

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

Rushes in Large Timing Games

Axel Anderson, Lones Smith, and Andreas Park Georgetown, Wisconsin, and Toronto

Fall, 2016

Wisdom of Old Dead Dudes

Natura non facit saltus. - Leibniz, Linnaeus, Darwin, Marshall

Examples:

- Model
- Monotone Pavoffs in Quantile
- Hump-Shaped Quantile Preferences
- Comparative Statics
- Applications

- Tipping points in neighborhoods with "white flight"
- Bank runs
- Land run
- gold rush
- Fundamental payoff "ripens" over time peaks at a "harvest time", and then "rots"
- This forces rushes, as in plots

Players and Strategies

- Continuum of identical risk neutral players $i \in [0, 1]$.
- Players choose stopping times τ on $[0,\infty)$
- Anonymous summary of actions: Q(t) = the cumulative probability that a player has stopped by time $\tau \leq t$.
- With a continuum of players, *Q* is the cdf over stopping times in any symmetric equilibrium.
- At any time t in its support, a cdf Q is either absolutely continuous or jumps, i.e. Q(t) > Q(t-).
- This corresponds to *gradual play*, or a *rush*, where a positive mass stops at a time-*t* atom.

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

A Simple Payoff Dichotomy

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

- Common payoff at *t* is u(t, Q(t)) if *t* is not an atom of *Q*
- If Q has an atom at time t, say Q(t) = p > Q(t-) = q, then each player stopping at t earns:

$$\int_{q}^{p} \frac{u(t,x)}{p-q} dx$$

• A Nash equilibrium is a quantile function *Q* whose support contains only maximum payoffs.

Tradeoff of Fundamentals and Quantile

- For fixed q, payoffs u are quasi-concave in t, strictly rising from t = 0 ("ripening") until a harvest time t*(q), and then strictly falling ('rotting").
 - uniquely optimal entry time!!!!
- For all times s, payoffs u are either monotone or log-concave in q, with unique peak quantile q*(s).
- payoff function is log-submodular, eg. $u(t,q) = \pi(t)v(q)$
- \Rightarrow harvest time $t^*(q)$ is a decreasing in q
- \Rightarrow peak quantile $q^*(s)$ is decreasing in time s.
 - Stopping in finite time beats waiting forever:

$$\lim_{s \to \infty} u(s, q^*(s)) < u(t, q) \quad \forall t, q \text{ finite}$$

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

• To ensure *pure strategies*, label players $i \in [0, 1]$, and assume assume that *i* enters at time $T(i) = \inf\{t \in \mathbb{R}_+ | Q(t) \ge i\} \in [0, \infty)$, the "generalized inverse distribution function" of *Q*

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

 Because of payoff indifference, our equilibria are subgame perfect too, for suitable off-path play

- Assume fraction $x \in [0, 1)$ of players stop by time $\tau \ge 0$.
- induced payoff function for this subgame is:

$$u_{(\tau,x)}(t,q) \equiv u(t+\tau, x+q(1-x)).$$

- $u_{(\tau,x)}$ obeys our assumptions if $(\tau,x) \in [0,\infty) \times [0,1)$.

Nash Equilibrium is Strictly Credible (Nerdy)

- Our equilibria are strictly subgame perfect for a nearby game in which players have perturbed payoffs:
- As in Harsanyi (1973), payoff noise purifies strategies
 - Index players by types ε with C^1 density on $[-\delta,\delta]$
 - stopping in slow play at time *t* as quantile *q* yields payoff $u(t, q, \varepsilon)$ to type ε .
 - $\varepsilon = 0$ has same payoff function as in original model: $u(t,q,0) = u(t,q), u_t(t,q,0) = u_t(t,q), u_q(t,q,0) = u_q(t,q).$
 - u(t,q,ε) obeys all properties of u(t,q) for fixed ε, and is log-supermodular in (q,ε) and (t,ε)
 - \Rightarrow players with higher types ε stop strictly later
- For all Nash equilibria *Q*, and Δ > 0, there exists δ̄ > 0 s.t. for all δ ≤ δ̄, a Nash equilibrium *Q*_δ of the perturbed game exists within (Lévy-Prohorov) distance Δ of *Q*.

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Payoffs and Hump-shaped Fundamentals

Payoffs and Quantile

• Since players earn the same Nash payoff \bar{w} , indifference prevails during gradual on an interval:

$$u(t,Q(t))=\bar{w}$$

• So it obeys the gradual play differential equation:

$$u_q(t, Q(t))Q'(t) + u_t(t, Q(t)) = 0$$

- The stopping rate is the marginal rate of substitution, i.e. $Q'(t) = -u_t/u_q$
- Since Q'(t) > 0, slope signs u_q and u_t must be mismatched in any gradual play phase (interval):
 - Pre-emption phase: u_t > 0 > u_q ⇒ time passage is fundamentally beneficial but strategically costly.
 - War of Attrition phase: $u_t < 0 < u_q \Rightarrow$ time passage is fundamentally harmful but strategically beneficial.

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Pure War of Attrition: $u_q > 0$

- If $u_q > 0$ always, gradual play begins at time $t^*(0)$.
- So the Nash payoff is *u*(*t**(0),0), and therefore the *war of* attrition gradual play locus Γ_W solves:

$$u(t,\Gamma_W(t))=u(t^*(0),0)$$

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Alarm and Panic

- running average payoffs: $V_0(t,q) \equiv q^{-1} \int_0^q u(t,x) dx$
- Fundamental growth dominates strategic effects if:

$$\max_{q} V_0(0,q) \le u(t^*(1),1)$$
(1)

- When (1) fails, stopping as an early quantile dominates waiting until the harvest time, if a player is last.
- There are then two mutually exclusive possibilities:
 - *alarm* when $V_0(0, 1) < u(t^*(1), 1) < \max_q V_0(0, q)$
 - *panic* when $u(t^*(1), 1) \le V_0(0, 1)$.
- Given alarm, there is a size q₀ < 1 alarm rush at t = 0 obeying V₀(0, q₀) = u(t*(1), 1).

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Pure Pre-Emption Game: $u_q < 0$

- If $u_q < 0$ always, gradual play ends at time $t^*(1)$.
- So the Nash payoff is $u(t^*(1), 1)$, and therefore:

$$u(t, \Gamma_P(t)) = u(t^*(1), 1)$$

If u(0,0) > u(t*(1),1), there is alarm or panic ⇒ a time-0 rush of size q₀ and then an inaction period along the black line, until time t₀ where u(q₀, t₀) = u(1,t*(1)).

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Equilibrium Characterization

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

[Equilibria]

- With increasing quantile preferences, a war of attrition starts at the harvest time in the unique equilibrium.
- With decreasing quantile preferences, a pre-emption game ends at the harvest time in the unique equilibrium.
 - With alarm there is also a time-0 rush of size q_0 obeying $V_0(0,q_0) = u(t^*(1),1)$, followed by an inaction phase, and then a pre-emption game ending at $t^*(1)$
 - With panic, there is a unit mass rush at time t = 0.

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

- We cannot have more than one rush, since a rush must include an interval around the quantile peak
- There is exactly one rush with an interior peak quantile.
- By our logic for rushes, we deduce that equilibrium play can never straddle the harvest time.
- So all equilibria are *early*, in $[0, t^*]$, or *late*, in $[t^*, \infty)$.

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

• An *initial rush* includes quantiles $[0, q_0]$.

• The *peak rush locus* secures indifference between payoffs in the rush and in adjacent gradual play:

$$u(t, \Pi_i(t)) = V_i(t, \Pi_i(t))$$

 Since "marginal equals average" at the peak of the average, we have q_i(t) ∈ arg max_q V_i(t, q), for i = 0, 1

▲ロト▲母ト▲目ト▲目ト 目 のみぐ

Early and Late Rushes

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Peak Terminal Rush

Greed and Fear

- We generalize the first and last mover advantage.
- *Fear at time t* if $u(t, 0) \ge \int_0^1 u(t, x) dx$. Extreme case: peak quantile is 0 (pure pre-emption)
- Greed at time t if $u(t, 1) \ge \int_0^1 u(t, x) dx$. Extreme case: peak quantile is 01 (pure war of attrition)
- Greed and fear at t are mutually exclusive, because payoffs are single-peaked in q.

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

[Equilibria with Rushes] *For a hump-shaped quantile preferences, all Nash equilibria have a single rush. There is either:*

- A pre-emption equilibrium: an initial rush followed by a pre-emption phase interval ending at harvest time t*(1) iff there is not greed at time t*(1).
- A war of attrition equilibrium: a terminal rush preceded by a war of attrition phase interval starting at harvest time t*(0) iff there is not fear at time t*(0) and no panic.

A unit mass rushes, but not at any positive time with strict greed or strict fear.

Stopping Rates in Gradual Play

• Recall the gradual play differential equation:

$$u_q(t,Q(t))Q'(t) + u_t(t,Q(t)) = 0$$

- Model
- Monotone Payoffs in Quantile
- Hump-Shaped Quantile Preferences
- Comparative Statics
- Applications

- Since $u_t(t^*(q), q) = 0$ at the harvest time, $Q'(t_\pi) = 0$.
- Differentiate, and substitute for Q', into:

$$Q'' = -\left[u_{tt} + 2u_{qt}Q' + u_{qq}(Q')^2\right]/u_q$$

[Stopping Rates] If the payoff function is log-concave in t, the stopping rate Q'(t) increases from 0 during a war of attrition phase, and decreases during a pre-emption game phase down to 0. Proof if $u_t < 0$: As u is logconcave in t, logsubmodular in (t, q):

$$[\log Q'(t)]' = [\log(-u_t/u_q)]' = [\log(-u_t/u)]_t - [\log(u_q/u)]_t \ge 0 - 0$$

• Wars of attrition: waxing exits, culminating in a rush.

Model

 Pre-emption games begin with a rush and conclude with waning gradual exit.

Refinement: Safe Equilibria

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

- ε-safe equilibria are immune to large payoff losses from
 ε timing mistakes, when agents have both slightly fast and slightly slow clocks.
- A Nash equilibrium is *safe* if ε -safe for all small $\varepsilon > 0$

Theorem

A Nash equilibrium Q is safe if and only if it support is non-empty time interval or the union of t = 0 and a later non-empty time interval.

Absent fear at the harvest time $t^*(0)$, a unique safe war of attrition equilibrium exists. Absent greed at time $t^*(1)$, a unique safe equilibrium with an initial rush exists:

• with neither alarm nor panic, a pre-emption equilibrium with a rush at time t > 0

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 = めんで

Safe Equilibria with Alarm

[continued]

Monotone Payoffs in Quantile

Model

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

2 with alarm, a rush at t = 0 followed by a period of inaction and then a pre-emption phase;

(a) with panic, a unit mass rush at time t = 0.

Equilibrium Characterization

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

- An *inaction phase* is an interval $[t_1, t_2]$ with no stopping
- There can only be one inaction phase in equilibrium, necessarily separating a rush from gradual play.
- There exist at most two safe Nash Equilibria:
 - With strict greed, there is a unique safe equilibrium: a war of attrition equilibrium and then a rush.
 - With strict fear, there is a unique safe equilibrium: a rush and then a pre-emption equilibrium.
 - With neither greed nor fear, both safe equilibria exist, and no others.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

In a *harvest delay*, u(t, q|φ) is log-supermodular in (t, φ) and log-modular in (q, φ), so that t*(q|φ) increases in φ

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

[Fundamentals] Let Q_H and Q_L be safe equilibria for $\varphi_H > \varphi_L$.

- If Q_H, Q_L are wars of attrition, then
 - $-Q_H(t) \le Q_L(t)$
 - the rush for Q_H is later and no smaller
 - gradual play for Q_H starts later
 - $Q'_H(t) < Q'_L(t)$ in the common gradual play interval
- 2 If Q_H, Q_L are pre-emption equilibria, then
 - $-Q_H(t) \le Q_L(t)$
 - the rush for Q_H is later and no larger
 - gradual play for Q_H ends later
 - $Q'_{H}(t) > Q'_{L}(t)$ in the common gradual play interval

Harvest Time Delay: Proof

Applications

29/41

- Since the marginal payoff u is log-modular in (t, ϕ) so is the average.
- $\Rightarrow \max_{q_0(t) \in \arg \max_{q} V_0(t, q|\phi)}$ is constant in ϕ .
- \Rightarrow the peak rush locus is unchanged by ϕ

Monotone Quantile Change

- Greed rises in γ if $u(t, q|\gamma)$ is log-supermodular in (q, γ) and log-modular in (t, γ) .
- So the quantile peak $q^*(t|\gamma)$ rises in γ .

[Quantile Changes] Let Q_H and Q_L be safe equilibria for $\gamma_H > \gamma_L$.

Shaped Quantile Preferences

Model Monotone Pavoffs in

Quantile Hump-

Comparative Statics

- If Q_H, Q_L are war of attrition equilibria, then
 - $-Q_H \leq Q_L$
 - the rush for Q_H is later and smaller
 - $Q'_H(t) < Q'_L(t)$ in the common gradual play interval.
- If Q_H, Q_L are pre-emption equilibria without alarm, then - $O_H < O_L$
 - the rush for Q_H is later and larger
 - $Q'_H(t) > Q'_L(t)$ in the common gradual play interval.

Increased Greed: Proof via Monotone Methods

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

- Define $\mathbb{I}(q, x) \equiv q^{-1}$ for $x \leq q$ and 0 otherwise
- Easily, \mathbb{I} is log-supermodular in (q, x),
- So $V_0(t,q|\gamma) = \int_0^1 \mathbb{I}(q,x)u(t,x|\gamma)dx.$
- So the product $\mathbb{I}(\cdot)u(\cdot)$ is log-supermodular in (q, x, γ)
- Thus, V₀ is log-supermodular in (q, γ) since it is preserved by integration
- So the peak rush locus $q_0(t) = \arg \max_q V_0(t, q|\gamma)$ rises in γ

Increased Fear

Example 1: Schelling Tipping

- Schelling (1969): Despite only a small threshold preference for same type neighbors in a lattice, myopic adjustment quickly tips into complete segregation.
- The tipping point is the moment when a mass of people dramatically discretely changes behavior, such as flight from a neighborhood
- In our model (without a lattice), the tipping point is the rush moment in a timing game with fear

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Selling from an asset bubble is an *exit* timing game.

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

- Asset bubble price p(t) increases deterministically and smoothly, until the bubble bursts; then p = 0.
- The exogenous bursting chance is $1 e^{-rp(t)}$

 \Rightarrow Fundamental Payoff: $\pi(t) \equiv e^{-rp(t)}p(t)$

peaks at p = 1/r

Reduced Form Model: Quantile Effect

- After fraction *q* of strategic investors have sold, the endogenous burst chance is *q*/ℓ
- $\ell \ge 1$ measures market *liquidity*
- "Keeping up with the Jones" effect: later ranks secure higher compensation through increased fund inflows
- Seller q enjoys multiple $1 + \rho q$ of the selling price
- $\rho \ge 0$ measures *relative performance concern*
 - \Rightarrow Quantile Payoff $v(q) \equiv (1 q/\ell)(1 + \rho q)$
- v single peaked when $\rho/(1+2\rho) < 1/\ell < \rho$.
- ∃ fear with low liquidity 3ℓρ/(3 + 2ρ) < 1, and greed with high liquidity 3ℓρ/(3 + 4ρ) > 1
- Abreu and Brunnermeier (2003) assume $\rho = 0$ (so fear)

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Example 3: The Rush to Match

Matching (Alvin Roth, et al) turns on an *entry* decision.

- Fundamental ripens and rots because:
 - Early matching costs <= "loss of planning flexibility"
 - Penalty for late matching \leftarrow market thinness
 - Equal masses of two worker types, A and B, each with a continuum of uniformly distributed qualities $q \in [0, 1]$.
 - Hiring the right type of quality q yields payoff q.
 - Firms learn their need at a rate $\delta > 0$ for A or B (50-50)
 - The chance of choosing the right type by matching at time *t* is $p(t) = 1 e^{-\delta t}/2$.
 - Impatience causes a rotting effect. Altogether, the fundamental $\pi(t)$ is hill-shaped.

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Example 3: The Rush to Match

Reduced Form Model: Quantile Effect

- Quantile: condemnation of early match agreements
- Assume stigma $\sigma(q) = \bar{\sigma}(1-q)$ of early matching
- Assume initially unit mass of workers and 2α firms
- The best remaining worker after quantile q of firms has already chosen is $1 \alpha q$.
- The quantile function $v(q) = (1 \alpha q)(1 \sigma(q))$ is concave if σ is decreasing and convex.
- \exists fear if $\bar{\sigma} < 3\alpha/(3+\alpha)$ and greed if $\bar{\sigma} > 3\alpha/(3-\alpha)$.

 Fear obtains provided stigma is not a stronger effect than market thinness.

Model

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Monotone Payoffs in Quantile

Hump-Shaped Quantile Preferences

Comparative Statics

Applications

Figure: Matching Example: Pre-Emption Construction. With the multiplicative matching payoffs: $u(q, t) = v(q)\pi(t)$, the rush size and rush time are determined separately. At left, the crossing of v and V_0 fixes the initial rush size q_0 . At right, the crossing of the rush payoff and harvest time payoff fixes the initial rush time t_0 .

Matching: Changes in Stigma

Comparative Statics

Applications

Figure: Matching Example: Changes in Stigma. For the safe pre-emption equilibrium, as stigma rises, larger rushes occur later and stopping rates *rise* on shorter pre-emption games. For the safe war of attrition equilibrium, as stigma rises, smaller rushes occur later and stopping rates *fall* during longer wars of attrition.

イロト イポト イヨト イヨト

Pre-Emption Cases

War of Attrition Cases

40/41

Preferences Comparative Statics Applications

