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Abstract

We explore a two-sided matching model with a continuum of agents
indexed by efficiency parameters in (0,1), and assume that the flow out-
put of the match (x, y) is 2xy. To incorporate nominal rigidities, we
consider the nonstandard assumption of equal-output sharing, and show
that the multiplicative production function engenders a natural segmen-
tation of (0,1) into equivalence classes of agents willing to match with one
another. This produces a discontinuous wage profile. We also analyze
the non-steady state dynamics of the model, where the no-discounting
case proves a fruitful benchmark. We find that quits endogenously arise
as a non-steady state phenomenon. In the appendix, we describe the
steady-state of the model under the standard Nash equal-surplus divi-
sion rule.

*The model of this paper was inspired by a conversation with Doug Galbi. Computer simulations
done by Parag Gupta under the DROP have also been very helpful. ~



1. INTRODUCTION

(to be completed)

. Under the equal output division rule (analgous to a minimum wage), an in-
tertemporal competition for rents arises, producing a wage distribution riddled
with discontinuities: Some agents greatly profit at the expense of others.

. The efficient and actual decision matching rules in steady-state of a model
with finitely-many ability levels and an additive "match-specific" production
component are analyzed in Lockwood (1986).

. The effect of coordination on production is studied by Jovanovic (1991).

2. SOME DISCRETE-TIME EXAMPLES

Suppose there is a continuum of individuals with efficiency parameters dis-
tributed uniformly in (0,1). If individuals x and yare matched, they produce a
joint product (literally) of 2xy in each period in which they remain matched. Fu-
ture payoffs are discounted at the common rate a < 1. What is the matching that
maximizes total output here?1 Rather than appeal to optimal control theory, we
consider the following heuristic argument. An interchange argument due to Hardy
asserts that for any two positive increasing sequences {a1, . . . ,an} and {b1,. . . , bn},
the maximum of the expression ~i=1aib1r(i)over permutations 7rof {1, 2,..., n} is
the identity permutation: Pair the highest a's with the highest b's. For our scenario,
this suggests that each x E (0,1) should be paired with another x. This would yield
an average output of fl2x2dx = 2/3. How closely can optimal selection by indi-
viduals in a two-sided matching model approximate this socially optimal outcome?
Much of the insight is found in two and three period models, to which we now turn.

2.1 A Two Period Example

Let there be two periods. In the first period, each individual is randomly paired
with another potential partner, and either individual to a proposed match can veto
it. If this occurs, each receives zero payoff that period. Otherwise, they split the
output produced. Assume for now an equal output division. In the second period,
all individuals remaining unmatched - and those wishing to terminate their current
match and pair anew - are randomly paired, once for all. No vetoes are permitted.2
We also assume that search is a time-consuming process, and that if one is matched
in a given period, one cannot simply quit that match for another the very next
period; rather, a one period sabbatical is required to search; therefore, no individual
will ever opt to terminate a match.

IThis simple question has the flavour of more general optimal pairing questions being studied
by Kremer and Maskin (private communication, 1992).

2Alternatively, vetoes are allowed, but would never be used since the alternative payoff equals
zero.
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Note that the first period decision criterion of all individuals is identical: Given
the multiplicatively separable production function, one's own parameter has no effect
on preferences. Each individual simply seeks to maximize the discounted expected
parameter of her partner. Thus, in period one, all individuals will accept any param-
eter above some threshold 0 equal to their discounted expected period two partner's
parameter. Given that everyone uses the same threshold,

0 = a 0(0/2) + (1- 0)0(1+ 0)/2
0 + (1 - 0)0

so that (2 - a)02 - (4 - a)O+ a = 0 or 0 = O. There is also an equilibrium with
0 = 0 that is possible: All individuals who meet in a given period agree to match,
knowing that no one will be around next period. This trivial outcome is excluded
from consideration. Thus,

4 - a - v5a2 - 16a+ 16
0 = ~ ,~, ,

and there is an equivalence class [0,1) of individuals willing to pair with one another
in the first period, and no one with an efficiency parameter below 0 will pair until
period two.

It can be shown that the earnings profile is discontinuous at O. Individuals with
indices above 0 earn rents, due to the equal output division rule. As a result some
agents (those just below 0) may actually prefer increases in the interest rate (more
heavy discounting of future payoffs) because 0 is increasing in a.

Now consider a more standard output division, leaving no economic rent unex-
ploited.

(Nash division: to be completed)

2.2 A Three Period Example

Now suppose that there are three periods, with those matches proposed in the
final period necessarily consummated. We describe all (non-trivial) such equilib-
ria using backward induction. Independent of non-trivial first period behaviour,
the optimal second period strategy is to accept a proposed partner exactly when
one's index is at least 02 > 0, where 02 equals the discounted expected period three
partner's parameter.3 Thus, there is some equivalence class (02,1) in period two of
mutually desirable individuals. Moreover, by the rationale of the previous example,
no individual will ever opt to terminate a match after this period.

Next consider the first period behaviour. Since 02 is the lower threshold for
accepting any new matches in period two, it follows that anyone initially paired in

3This expectation depends in an obvious fashion upon the common period two behaviour. Thus,
whether such a (J2exists or is unique is at issue. We shall, however, shortly exhibit a solution which
happens to be unique.
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period one will quit her match in period two (and thus forego period two payoffs)
if and only if her partner's parameter lies below ()2. Who in the first period then
will agree to match? Clearly, an individual x declines a match exactly when her
discounted expected payoff arx from being eligible for next period's matching ex-
ceeds that of the proposed match. Since those with indices below ()2will always be
turned down (or dumped, if already matched) in the second period, the option of
being eligible for the next period is worthless (rx = 0). They will therefore accept
any proposed match in the first period.

Consider now those with indices at least ()2. Since they are all in the same
equivalence class in the second period, they all have the same first period threshold
()l' Note that ()l equals the discounted expected eventual partner's parameter, condi-
tioned on the threshold decision rule of period two. We claim that (h > ()2necessarily
obtains.
Proof:

Denote by Pt(a, b) the period t fraction of eligible individuals with efficiency
parameters Y in (a, b), and by Et the expectation operator with respect to the
measure Pt. Then ()l ~ P2(0, ()2)()2+ P2(()2,1)E2(y I Y ~ ()2), and so

(()l - ()2)/ a = [P2(0,()2)()2+ P2(()2,1)E2(y I Y ~ ()2)]- E3(Y)
= [P2(0,()2)()2+ P2(()2,1)E2(y I Y ~ ()2)] -

[P3(0,()2)E3(Y I Y < ()2)+ P3(()2, 1)E3(y I Y ~ ()2))

= P2(0, ()2)()2+ [P2(()2,1) - P3( 82,1 )]E2(Y I Y ~ ()2)) -
P3(0, ()2)E3(y I Y < ()2)

> P2(0,()2)()2+ [P2(()2,1) - P3(()2,1)]()2- P3(0,()2)()2
= 0

because the second period matching equivalence class implies that

P2(()2, 1) - P2(()2,1? = P2(()2,1) < P2(82,1).
P3(()2, 1) = 1 - P2(()2, 1)2 1 + P2(()2,1)

QED

Given ()l > ()2, the histogram diagram of Figure 1 depicts the matches that oc-

cur. In period one, there are two equivalence classes of mutually agreeable (forward
shaded) matches (0,()2) and [()l,1). It is common knowledge that matches consum-
mated within (0, ()2)are only temporary, and that those individuals are not eligible
for second period matches. A variety of Groucho Marx result manifests itself here:
In the first period, no individual in (()2,()1)is willing to match with anyone who's
willing to match with her - namely those in (0, ()2). In period two, there is one such
(backward shaded) equivalence class [()2,1), and in the final period the equivalence
class constitutes all of (0, 1). 4

4The previous definitions of (h and ()2 yield

()l = a (1 - ()l)()l(()l + 1)/2 + (()l - ()2)(()1 + ()2)/2 + (1- ()2)()~
(1- ()J)()l+ (()l - ()2)+ (1- ()2)()2
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Figure 1: Three Period Matching Histogram
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(Nash division: to be completed)

In the model that follows, we switch to continuous time.

3. THE CONTINUOUS-TIME MODEL

Consider a model with a continuum of individuals indexed by efficiency param-
eters (or indices) distributed uniformly in (0,1). At any moment in time, each
individual is either matched or unmatched. Only those unmatched engage in search
for a new partner. When two individuals meet, either can veto the proposed match.
There are two possible matching technologies involving Poisson arrival times. We
first consider a linear search technology.5 Here, an unmatched individual can expect
to have a match proposed to her within time t > 0 with probability 1 - exp( -pt).
Perhaps more intuitively, potential partners for unmatched individuals arrive with
constant flow probability p > 0, independent of the Lebesgue measure of unmatched
individuals (the unemployment rate). Call p the rendezvous rate. With this match-

and

(}2 = Q (1- (}I)<fi(}1((}1+ 1)/2 + ((}1 - (}2)<fi((}1+ (}2)/2 + (}V2,
(1- (}I)<fi(}1 + ((}1 - (}2)<fi + (}2

where

<fi- (1 - (}I)(}1 - (1 - (}1)(}1
- (1- (}I)(}1+ ((}1- (}2)+ (1- (}2)(}2- 2(}1- ()~- (}r

There is a unique solution of the form 0 < (}2< (}1< 0 to these equations.
5This terminology is taken from Diamond and Maskin (1979) and (1981).
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ing technology, the flow of matchings is linearly proportional to the unemployment
rate. We later consider a quadratic search technology, in which the arrival rate equals
p > 0 times the unemployment rate. Thus, the flow of matchings declines as the
square of the unemployment rate.

If x is paired with y then the flow output of that relationship is 2xy.6 Individuals
discount the flow of payoffs at the common interest rate /3. How that payoff flow
is divided is crucial. We again investigate two possibilities. Under the nominal
sharing rule, both x and y receive a flow reward of xy. This equal output division,
the nonstandard assumption made in the body of this paper, is intended as a rough
proxy of nominal rigidities that might persist - or be mandated - such as the
existence of a minimum wage, or internal pay equity laws.

Under the Nash sharing rule, the flow surplus from the match is equally divided.
That is, if the option of remaining (or becoming) unmatched entails flow rewards of
r x and r y for x and y respectively, where r x + r y > 2xy, then x receives a flow payoff
equal to

rx + (2xy - rx - ry)/2 = xy + (rx - ry)/2

and y receives a flow payoff of xy + (ry - rx)/2. In the appendix, we explore how
radically matters change under this more standard surplus division rule.

A strategy for x E (0,1) in this set-up is a measurable correspondence r x :
R+ 7 (0,1) specifying who x is willing to match with at each time t > 0.7 We
assume that all individuals of the same efficiency parameter x use the same r x, so
that everyx is willingto match with any member in her acceptanceset r x (t) at time
t > O. If we further posit that an individual accepts a proposed match if indifferent,
then r x(t) is closed in (0,1).

An individual only matches if she"expects to receive more from the match than
from remaining unemployed. Thus, under the nominal sharing rule, all individuals'
preferences are montonic increasing in the partner's efficiency parameter. Conse-
quently, acceptance sets are of the form r x(t) = [Ox(t),1), where Ox(t) is the threshold
partner for individual x at time t. Notice that under the nominal sharing rule, the
current threshold Oxfor any individual equals the expected normalized flow reward
rx/x of remaining unmatched. Now consider two agents y < x. Anyone who is
willing to match with y is clearly willing to match with x, by monotonicity. Thus,
rx/x 2::ry/y. Hence, we discover the

Nominal Matching Lemma If at any time, x is willing to match with y < x,
then y is willing to match with x, i.e. Ox(t) < y and y < x => Oy(t):SOx(t)< x.

Under the Nash sharing rule, the decision whether to match is somewhat less

60ptimal strategies under the nominal sharing rule are unchanged with the joint production
function x + y, reminiscent of Lockwood (1986). The Nash results require some modification.

7Note that the efficiency index of a potential partner is perfectly observable. Moreover, as
individuals have the right to sever a match at will, they will exercise that right when their current
partner is no longer an element of r:c.

5



involved: Two individuals agree to a match exactly when there is a positive flow
surplus from it. Consequently, the matching lemma is symmetric:

Nash Matching Lemma At any time, x is willing to match with y if and only
if y is willing to match with x, i.e. y E rAt) if and only if x E r y(t).

Given the multiplicative separability of the output function, and the equal output
sharing rule, everyone seeks to maximize the expected present value of all her future
partners' indices. But two individuals may differ in their future opportunity sets if
both aren't equally acceptable to all others. This fact, together with the Matching
Lemma, establish the following:

Nominal Sorting Lemma If an unmatched x is willing to match with y < x for
all times s ~ t, then x and y have the same lower threshold. That is, °As) ::; y for
all s ~ t and y < x => Oy(s)= °As) for all s ~ t.

PART I: LINEAR SEARCH TECHNOLOGY

4. Steady-State Analysis

In steady-state, each individual x employsa time-invariant strategy rAt) = r x

for all t ~ O. Consequently, no one will ever quit. To see this, just realize that
because of time-invariance, if y is acceptable to x at some moment, then y is always
acceptable to x. We can therefore simply restrict attention to the lower parameter
threshold for each individual.

So as to maintain the steady-state, we also assume that matches dissolve with
constant flow probability fj > 0, the dissolution rate.8 This implies that a matched
individual can expect to be separated from her current partner within t > 0 time
units with probability 1 - exp( -bt). Normalizing by own indices, let VAy) be the
present value to x of matching with y, and Vx the present value of being unmatched.
Finally, since thresholds are constant, say 1 = 00 > 01 > O2 > ... > 0, the Nominal
Sorting Lemma allows us to refer to the values by their equivalence class number: k
for [Ok,Ok-d. Thus, Vk(y) depends upon the dissolution rate and Vk in the following
fashion:

Vk(y) = 100[(1- e-f3t)Y/fJ+ e-f3tVk]fje-6tdt

which simplifies to Vk(y) = (y + fjVk)/(fj + fJ).
Let Uk be the unemployment rate of [Ok,Ok-d, and let u be the overall un-

employment rate. Then the probability that a given match lies in [Ok,Ok-d is
qk = Uk(Ok-l - Ok)/U. The value to being unmatched depends upon qk and the
rendezvous rate p.

Vk = 100 (qkE[Vk(y) 10k ::; y < Ok-I]+ (1 - qk)Vk)pe-(p+f3)tdt

SHere, everyone is infinite-lived. The analysis changes somewhat when {)is interpreted as the
death rate (equal to the birth rate).
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which, upon substitution of the expressions for Vk(y) and qk, and appeal to the
simple properties of the uniform distribution, yields

(13+ 8)j3Vk= P[(fh-l + fh)/2 - j3Vk]Uk(fh-l - ()k)/U

This equation reduces further with the simple observation that ()k = j3Vk. We may
now rewrite the previous equations as

u(j3 + 8)()k = pUk[(()k-l + ()k)/2 - ()k](()k-l - ()k)

Completing the square, this simplifies to the following

SS-l [Optimality Equation] ()o=1 and 2u(j3+ 8)()k= pUk(()k-l - ()k?

Also true in steady-state is the fact that the unemployment rate in each equiva-
lence class is constant. In other words, the flowof matches severed 8(1-Uk)(()k-l-()k)
equals the flow of matches created qkUk(()k-l- ()k). Or,

SS-2 [Constant Regional Unemployment] 8u(1 - Uk) = pU~(()k-l - ()k)

All that remains for a charaterization of equilibrium is to define u, the natural
rate of unemployment:

SS-3 [Labour Market Equilibrium] U = 'E'lUk(()k-l- ()k)

The analysis proceeds more smoothly if we write Ilk = (()k-l - ()k).

(to be completed)

A corollary of (SS-l) is that ()k> 0 for all k. Hence, there is an infinite number
of equivalence classes.

Questions: How many equivalence classes are there with a labour market (c, I)?
Who profits and who loses from the rent sharing?

5. Non Steady-State Analysis

We now forego any exogenous source of match dissolutions (i.e. set 8 = 0), and
consider the evolution of the model beginning with all individuals unmatched.

The results of the last section only obtain when 13> 0, for otherwise no equiv-
alence class would have positive measure and no matching would ever occur. The
same is not true when we consider non steady-state analysis, where falling flow
values provides an implicit discounting.

5.1 No Discounting Case

When individuals do not discount future payoffs, we must first worry about
their objective function. Suppose simply that individuals seek to maximize their
average payoff (or the liminf of truncated average payoffs, if the former fails to exist).
Then the non-steady-state analysis admits a simple formulation. Equivalence class
segmentation will arise at each moment in time, for the same reasons as before;
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however, there are dynamics. In light of the interpretation of thresholds as flow
rewards, the threshold for an equivalence class cannot increase without inducing
quits. That is, if O(t2) > O(td for t2 > tt, then any individual x 2: O(t2)paired
with y E [O(td,O(t2)) will quit her match. Thus, given the average payoff objective
function, we can assume WLOG that these matches never occur. Hence, we have
the

Threshold Monotonicity Lemma If (J= 0 andO(t) is the thresholdof an
equivalence class of individuals at time t, then O'(t) ::; O.

Another useful fact true only without discounting is that if an individual x E
(0,1) willat somefuture time to < 00 be subsumed within an equivalence class from
above, then she will never consider matching until time to. This follows from the
fact no individual will ever "match down" given that her expected value will equal
x at time to (and hence now equalsx, given(J= 0). Fromthis observationand from
the previous lemma, we can conclude the following:

Proposition [Non Steady-State Equivalence Class Characterization]
Under the equal output sharing rule, at each moment in time, only the following

two possibilities can arise:

1. One equivalence class [O(t),1) obtains at each time t 2: 0, with 0(0) E (0,1)
and O'(t) ::;0, and O(t)! O.

2. There is a finite or countable partitioning (Ot,1) U {(Ok,Ok-I]}r of (0,1) such
that for all k = 1,2,..., one equivalence class (Ok(t),Ok-d obtains at each time
t 2: 0, with Ok(O) E (Ok,Ok-I), °k(t) ::; 0, and Ok(t) ! Ok.

We now show that possibility (1) above can in fact arise, and precisely describe
the dynamics. Let u(t) be the fraction of unmatched individuals at time t, O(t) the
time-t threshold of the one equivalence class, and p( t) the average efficiency param-
eter among unmmatched individuals above O(t). These three parameters can act as
state variables for the dynamical system; however, it turns out to be analytically
more tractable to consider 7r(t) = p(t)[u(t)- O(t)] instead of p(t).

Then O(t) is an optimal threshold for individuals above it if the alternative of
waiting provides the same expected eventual partner. Now, an agreeable match
consummated at time t provides an expected partner's index of p(t)[1- O(t)/u(t)] +
O(t)[O(t)/u(t)]. Hence,

O(t) = 100 pe-p(s-t)[7r(S)+ O(s?]/u(s)ds

so that differentiation yields the following optimality equation:

O'(t) = pO(t) - p[7r(t) + O(t)2J1u(t) (1)

This equation implies that 0'(0) = -p[1 - O(o)J2/2, since u(O)= 1 is assumed.
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Next notice that the fraction of mutually agreeable meetings equals [1-0( t) / u(t)]2.
Hence, the quadratic matching technology implies that

u/(t) = -p[l - O(t)Ju(t)][u(t)- O(t)]= -p[u(t) - O(t)]2Ju(t) (2)

Finally, we discover a differential equation for 7r(t). To this end, first define the
"point" unemployment rate u(x, t) of index x at time t. Thus, u(t) = fi(t) u(x, t)dx

and 7r(t) = fi(t) xu(x, t)dx. Then notice that

Ut(x, t) = -p[l - O(t)/u(t)]u(x, t)

Hence, because individual x accepts no match until his time 0-1(X), we have u(O(t), t) =
1, so that

7r/(t) = -O/(t)O(t)+ (I XUt(x,t)dx
lO(t)

= -O/(t)O(t) - (I xp[l - O(t)/u(t)]u(x, t)dx
loct)

- -O/(t)O(t) - p7r(t)[u(t) - O(t)]ju(t)

It is possible to eliminate 7r(t) from this system, and discover that u/(t)O/(t) =
-O"(t)u(t). Using the initial conditions, this implies that

u(t) = -p[l - 0(0)]2
20/(t)

Thus, there is a continuum of equilibria, indexed by 0(0) E (0,1), all of which close
the market in finite time.

5.2 The Discounting Case

(to be completed)

PART II: QUADRATIC SEARCH TECHNOLOGY

6. Steady-State Analysis

(to be completed)

Big Question: Does the quadratic matching technology engender a Diamond-style
multiplicity of equilibria? i.e. Is there a unique natural rate of unemployment?

7. Non Steady-State Analysis

(to be completed)

Basic insight: There is no substantive difference between {3= 0 and {3 > O. Let

{3 > O. Then individuals whom the top cohort is not planning to match with (for
a while) impose no externality on the top cohort by matching early due to the
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quadratic technology. If the threshold of the top cohort ever reaches a particular
individual, then she will part with any current partner, because the flow rewards of
being unemployed exceed those of the current match. Thus the problem that the
top cohort solves is totally independent of any matching decisions made by those
not in the top cohort. Hence, if the threshold tends to zero when f3= 0 then it also
does so when f3 > O.

Possible Application: What is the optimal transformation from a socialist regime
(with random matching) to a capitalist one? How much unemployment should be
created?

APPENDIX: DYNAMICS WITH THE NASH SURPLUS SPLIT

(to be completed)

Question: Does this surplus division rule induce the maximum possible average
output - i.e. would a social planner (constrained by the matching technology)
make the same matching decisions?
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