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Wisdom of Old Dead Dudes

Natura non facit saltus. -Leibniz, Linnaeus, Darwin, Marshall

Examples:

Tipping points in neighborhoods with “white flight”

Bank runs
Land run
gold rush

♦ Fundamental payoff “ripens” over time peaks at a
“harvest time”, and then “rots”
This forces rushes, as in plots
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Players and Strategies

Continuum of identical risk neutral players i ∈ [0, 1].

Players choose stopping times τ on [0,∞)

Anonymous summary of actions: Q(t) = the cumulative
probability that a player has stopped by time τ ≤ t.

With a continuum of players, Q is the cdf over stopping
times in any symmetric equilibrium.

At any time t in its support, a cdf Q is either absolutely
continuous or jumps, i.e. Q(t) > Q(t−).

This corresponds to gradual play, or a rush, where a
positive mass stops at a time-t atom.
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A Simple Payoff Dichotomy

Payoffs depend on the stopping time t and quantile q.

Common payoff at t is u(t,Q(t)) if t is not an atom of Q

If Q has an atom at time t, say Q(t) = p > Q(t−) = q,
then each player stopping at t earns:∫ p

q

u(t, x)

p− q
dx

A Nash equilibrium is a quantile function Q whose
support contains only maximum payoffs.
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Tradeoff of Fundamentals and Quantile

For fixed q, payoffs u are quasi-concave in t, strictly
rising from t = 0 (“ripening”) until a harvest time t∗(q),
and then strictly falling (‘rotting”).

uniquely optimal entry time!!!!

For all times s, payoffs u are either monotone or
log-concave in q, with unique peak quantile q∗(s).
payoff function is log-submodular, eg. u(t, q)=π(t)v(q)

⇒ harvest time t∗(q) is a decreasing in q

⇒ peak quantile q∗(s) is decreasing in time s.
Stopping in finite time beats waiting forever:

lim
s→∞

u(s, q∗(s)) < u(t, q) ∀t, q finite

5 / 41



Model

Monotone
Payoffs in
Quantile

Hump-
Shaped
Quantile
Preferences

Comparative
Statics

Applications

Purifying Nash Equilibrium

To ensure pure strategies, label players i ∈ [0, 1], and
assume assume that i enters at time
T(i) = inf{t ∈ R+|Q(t) ≥ i} ∈ [0,∞), the “generalized
inverse distribution function” of Q
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Is Nash Equilibrium Credible?

Because of payoff indifference, our equilibria are
subgame perfect too, for suitable off-path play
- Assume fraction x ∈ [0, 1) of players stop by time τ ≥ 0.
- induced payoff function for this subgame is:

u(τ,x)(t, q) ≡ u(t + τ, x + q(1− x)).

- u(τ,x) obeys our assumptions if (τ, x) ∈ [0,∞)× [0, 1).
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Nash Equilibrium is Strictly Credible (Nerdy)

Our equilibria are strictly subgame perfect for a nearby
game in which players have perturbed payoffs:
As in Harsanyi (1973), payoff noise purifies strategies

Index players by types ε with C1 density on [−δ, δ]
stopping in slow play at time t as quantile q yields payoff
u(t, q, ε) to type ε.
ε = 0 has same payoff function as in original model:
u(t, q, 0) = u(t, q), u t(t, q, 0) = ut(t, q), uq(t, q, 0) = uq(t, q).
u(t, q, ε) obeys all properties of u(t, q) for fixed ε, and is
log-supermodular in (q, ε) and (t, ε)

⇒ players with higher types ε stop strictly later

For all Nash equilibria Q, and ∆ > 0, there exists δ̄ > 0
s.t. for all δ ≤ δ̄, a Nash equilibrium Qδ of the perturbed
game exists within (Lévy-Prohorov) distance ∆ of Q.
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Payoffs and Hump-shaped Fundamentals

u(t, q0)

0 t∗(q0)

harvest time

t
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Payoffs and Quantile

u(t0, q)

0 q∗(t0)

peak quantile

q 1

u(t0, q)

0 1

rising quantile
preferences

q

u(t0, q)

0 1

falling
quantile
preferences

monotone
quantile preferences

hump-shaped
quantile preferences

1 q

10 / 41



Model

Monotone
Payoffs in
Quantile

Hump-
Shaped
Quantile
Preferences

Comparative
Statics

Applications

Tradeoff Between Time and Quantile

Since players earn the same Nash payoff w̄, indifference
prevails during gradual on an interval:

u(t,Q(t)) = w̄

So it obeys the gradual play differential equation:

uq(t,Q(t))Q′(t) + ut(t,Q(t)) = 0

The stopping rate is the marginal rate of substitution, i.e.
Q′(t) = −ut/uq

Since Q′(t) > 0, slope signs uq and ut must be
mismatched in any gradual play phase (interval):

Pre-emption phase: ut > 0 > uq ⇒ time passage is
fundamentally beneficial but strategically costly.
War of Attrition phase: ut < 0 < uq ⇒ time passage is
fundamentally harmful but strategically beneficial.
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Pure War of Attrition: uq > 0

If uq > 0 always, gradual play begins at time t∗(0).
So the Nash payoff is u(t∗(0), 0), and therefore the war of
attrition gradual play locus ΓW solves:

u(t,ΓW(t)) = u(t∗(0), 0)
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Alarm and Panic

running average payoffs: V0(t, q) ≡ q−1
∫ q

0 u(t, x)dx

Fundamental growth dominates strategic effects if:

max
q

V0(0, q) ≤ u(t∗(1), 1) (1)

When (1) fails, stopping as an early quantile dominates
waiting until the harvest time, if a player is last.
There are then two mutually exclusive possibilities:
- alarm when V0(0, 1) < u(t∗(1), 1) < maxq V0(0, q)
- panic when u(t∗(1), 1) ≤ V0(0, 1).
Given alarm, there is a size q0 < 1 alarm rush at t = 0
obeying V0(0, q0) = u(t∗(1), 1).
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Pure Pre-Emption Game: uq < 0

If uq < 0 always, gradual play ends at time t∗(1).
So the Nash payoff is u(t∗(1), 1), and therefore:

u(t,ΓP(t)) = u(t∗(1), 1)

If u(0, 0) > u(t∗(1), 1), there is alarm or panic⇒ a time-0
rush of size q0 and then an inaction period along the
black line, until time t0 where u(q0, t0) = u(1, t∗(1)).
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Equilibrium Characterization

[Equilibria]

1 With increasing quantile preferences, a war of attrition
starts at the harvest time in the unique equilibrium.

2 With decreasing quantile preferences, a pre-emption
game ends at the harvest time in the unique equilibrium.

With alarm there is also a time-0 rush of size q0 obeying
V0(0, q0) = u(t∗(1), 1), followed by an inaction phase, and
then a pre-emption game ending at t∗(1)
With panic, there is a unit mass rush at time t = 0.
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Rushes

Purely gradual play requires that early quantiles stop
later and later quantiles stop earlier: ut ≶ 0 as uq ≷ 0

We cannot have more than one rush, since a rush must
include an interval around the quantile peak
There is exactly one rush with an interior peak quantile.
By our logic for rushes, we deduce that equilibrium play
can never straddle the harvest time.
So all equilibria are early, in [0, t∗], or late, in [t∗,∞).
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Peak Rush Locus

A terminal rush includes quantiles [q1, 1].
An initial rush includes quantiles [0, q0].
The peak rush locus secures indifference between
payoffs in the rush and in adjacent gradual play:

u(t,Πi(t)) = Vi(t,Πi(t))

Since “marginal equals average” at the peak of the
average, we have qi(t) ∈ arg maxq Vi(t, q), for i = 0, 1
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Early and Late Rushes
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Finding Equilibria using the Peak Rush Loci
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Greed and Fear

Fear

0 1

v

Quantile

Greed

0 1

v

Quantile

Neither

0 1

v

Quantile

We generalize the first and last mover advantage.

Fear at time t if u(t, 0) ≥
∫ 1

0 u(t, x)dx.
Extreme case: peak quantile is 0 (pure pre-emption)

Greed at time t if u(t, 1) ≥
∫ 1

0 u(t, x)dx.
Extreme case: peak quantile is 01 (pure war of attrition)

Greed and fear at t are mutually exclusive, because
payoffs are single-peaked in q.
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Early and Late Equilibrium Characterization

[Equilibria with Rushes] For a hump-shaped quantile
preferences, all Nash equilibria have a single rush. There is
either:

1 A pre-emption equilibrium: an initial rush followed by a
pre-emption phase interval ending at harvest time t∗(1)
iff there is not greed at time t∗(1).

2 A war of attrition equilibrium: a terminal rush preceded
by a war of attrition phase interval starting at harvest
time t∗(0) iff there is not fear at time t∗(0) and no panic.

3 A unit mass rushes, but not at any positive time with
strict greed or strict fear.

21 / 41



Model

Monotone
Payoffs in
Quantile

Hump-
Shaped
Quantile
Preferences

Comparative
Statics

Applications

Stopping Rates in Gradual Play

Recall the gradual play differential equation:

uq(t,Q(t))Q′(t) + ut(t,Q(t)) = 0

Since ut(t∗(q), q) = 0 at the harvest time, Q′(tπ) = 0.
Differentiate, and substitute for Q′, into:

Q′′ = −
[
utt + 2uqtQ′ + uqq(Q′)2] /uq

[Stopping Rates] If the payoff function is log-concave in t, the
stopping rate Q′(t) increases from 0 during a war of attrition
phase, and decreases during a pre-emption game phase
down to 0. Proof if ut<0: As u is logconcave in t,
logsubmodular in (t, q):

[log Q′(t)]′ = [log(−ut/uq)]′ = [log(−ut/u)]t−[log(uq/u)]t ≥ 0−0
22 / 41
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Stopping Rate Monotonicity Illustrated

Pre-Emption Game

Falling Q′

tπTime

War of Attrition

Rising Q′

tπ Time
Figure: Stopping Rates.

Wars of attrition: waxing exits, culminating in a rush.

Pre-emption games begin with a rush and conclude with
waning gradual exit.
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Refinement: Safe Equilibria

ε-safe equilibria are immune to large payoff losses from
ε timing mistakes, when agents have both slightly fast
and slightly slow clocks.

A Nash equilibrium is safe if ε-safe for all small ε > 0

Theorem

A Nash equilibrium Q is safe if and only if it support is
non-empty time interval or the union of t = 0 and a later
non-empty time interval.
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Safe Equilibria with Hump-Shaped Payoffs

Absent fear at the harvest time t∗(0), a unique safe war of
attrition equilibrium exists. Absent greed at time t∗(1), a
unique safe equilibrium with an initial rush exists:

1 with neither alarm nor panic, a pre-emption equilibrium
with a rush at time t > 0
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Safe Equilibria with Alarm

[continued]

2 with alarm, a rush at t = 0 followed by a period of
inaction and then a pre-emption phase;

3 with panic, a unit mass rush at time t = 0.
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Equilibrium Characterization

An inaction phase is an interval [t1, t2] with no stopping

There can only be one inaction phase in equilibrium,
necessarily separating a rush from gradual play.
There exist at most two safe Nash Equilibria:

1 With strict greed, there is a unique safe equilibrium: a
war of attrition equilibrium and then a rush.

2 With strict fear, there is a unique safe equilibrium: a rush
and then a pre-emption equilibrium.

3 With neither greed nor fear, both safe equilibria exist, and
no others.
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Fundamentals Rise: Harvest Time Delay

In a harvest delay, u(t, q|φ) is log-supermodular in (t, φ)
and log-modular in (q, φ), so that t∗(q|φ) increases in φ

[Fundamentals] Let QH and QL be safe equilibria for
ϕH > ϕL.

1 If QH,QL are wars of attrition, then
- QH(t) ≤ QL(t)
- the rush for QH is later and no smaller
- gradual play for QH starts later
- Q′H(t) < Q′L(t) in the common gradual play interval

2 If QH,QL are pre-emption equilibria, then
- QH(t) ≤ QL(t)
- the rush for QH is later and no larger
- gradual play for QH ends later
- Q′H(t) > Q′L(t) in the common gradual play interval
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Harvest Time Delay: Proof

Since the marginal payoff u is log-modular in (t, φ) so is
the average.

⇒ maximum q0(t) ∈ arg maxq V0(t, q|φ) is constant in φ.
⇒ the peak rush locus is unchanged by φ
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Monotone Quantile Change

Greed rises in γ if u(t, q|γ) is log-supermodular in (q, γ)
and log-modular in (t, γ).
So the quantile peak q∗(t|γ) rises in γ.

[Quantile Changes] Let QH and QL be safe equilibria for
γH > γL.

1 If QH,QL are war of attrition equilibria, then
- QH ≤ QL

- the rush for QH is later and smaller
- Q′H(t) < Q′L(t) in the common gradual play interval.

2 If QH,QL are pre-emption equilibria without alarm, then
- QH ≤ QL

- the rush for QH is later and larger
- Q′H(t) > Q′L(t) in the common gradual play interval.
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Increased Greed: Proof via Monotone
Methods

Define I(q, x) ≡ q−1 for x ≤ q and 0 otherwise
Easily, I is log-supermodular in (q, x),
So V0(t, q|γ) =

∫ 1
0 I(q, x)u(t, x|γ)dx.

So the product I(·)u(·) is log-supermodular in (q, x, γ)
Thus, V0 is log-supermodular in (q, γ) since it is
preserved by integration
So the peak rush locus q0(t) = arg maxq V0(t, q|γ)
rises in γ.31 / 41
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Increased Fear
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Figure: Rush Size and Timing
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Example 1: Schelling Tipping

Schelling (1969): Despite only a small threshold
preference for same type neighbors in a lattice, myopic
adjustment quickly tips into complete segregation.
The tipping point is the moment when a mass of people
dramatically discretely changes behavior, such as flight
from a neighborhood
In our model (without a lattice), the tipping point is the
rush moment in a timing game with fear
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Example 2: The Rush to Sell in a Bubble

Selling from an asset bubble is an exit timing game.

Reduced Form Model: Fundamentals

Asset bubble price p(t) increases deterministically and
smoothly, until the bubble bursts; then p = 0.

The exogenous bursting chance is 1− e−rp(t)

⇒ Fundamental Payoff: π(t) ≡ e−rp(t)p(t)

peaks at p = 1/r
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Example 2: The Rush to Sell in a Bubble

Reduced Form Model: Quantile Effect

After fraction q of strategic investors have sold, the
endogenous burst chance is q/`

- ` ≥ 1 measures market liquidity

“Keeping up with the Jones” effect: later ranks secure
higher compensation through increased fund inflows

- Seller q enjoys multiple 1 + ρq of the selling price
- ρ ≥ 0 measures relative performance concern

⇒ Quantile Payoff v(q) ≡ (1− q/`)(1 + ρq)

v single peaked when ρ/(1 + 2ρ) < 1/` < ρ.
∃ fear with low liquidity 3`ρ/(3 + 2ρ) < 1, and greed with
high liquidity 3`ρ/(3 + 4ρ) > 1
Abreu and Brunnermeier (2003) assume ρ = 0 (so fear)
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Example 3: The Rush to Match

Matching (Alvin Roth, et al) turns on an entry decision.

Fundamental ripens and rots because:
- Early matching costs⇐ “loss of planning flexibility”
- Penalty for late matching⇐ market thinness

Equal masses of two worker types, A and B, each with a
continuum of uniformly distributed qualities q ∈ [0, 1].
Hiring the right type of quality q yields payoff q.
Firms learn their need at a rate δ > 0 for A or B (50-50)
The chance of choosing the right type by matching at
time t is p(t) = 1− e−δt/2.
Impatience causes a rotting effect. Altogether, the
fundamental π(t) is hill-shaped.

36 / 41



Model

Monotone
Payoffs in
Quantile

Hump-
Shaped
Quantile
Preferences

Comparative
Statics

Applications

Example 3: The Rush to Match

Reduced Form Model: Quantile Effect

Quantile: condemnation of early match agreements
- Assume stigma σ(q) = σ̄(1− q) of early matching

Assume initially unit mass of workers and 2α firms
- The best remaining worker after quantile q of firms has

already chosen is 1− αq.

The quantile function v(q) = (1− αq)(1− σ(q)) is
concave if σ is decreasing and convex.

∃ fear if σ̄<3α/(3 + α) and greed if σ̄>3α/(3− α).

Fear obtains provided stigma is not a stronger effect
than market thinness.
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Matching: Multiplicative Payoff Simplification

Initial Rush Size

0 1q0

v(q)

V0(q)

Initial Rush Time

0 t0 t∗

v(1)π(t∗)

v(q0)π(t)

Figure: Matching Example: Pre-Emption Construction. With the
multiplicative matching payoffs: u(q, t) = v(q)π(t), the rush size and
rush time are determined separately. At left, the crossing of v and
V0 fixes the initial rush size q0. At right, the crossing of the rush
payoff and harvest time payoff fixes the initial rush time t0.
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Matching: Changes in Stigma

Pre-Emption Cases

t∗

War of Attrition Cases

t∗

Figure: Matching Example: Changes in Stigma. For the safe
pre-emption equilibrium, as stigma rises, larger rushes occur later
and stopping rates rise on shorter pre-emption games. For the
safe war of attrition equilibrium, as stigma rises, smaller rushes
occur later and stopping rates fall during longer wars of attrition.
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Matching: Changes in Patience

Pre-Emption Cases

t∗

War of Attrition Cases

t∗

Figure: Matching Example: Changes in r. For the safe
pre-emption equilibrium, as r falls, rushes and stopping during
gradual play again occur later, but stopping rates rise. For the war
of attrition equilibrium, as r falls, rushes and stopping during
gradual play both occur later, and stopping rates fall.
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