to large payoff losses from
e timing mistakes, when agents have both slightly fast
and slightly slow clocks.

@ A Nash equilibrium is safe if e-safe for all small ¢ > 0

A Nash equilibrium Q is safe if and only if it support is
non-empty time interval or the union oft = 0 and a later
non-empty time interval.




Safe Equilibria with Hump-Shaped Payoffs
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Absent fear at the harvest time #*(0), a unique safe war of
attrition equilibrium exists. Absent greed at time r*(1), a
unique safe equilibrium with an initial rush exists:

@ with neither alarm nor panic, a pre-emption equilibrium
with a rush at time ¢t > 0

Safe War of Attrition Safe Pre-Emption Game
No Alarm

I'p

t*(0) tll t t.o (1)
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Safe Equilibria with Alarm

[continued]

@ with alarm, a rush at ¢ = 0 followed by a period of
inaction and then a pre-emption phase;

© with panic, a unit mass rush at time ¢ = 0.

Safe Pre-Emption Game
Alarm

I'p

Iy




@ Equilibrium Characterization
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@ An inaction phase is an interval [t;, 7;] with no stopping

@ There can only be one inaction phase in equilibrium,
necessarily separating a rush from gradual play.
@ There exist at most two safe Nash Equilibria:
@ With strict greed, there is a unique safe equilibrium: a
war of attrition equilibrium and then a rush.
@ With strict fear, there is a unique safe equilibrium: a rush
and then a pre-emption equilibrium.

© With neither greed nor fear, both safe equilibria exist, and
no others.



m Fundamentals Rise: Harvest Time Delay

@ In a harvest delay, u(t,q|¢) is log-supermodular in (¢, ¢)
and log-modular in (g, ¢), so that t*(g|¢) increases in ¢

Model [Fundamentals] Let Qg and Q; be safe equilibria for
el o > o

Quantile

Hump- @ If Oy, O; are wars of attrition, then

e - 0n(t) < 0L(t)

Freerences - the rush for Qy is later and no smaller

St - gradual play for Qy starts later

Applications - O} (1) < Q}.(¢) in the common gradual play interval

Q If Oy, O, are pre-emption equilibria, then
- Qu(t) < 0L(1)
- the rush for Qy is later and no larger
7 - gradual play for Qg ends later
&y - 0y (1) > Q) (¢) in the common gradual play interval

28/41



Harvest Time Delay

Safe War of Attrition Safe Pre-Emption Game
qy No Alarm
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@ Since the marginal payoff u is log-modular in (z, ¢) so is
the average.

= maximum go(t) € argmax, Vo(t, g|¢) is constant in ¢.
= the peak rush locus is unchanged by ¢

29/41



Monotone Quantile Change
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@ Greed rises in~ if u(t, q|v) is log-supermodular in (g, )
and log-modular in (z, 7).

@ So the quantile peak g*(t|y) rises in ~.

[Quantile Changes] Let Oy and Q; be safe equilibria for
YH > VL

@ If Oy, O; are war of attrition equilibria, then

-0u <01

- the rush for Qy is later and smaller

- Q4 (1) < Q4 (¢) in the common gradual play interval.
Q If Oy, O; are pre-emption equilibria without alarm, then

-0y < 0L

- the rush for Qy is later and larger

- O () > Q0 (¢) in the common gradual play interval.



Increased Greed: Proof via Monotone

Methods
Safe War of Attrition Safe Pre-Emption Game
q aQ No Alarm
1 1
I'p
Model ? FW¢ T * !
Monotone | F Y 1T,
Payoffs in AT N B
Quantile B - LIBNINN f Iy
Hump- E E E H — |
Shaped 0 H H > . . >
Quantile > t > t
Preferences
C ti . .
Satts @ Define I(¢,x) = ¢~ for x < g and 0 otherwise
Applications @ Easily, I'is log- supermodular in (g, x),
@ So Vy(t,qly) = fo u(t, x|y)dx.

@ So the product I(-)u ( ) |s log-supermodular in (g,x, )
@ Thus, Vj is log-supermodular in (g, ) since it is
preserved by integration
&y @ So the peak rush locus go(f) = argmax, Vo(t, q|)

31/41 ricac in ~
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Increased Fear

Greed Increases / Fear Decreases —»

10 15 20
Time
Figure: Rush Size and Timing



@ Example 1: Schelling Tipping

@ Schelling (1969): Despite only a small threshold
preference for same type neighbors in a lattice, myopic
adjustment quickly tips into complete segregation.

Model @ The tipping point is the moment when a mass of people
Nonotone dramatically discretely changes behavior, such as flight
Quantile from a neighborhood
S @ In our model (without a lattice), the tipping point is the
uantle rush moment in a timing game with fear
Comparative
Statics
Applications I

b 4
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m Example 2: The Rush to Sell in a Bubble

Selling from an asset bubble is an exit timing game.

Model

Monolane Reduced Form Model: Fundamentals
ayoffs in
Quantile

Hump- @ Asset bubble price p(¢) increases deterministically and

anaped smoothly, until the bubble bursts; then p = 0.

Preferences

G @ The exogenous bursting chance is 1 — ¢~7()

Statics

e = Fundamental Payoff:  «(r) = e ™p(s)

peaksatp =1/r

34/41



Example 2: The Rush to Sell in a Bubble
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Reduced Form Model: Quantile Effect

@ After fraction ¢ of strategic investors have sold, the
endogenous burst chance is ¢//¢
- ¢ > 1 measures market liquidity

@ “Keeping up with the Jones” effect: later ranks secure
higher compensation through increased fund inflows

- Seller g enjoys multiple 1 + pq of the selling price

- p > 0 measures relative performance concern

= Quantile Payoff  v(q) = (1 —¢q/0)(1 + pq)

@ v single peaked when p/(1 +2p) < 1/¢ < p.

@ dfear with low liquidity 3¢p/(3 + 2p) < 1, and greed with
high liquidity 3¢p/(3 + 4p) > 1

@ Abreu and Brunnermeier (2003) assume p = 0 (so fear)



Matching (Alvin Roth, et al) turns on an entry decision.

Model @ Fundamental ripens and rots because:

Nonotone - Early matching costs < “loss of planning flexibility”

Quantie - Penalty for late matching < market thinness

Hump-

i @ Equal masses of two worker types, A and B, each with a
Preferences . . . . e

Somparatve continuum of uniformly distributed qualities ¢ € [0, 1].
Statics @ Hiring the right type of quality ¢ yields payoff 4.

Applications

@ Firms learn their need at a rate 6 > 0 for A or B (50-50)
@ The chance of choosing the right type by matching at
time tisp(t) = 1 —e~%)/2.
@ Impatience causes a rotting effect. Altogether, the
P fundamental 7(¢) is hill-shaped.

36/41



Example 3: The Rush to Match
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Reduced Form Model: Quantile Effect

@ Quantile: condemnation of early match agreements
- Assume stigma o(q) = a(1 — g) of early matching

@ Assume initially unit mass of workers and 2« firms

- The best remaining worker after quantile ¢ of firms has
already chosenis 1 — agq.

@ The quantile function v(¢) = (1 — ag)(1 —o(q)) is
concave if o is decreasing and convex.

e Jfearif 6 <3a/(3+ «) and greed if 6 >3a/(3 — «).

@ Fear obtains provided stigma is not a stronger effect
than market thinness.



@ Matching: Multiplicative Payoff Simplification
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Initial Rush Size

v(q)

Yo(q)

Initial Rush Time

v(go) (1)

v(D)m(r)

0

fo

Figure: Matching Example: Pre-Emption Construction. With the
multiplicative matching payoffs: u(q,t) = v(q)n(¢), the rush size and
rush time are determined separately. At left, the crossing of v and
Vy fixes the initial rush size go. At right, the crossing of the rush
payoff and harvest time payoff fixes the initial rush time .



@ Matching: Changes in Stigma
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Pre-Emption Cases War of Attrition Cases

r* r
Figure: Matching Example: Changes in Stigma. For the safe
pre-emption equilibrium, as stigma rises, larger rushes occur later
and stopping rates rise on shorter pre-emption games. For the
safe war of attrition equilibrium, as stigma rises, smaller rushes
occur later and stopping rates fall during longer wars of attrition.



m Matching: Changes in Patience
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Pre-Emption Cases War of Attrition Cases

—

r* r
Figure: Matching Example: Changes in r. For the safe
pre-emption equilibrium, as r falls, rushes and stopping during
gradual play again occur later, but stopping rates rise. For the war
of attrition equilibrium, as r falls, rushes and stopping during
gradual play both occur later, and stopping rates fall.
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