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1 Introduction

A repeated game is a stylized model of a long-term relationship. The most common

solution concepts for repeated games are Subgame Perfect Equilibrium (SPE) and its

extension to imperfect public monitoring, Perfect Public Equilibrium (PPE). In both

cases, equilibrium strategies depend only on commonly observed histories. This yields

a recursive property that every continuation game is equivalent to the entire game.

Abreu, Pearce, and Stacchetti (APS) pursued this logic in 1986 and 1990, and so

characterized equilibrium payoffs using methods inspired by dynamic programming.

APS built on Green and Porter’s 1984 seminal exposition of dynamic Cournot

oligopoly — who in turn took inspiration from Stigler’s influential (1964) theory of

dynamic Bertrand oligopoly. To sustain collusion in a world with hidden pricing,

Stigler had proposed that firms initiate a price war if standard statistical tests sug-

gested cartel cheating. Stigler struggled with a problem that afflicts much of economic

theory — i.e, any dynamic setting with unobserved payoff-relevant actions that do

not just feed into an observable stochastic aggregate, like an observed price. It is

arguably important in all long-term partnerships ranging from relational contracting

to international political relations. Restricting attention to public signals intuitively

ignores strategically relevant information, and misses the potential richness of the

dynamic structure. Upon reflection, public monitoring should only be justified as

a tractable approximation of this richer private monitoring “reality”. So then, how

restrictive is it? Exactly how much does private monitoring expand the scope for

collusion in oligopoly, eg? Our finding is: substantially, in some cases.

Unfortunately, not only is private monitoring an interesting problem, it is also a

difficult one. And thus Stigler’s question remains unsolved after so much time. For

as is well-known, private monitoring in repeated games induces correlated private

histories, and this frustrates attempts to use recursive methods, as in APS. On a

sequential equilibrium path, continuation play in any period constitutes a correlated

equilibrium, where the private histories act as endogenous correlation devices. And

computing a best response in a non-trivial sequential equilibrium may well require an

impossibly complicated probabilistic inference. It is no surprise that Kandori (2002)

calls this “one of the best known long-standing open questions in economic theory.”

Though incentives are harder to provide with unobserved actions, the induced

correlation may facilitate coordination (as in Aumann 1974, 1987), and augment the

sequential equilibrium payoff set. So motivated, we explicitly incorporate correlated
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private histories, as first studied by Lehrer (1992). But our approach admits arbi-

trary correlation each period. First, we develop a new solution concept for infinitely

repeated games with perfect monitoring that reflects these correlation possibilities.

Whereas APS defined an operator that took the Nash equilibria of the ‘auxiliary game’

at the start of every subgame, we take correlated equilibria. This is a well-defined

exercise since we publicize past correlated recommendations. The largest fixed point

of the resulting operator yields the Markov Perfect Correlated Equilibrium (MPCE)

payoff set, and is therefore recursive like PPE. Notably, not only is our solution con-

cept tractable, it is arguably easier to compute than is the PPE set. For unlike Nash

equilibrium, the set of correlated equilibria can be found by linear methods.

We then explore the implications of MPCE for repeated games of private moni-

toring. We show that for any monitoring structure, the set of sequential equilibrium

payoffs is contained within the MPCE payoff set for the corresponding expected stage

game. This helps us deduce the tightest bound on repeated game equilibrium payoffs

that is independent of the monitoring structure.

Our paper has two parts. We begin with an infinitely repeated game of observed

actions, and embellish it with an extensive-form correlation device that can generate

any (possibly) history-dependent private messages every period. Since messages are

made public after players act, a recursive structure emerges. Unlike Prokopovych

(2006) who first took this road, we then show that a Markovian device suffices to

describe all equilibrium payoffs. This yields our MPCE solution concept. Theorem 1

characterizes the resulting payoff set — it is compact, convex, and nondecreasing

in the discount factor. Also, it contains all subgame perfect payoffs. Theorem 2

describes a tractable, recursive algorithm for computing it.

In the second thrust, we turn to a repeated game of private monitoring, and

relate its sequential equilibria to the MPCE of the corresponding repetition of the

expected stage game. Theorem 3 asserts that this set serves as an upper bound for

the sequential equilibrium payoffs. We thereby identify the certainly unattainable

sequential equilibrium payoffs for a repeated game of private monitoring for any fixed

discount factor. Notably this bound holds for all monitoring structures, as well as

private strategies in public monitoring games. In other words, we precisely compute

the set of payoffs potentially added by the richer information structure introduced by

private monitoring — one possible completion of Stigler’s original thought.

Theorem 4 explores how our payoff upper bound can be made tight. For unlike

MPCE, a standard repeated game of private monitoring with an initial period does
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not allow any pre-play signals. So motivated, we augment the MPCE concept. We

compute the Nash equilibrium payoffs of all auxiliary games using continuation payoffs

drawn from the MPCE set. Put differently, this applies the APS operator to the

MPCE payoff set. Any payoff in the resulting set can be supported as a sequential

equilibrium in a repeated game with some monitoring structure. We therefore obtain

the tightest possible bound that makes no reference to the monitoring structure.

Research on repeated games with private monitoring has been driven by the folk

theorem, and so proceeded by finding computable classes of sequential equilibria. In

contrast, we provide a superset of the equilibrium payoff set. The earliest work found

nearly efficient equilibria that dispense with all but a simple summary of past play.

Loosely, these “belief-based” approaches focus on the chance of misleading private

messages. This is possible when the monitoring is sufficiently accurate (e.g. Sekiguchi

1997, and Bhaskar and Obara 2002). A clever and recursive set of non-trivial equilibria

in which players’ beliefs are irrelevant was later identified by Piccione (2002) and Ely

and Valimaki (2002), and greatly extended by Ely, Horner, and Olszewski (2005).

While this belief-free approach constitutes a strict subset of all sequential equilibrium

payoffs and requires sufficiently patient players, it often secures a folk theorem.

Our paper is not intended in any way as a contribution to the folk theorem

literature. For we shift from characterizing what is a sequential equilibrium, to what

is not. Abreu, Milgrom, and Pearce (1991) call into question the relevance of a folk

theorem in this setting. Since a discounted repeated game unjustifiably entwines

time preference and the frequency of monitoring, the discrete time folk theorem logic

yields more informative monitoring with more rapid play. A large discount factor is

an appropriate modeling choice only if opportunities to observe others’ actions are

frequent. Though Coca Cola and Pepsi can change prices arbitrarily often, without

similarly (and implausibly) frequent reports of their rivals’ actions, they will change

behavior only as often as information arrives. The analysis of dynamic oligopoly

in Green and Porter (1984) was meaningful precisely because of the fixed discount

factor. Our analysis sheds light on equilibrium payoffs when the folk theorem does not

apply — such as when interaction is not very frequent, or when information revelation

about unobserved actions inherently cannot be accelerated. Instead our paper offers

definitive insights on payoffs for those applications with a fixed discount factor.

In arguing that the Cournot-Nash outcome was the wrong benchmark for deducing

collusion Porter (1983) wrote: “Industrial organization economists have recognized

for some time that the problem of distinguishing empirically between collusive and
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noncooperative behavior, in the absence of a ‘smoking gun’, is a difficult one.” Firms

can achieve higher payoffs in a fully compliant, noncooperative fashion. Combining

this insight with our approach, we allow that firms might avail themselves of correlated

information, and potentially achieve more outcomes. Our MPCE solution concept is

agnostic about the details of who knows what and when. In this way, MPCE is a

better litmus test of cheating for regulators to rule out the possibility of collusion;

otherwise, one might mistakenly assert an antitrust violation.

The paper is organized as follows. We gently begin with a motivational example.

Next, we discuss infinitely repeated games of perfect monitoring with an extensive

form correlation device, and develop our new MPCE solution concept. We illustrate

it by returning to our example. We then formally describe infinitely repeated games

with private monitoring, and compare their sequential equilibrium payoffs with the

MPCE payoffs of standard repeated games. Here, we establish our payoff upper

bound and show that it can be tight. All proofs are in the Appendix.

2 Motivational Example

A. Analysis of a Repeated Prisoners’ Dilemma.

Consider an infinitely repeated two player game of perfect monitoring with payoffs

given by Figure 1. The players share the discount factor 3/4, and so are not patient

enough to support the cooperative outcome in a subgame perfect equilibrium. Stahl

(1991) shows that even with public correlation, the set of SPE payoffs is the convex

hull of {(0, 0), (7, 0), (0, 7)}, and thus the highest symmetric subgame perfect equilib-

rium payoff is (7/2, 7/2). If instead we have imperfect public monitoring, then from

Kandori (1992) the PPE payoff set is even smaller.1

C D
C (4,4) (-13,20)
D (20,-13) (0,0)

Figure 1: Example Stage Game

Next, suppose that players privately observe a payoff irrelevant signal from {g, b}

1Kandori (1992) shows that the PPE set is monotone in the informativeness (in the sense of
Blackwell (1953)) of the public signal. Specifically, the PPE payoff set weakly shrinks when the
public signal is garbled.
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before play each period. The signal profiles {(g, g), (g, b), (b, g)} occur with probabil-

ities (1/2, 1/4, 1/4), respectively, independently of the past. After actions are chosen,

the private signal profile is commonly revealed to both players. To simplify matters,

assume players can access a public correlation device that draws a number z from a

uniform distribution on [0, 1].

Consider the strategy profile: “In phase 1, play C after observing g, and D after b.

If agents play the same action, then repeat phase 1. Otherwise, if player i = 1, 2 alone

plays D, then proceed to phase 2-i, where player i plays C and player −i mixes so

that i gets an expected payoff of 0. If both players play C, then stay in phase 2-i.

Otherwise, return to phase 1.”

When the repeated game is enriched by the signal process, these strategies con-

stitute a sequential equilibrium. The equilibrium payoff for each player is

v = (1/4)(4(1/2)− 13(1/4) + 20(1/4)) + (3/4)(v(1/2) + 2v(1/4) + 0(1/4))

i.e. v = 15/4. When called upon to play C, a player will acquiesce because

(1/4)(4(1/2)− 13(1/4)) + (3/4)((15/4)(1/2) + 2(15/4)(1/4)) ≥ (1/4)20(1/2)

At the start of phase 1, both players expect the payoff 15/4. In phase 2-i, player i

expects a payoff of 0 and player −i expects 15/2. The payoff (15/4, 15/4) Pareto dom-

inates the highest symmetric subgame perfect equilibrium payoff (7/2, 7/2) attainable

without any signals. In fact, (15/4, 15/4) dominates any symmetric PPE payoff at-

tainable under any imperfect public monitoring structure. Nevertheless, (15/4, 15/4)

can be attained in an MPCE because both the information and strategies depend

only on the most recent period.

This example reflects two truths: (a) relative to public monitoring, private moni-

toring may greatly expand the set of sequential equilibrium payoffs, and (b) MPCE

captures these richer information structures and the larger payoff set.

For a bigger picture insight, consider the intuition in Kandori (2009). Although

correlation cannot enhance play in the one-shot prisoners’ dilemma, the repeated

game instead confronts players with a game of chicken. This auxiliary game ad-

mits nontrivial correlated equilibria. Thus, imperfectly correlated signals can have a

meaningful dynamic strategic effect.

More specifically, in this game the gain to defecting is higher when the other
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player cooperates than when he defects since 20 − 4 = 16 > 0 − (−13) = 13. But

our correlating signal confuses the players about what action profile is played in any

period. Consequently, the temptation to cheat is a weighted average of 16 and 13,

and so smaller than if no correlation were available. This correlation is not without

a cost, since the equilibrium prescribes the most efficient payoff (4, 4) less often.

B. Economic Settings

We now argue that this example captures a wide range of economic settings.

Repeated Partnership. A theorist and an empiricist seek to write a paper

together. At the start of each day, they independently choose whether to exert high

effort or low effort (actions C and D in the example,respectively). They meet at the

end of every day to demonstrate their accomplishments. Suppose, however, that they

entertain subjective interpretations of their colleague’s effort (as in MacLeod (2003)

and Fuchs (2007)). Each colleague entertains either a good (g) or bad (b) subjective

interpretation, corresponding to high or low effort by his colleague, respectively. For

example, the empiricist’s regression output is commonly observed, but the theorist

cannot accurately gauge the effort required to produce the results. A key additional

source of discounting here is that the partnership might end.

Principal-Agency. An employee chooses each period to exert either high or low

effort (actions C and D in the example, respectively). His manager simultaneously

chooses one of two compensation schemes: pay a bonus for high output, or never

pay a bonus (actions C and D in the example). The private signals can take one

of the following two interpretations. In the first, private signals are non-binding

recommendations to managers and employees made by a board of directors. The

board’s fiduciary duty to maximize shareholder value would justify influencing the

relational contracts implemented by the firm. In the second, the private signals are

subjective evaluations of output made by the agents. MacLeod (2003) characterizes

the optimal contract when the joint density of the subjective evaluations is given.

With MPCE one can study this context while being agnostic about the exact structure

of the agents’ subjectivity.

Dynamic Quality Choice. A single product firm has one long-run customer

and can use higher or lower quality inputs (actions C and D). A product with better

inputs yields higher performance. Without observing the firm’s input choice, the
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customer decides whether or not to purchase the item (actions C and D). After each

period, the firm and the customer each observe a private signal indicating a good (g)

or bad (b) performing product.

Secret Price Cuts. Thus the actions C and D in the inspirational example from

Stigler (1964) represent high and low prices, while the private signals g and b may

correspond to high and low demand.

3 A Mediated Repeated Game

We begin with a repeated game of perfect monitoring G(δ), played in periods 1, 2, . . .,

and payoffs discounted by the factor 0 < δ < 1. Each period, every player i ∈ N =

{1, 2, . . . , n} chooses an action ai from a finite action set Ai. An action profile a is

thus an element of A =
∏

iAi, the set of pure action profiles.2 Payoffs given the

action profile a are u(a) = (u1(a), . . . , un(a)). Let αi denote the mixed action for

player i that chooses action ai ∈ Ai with chance αi(ai). Abusing notation, u(α) =

(u1(α), . . . , un(α)) denotes the expected payoffs from the mixture α. As usual, this

stage game has a Nash equilibrium. Let V be its set of feasible and individually

rational payoffs.

We embellish the infinitely repeated game G(δ) with a correlation device that

sends private messages to players each period conditional on the action history.

The device makes public the private message profile after play concludes each pe-

riod. Before each period (including the first), each player privately receives a mes-

sage ãi ∈ Ai, which we interpret as a recommendation to play action ai. By Au-

mann (1987), restricting messages to recommendations is without loss of general-

ity.3 Players commonly observe the null history h1 = ∅ before play begins. A his-

tory ht = (a1, ã1, . . . , at−1, ãt−1) is a complete record of all past outcomes in periods

1, 2, . . . , t − 1, i.e. pairs of action and recommendation profiles. The history ht is
commonly observed by all players at the start of period t. Let Ht be the set of all

histories ht, and H =
⋃∞
t=1 Ht the set of all histories of any length.

A (direct) correlation device µ is a probability measure on the set of action pro-

files A. An extensive form correlation device is a sequence of functions λ = (λt)∞t=1

2Throughout, subscripts will denote players and superscripts will denote periods. Let |X | denote
the cardinality of X . Also, we parse any vector x ≡ (xi, x−i). Since we consider finite action and
signal sets, all functions thereon are measurable.

3This can equivalently be justified by the Revelation Principle. In our finite model, the Revelation
Principle holds since there cannot be issues with the measurable composition of functions.
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such that (λt : Ht → ∆(A))∞t=1, and Λ is the space of all such functions.4 The

interpretation is that after history ht, the correlation device selects an action pro-

file ã = (ã1, · · · , ãn) ∈ A according to the distribution λ(ht) and privately informs

each player i of his recommended action ãi. Players then simultaneously choose ac-

tions. Finally, the recommendations are revealed to all players, and they become

part of the next history ht+1. Finally, let Gλ(δ) be the infinitely repeated mediated

game with stage game G, extensive form correlation device λ ∈ Λ, and discount

factor 0 < δ < 1.

A (behavior) strategy si for player i is a sequence (sti)∞t=1, where sti : Hti × Ai →

∆(Ai) for every period t = 1, 2, . . . So a strategy assigns a mixed action to every pair of

history and recommendation. For any strategy profile (s1, . . . , sn) = s ∈ S =
∏

i∈N Si,
correlation device λ, and history ht, the payoff for player i is the present value of future

payoffs: vti(s|ht, λ) = (1− δ)E

[

∞
∑

r=t

δr−tui(a
r)

∣

∣

∣

∣

λ, s, ht]
A strategy profile s is a sequential equilibrium of Gλ(δ) if in every period t, history ht,
and alternative strategy s̃i, vti(s|ht, λ) ≥ vti(s̃i, s−i|ht, λ)
4 Markov Perfect Correlated Equilibrium

If s ∈ S is a sequential equilibrium strategy profile of Gλ(δ), then Prokopovych (2006)

calls the pair (s, λ) a Perfect Correlated Equilibrium (PCE) of G(δ). The correlation

device assumed in a PCE may depend arbitrarily on history. We now introduce

a simpler solution concept that yields the same payoff prediction. A correlation

device λ is Markovian if its recommendations depend solely on the outcome (a, ã) of

the most recent period. Denote by ΛM the space of all such devices λ : A2 → ∆(A).

Similarly, a strategy s is Markovian if it depends only on the most recent outcome and

currently recommended action ãi, i.e. si : A2 ×Ai. If the device λ is Markovian, then

there is a Markovian best response to a Markovian strategy (cf. Hernandez-Lerma,

1989 Theorem 2.2). Thus, a pair (s, λ) is a Markov Perfect Correlated Equilibrium

4The notion of an extensive form correlation device is attributable to Forges (1986), who provided
the canonical representation and geometric properties of extensive form correlation devices.
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(MPCE) of G(δ) if it is a PCE of G(δ) and both the correlation device λ and the

strategy profile s are Markovian.

Let V λ be the set of all sequential equilibrium payoff vectors of Gλ(δ). The MPCE

payoff set V ∗ is the set of all payoff vectors attainable in an MPCE. Namely,

V ∗ ≡
⋃

λ∈ΛM

V λ

The Appendix exploits self-generation methods to prove:

Lemma 1 Any PCE payoff is attainable in an MPCE.

Because every MPCE is a PCE by definition, Lemma 1 implies that both concepts

yield the same equilibrium payoff sets.

Let µ ∈ ∆(A) be a probability distribution on the set of action profiles A — as

realized in a PCE as µ = λ(ht), or in an MPCE as µ = λ(a, ã). Fix a compact

convex set of payoff vectors W ⊂ Rn. A continuation value function k : A2 → W

describes discounted future (equilibrium) payoffs for each current period outcome.

Given the stage game payoffs, the mapping k completely describes the auxiliary

game Gk. This game is (the agent normal form of) a one-shot Bayesian game whose

type profile (ã1, . . . , ãn) ∈ A is drawn from the distribution µ. Each player’s type ãi

has the action set Ai, but the revised payoff function Eµ [(1− δ)ui(a) + δki(a, ã)|ãi]
for the recommended action ãi.

If the distribution µ is a correlated equilibrium of Gk, then the pair (µ, k) is

admissible w.r.t. W , where W is the co-domain of k. In this case,

Eµ[(1− δ)ui(a) + δki(a, ã)|ãi] ≥ Eµ[(1− δ)ui(a
′
i, a−i) + δki(a′i, a−i, ã)|ãi] (1)

for all players i, actions a′i ∈ Ai, and recommendations ãi ∈ Ai and ã ∈ A. The

value w of a pair (µ, k) is the (ex-ante) expected payoff Eµ[(1 − δ)u(a) + δk(a, a)].
Inversely, we write that the admissible pair (µ, k) enforces the payoff w on the set W

if w is the value of the pair, and W is the co-domain of k.
Let the set B(W ) be the union of all payoffs enforced on W , so that

B(W ) =
{

v = Eµ[(1− δ)π(a) + δk(a, ã)] ∣∣(µ, k) is admissible w.r.t. W
}

Equivalently, B(W ) is the union of all correlated equilibrium payoffs in the auxiliary

game Gk, as k ranges over all continuation value functions with co-domain W .
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The operator B(·) has some convenient properties. First, it is monotone: If

W ⊆ W ′, then B(W ) ⊆ B(W ′). Intuitively, the right side consists of the corre-

lated equilibria of a larger set of auxiliary games. Secondly, B(·) is convex-valued:

If (µ1, k1) supports w1 and (µ2, k2) supports w2, then for all weights θ ∈ [0, 1], the

payoff θw1 + (1− θ)w2 is supported by (θµ1 + (1− θ)µ2, θk1 + (1− θ)k2).
As usual, we call a set W ⊂ Rn is self-generating if W ⊆ B(W ).

Theorem 1 (MPCE Payoffs) The MPCE payoff set V ∗ has the properties:

(a) It is the largest fixed point of B(·).

(b) It is a compact convex subset of V .

(c) It contains the convex hull of the set of SPE payoffs of G(δ)

(d) It is nondecreasing in δ.

The proof is in the Appendix, but here we offer some intuition. First, part (a) captures

the recursive structure of MPCE, which is analogous to factorization of PPE. If a

set W is self-generating, then there exists an admissible pair with co-domain W . For

any w ∈ W , a sequential equilibrium with payoff w can be constructed period-by-

period by replacing every continuation value with a pair admissible w.r.t. W . This is

always possible since W is self-generating.

Next, compactness in (b) follows since weak inequalities define incentive compat-

ibility. Public randomization can always be created using a correlation device, and

so the MPCE payoff set is convex. To publicly randomize between outcomes, let

us step outside the space of direct devices and consider a new device that generates

two messages for each player: the original message and a second that indicates the

outcome of the public randomization. By the Revelation Principle, there exists an

equivalent direct device.

For insight into part (c), consider the extensive form correlation device that recom-

mends the subgame perfect equilibrium behavior after every history. By construction,

this device constitutes a PCE, and Lemma 1 guarantees that this payoff is attainable

in an MPCE. Part (c) in particular implies that the folk theorem holds for MPCE.

Part (d) follows from the well-known principle that dynamic incentives can induce

any behavior in patient players that it can in their less patient counterparts.

The MPCE payoff set can be obtained by iterating the B operator on a seed

set W 0 ⊆ Rn containing the feasible and individually rational payoffs V . The algo-

rithm starts by observing that V ∗ ⊆ V ⊆ W 0. Then either W 0 is self-generating

or B(W 0) ⊆ W 0. Repeatedly applying B(·) to the inequality V ∗ ⊆ W k, where
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(4,4)

7/2 7 132/17

7/2

7

132/17

Figure 2: Payoffs in the Repeated Game in Figure 1. The white area is the SPE
payoff set; MPCE payoffs also include the grey area, so that these are MPCE payoffs
unattainable in an SPE; the black area represents feasible and individually rational
payoffs that are not MPCE, and thus unattainable in any sequential equilibrium.

W k = B(W k−1), produces a strictly decreasing sequence of nested sets that con-

verges to the MPCE set V ∗.

Theorem 2 (Algorithm) The MPCE payoff set is V ∗ = limj→∞W j, where the

payoff set W 0 obeys V ∗ ⊆W 0, and W j+1 = B(W j) for j = 1, 2, 3, . . .

To implement the algorithm, we employ methods similar to those introduced by

Judd, Yeltekin, and Conklin (2003). Compactness and convexity allow us to represent

a set by its extreme points, and they imply that B(W ) = B(ext W ). This makes the

algorithm computationally tractable.

Let’s return to the repeated game of Section 2. In Figure 2, one can see that

the MPCE payoff set is significantly larger than that of subgame perfect equilibrium.

The extreme feasible and individually rational payoffs (132/17, 0) and (0, 132/17) are

also the highest single player payoff vectors. So by convexity, the symmetric payoff

(66/17, 66/17) is also an MPCE, and in fact the highest symmetric MPCE payoff.

This payoff is a convex combination of two extremal MPCE payoffs.
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We now justify these claims. First, let us construct the device that delivers the

highest payoff to one player. Let (p, q, r, 1 − p − q − r) ∈ ∆(A) be the chances

of {(C,D), (C,D), (C,D), (C,D)}, respectively, and w1, w2 ∈ R2 the continuation

payoffs for players 1, 2. Given the stage game of Figure 1, the highest MPCE payoff

for player 1 solves

max
p,q,r,(w1,w2)∈V

(1− δ)(4p− 13q + 20r) + δw1

given: (i) p, q, r ≥ 0 and p+q+r ≤ 1, and (ii) payoffs are feasible and individually ra-

tional, and in particular 0 ≤ w1, w2 ≤ 132/17, and (iii) two self-generation feasibility

constraints that players not be promised payoffs higher than can be delivered:

w1 ≤ (1− δ)(4p− 13q + 20r) + δw1 and w2 ≤ (1− δ)(4p+ 20q − 13r) + δw2

and (iv) two incentive constraints, for when players are told to play C:

(1− δ)(4p− 13q) + δw1 ≥ (1− δ)20p and (1− δ)(4p− 13r) + δw2 ≥ (1− δ)20r

Solving this program yields

132/17 = w1 = 4p− 13q + 20r and 0 = 4p+ 20q − 13r and p+ q + r = 1

So (p, q, r) = (13/17, 0, 4/17). Then the payoff (132/17, 0) is attainable in an MPCE.

By symmetry, so too is the payoff (0, 132/17). By convexity, the payoff (66/17, 66/17)

is an MPCE.

One can verify that imposing symmetry of the form q = r yields a lower con-

strained maximum — i.e. a symmetric device does not yield the highest symmetric

payoff. This implies that (66/17, 66/17) is the highest symmetric MPCE payoff.

This effect is not limited to this example. In fact, a sufficient condition for cor-

relation to be helpful in an infinitely repeated prisoner’s dilemma is that: (i) mutual

cooperation is efficient but not a subgame perfect equilibrium outcome, and (ii) the

gain to defecting is higher when the other player cooperates than when he defects.
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5 Repeated Games of Private Monitoring

A. The Stage Game. The structure here is standard, following closely the set-up

of Ely, Horner, and Olszewski (2005). As in Section 3, a repeated game is played in

periods 1, 2, . . . Each period, every player i ∈ N = {1, 2, . . . , n} chooses an action ai

from a finite action set Ai. But now, after play any period, each player receives a

private message mi from a finite setMi. Amonitoring structure ψ is a collection of |A|

probability distributions {ψ(·|a) ∈ ∆(M) | a ∈ A} on the message profile set M =
∏

iMi. Let the set of all monitoring structures be Ψ. After an action profile a is

realized, a message profile m = (m1, . . . , mn) is drawn with chance ψ(m|a), and each

player i is then privately informed of his component message mi.

A player’s realized payoff πi(ai, mi) following action ai and message mi depends on

the other actions only through their effect on the private messages. In other words,

observing one’s payoff does not confer additional information. Player i’s expected

payoff from the action profile a is then

ui(a) =
∑

mi∈Mi

ψi(mi|a)πi(ai, mi) (2)

We shall consider different monitoring structures ψ consistent with the same “ex-

pected stage game”. This requires that the payoffs u(a) = (u1(a), . . . , un(a)) not

depend on the monitoring structure. Since payoffs depend on ψ in (2), this exercise

implies a corresponding change in the stochastic payoff structure π. Such a choice is

possible provided (2) is solvable in πi for any ψi, and for all players i. This is feasible

if and only if the matrix (ψi(mi|ai, a−i), mi ∈ Mi, a−i ∈ A−i) has full rank for every

player i, and every action ai. This requires that each player can statistically identify

the actions of his opponents.5 This generically holds when, for instance, everyone has

at least as many messages as there are players. We assume that this condition is met

by any monitoring structure in Ψ under consideration. Our results do not explicitly

depend on this; it simply allows us to meaningfully consider a fixed stage game.

B. The Repeated Game. Let Gψ(δ) denote the infinitely repeated game of private

monitoring with monitoring structure ψ, played in periods t = 1, 2, 3, . . . . Payoffs

are discounted as usual by the factor 0 < δ < 1. The game reduces to a standard

repeated game with perfect monitoring when private messages are action profiles, i.e.

5This is somewhat analogous to the pairwise full rank condition of Fudenberg, Levine, and Maskin
(1994), which requires that each player be able to statistically identify the actions of another player.

13



if Mi = A and ψi(mi|a) = 1 when mi = a and 0 otherwise, for all players i. Similarly,

the game reduces to a standard repeated game with public monitoring if Mi =M for

all players i, and ψi(m|a) = 1 if and only if ψj(m|a) = 1 for every pair of players i, j.

In each period, a player observes his realized action ai ∈ Ai and private mes-

sage mi. Let the null history h1i be player i’s history before play begins. A private

history hti is the complete record of player i’s past actions (a1i , . . . , a
t−1
i ) and past

private messages (m1
i , . . . , m

t−1
i ), including the null history. Let H t

i be the set of all

possible private histories hti for player i, and Hi =
⋃∞
t=1H

t
i the set of all such histo-

ries of any length. A (behavior) strategy si is a sequence of functions {sti}
∞
t=1, where

sti : H
t
i → ∆(Ai) for every period t = 1, 2, 3, . . . In other words, it maps every private

into a mixed action. Let S be the space of all such strategy profiles s = (s1, . . . , sn).

Given the strategy profile s ∈ S, Bayes’ rule and the Law of Total Probability

naturally imply beliefs and behavior at all future information sets. Let vi : S → R
be the discounted average payoff for player i in the repeated game Gψ(δ). While

more precisely presented in the Appendix, here we write that player i’s discounted

average payoff starting in period t from the strategy profile s is vti(s|h
t
i). Then a

strategy profile s is a sequential equilibrium of Gψ(δ) if and only if no player can

ever profitably deviate, i.e. vi(s|h
t
i) ≥ vi(s̃i, s−i|h

t
i) for every private history hti and

strategy s̃i : Hi → ∆(Ai) of every player i. Since playing a Nash equilibrium of G

after every history is a sequential equilibrium, existence is guaranteed. Let Vψ be the

set of sequential equilibrium payoff vectors of the mediated game Gψ(δ).

6 Unattainable Private Monitoring Payoffs

A. An Upper Bound. We bound the sequential equilibrium payoffs by the MPCE

payoff set V ∗. This inclusion might at first blush appear surprising: For the repeated

game Gψ(δ) has no proper subgames, whereas Gλ(δ) introduces a new subgame every

period. So while continuation play in Gλ(δ) is common knowledge, it is not so in

Gψ(δ). We proceed by associating outcomes in Gψ(δ) with those of Gλ(δ). To do

so, we replace the endogenous correlated beliefs in Gψ(δ) with those from a fixed

correlation device λ. Also, we do so in an incentive compatible fashion.

Theorem 3 (Upper Bound) For any monitoring structure ψ, every sequential equi-

librium payoff of the repeated game Gψ(δ) is attained in an MPCE of G(δ).
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This implies that MPCE captures the payoffs in many studied subclasses of equilibria.

It contains all PPE payoffs for any public monitoring structure, as well as all sequential

equilibrium payoffs in private strategies (Kandori and Obara, 2006), as well as all

belief-free and weakly-belief-free equilibrium payoffs (Kandori, 2009).

The proof in the Appendix first deduces this result for PCE, and then appeals

to Lemma 1. The proof for PCE involves two steps. We show that for any strategy

profile s ∈ S, there exists a correlation device λ ∈ Λ and strategy profile s ∈ S that

induce in Gλ(δ) the same outcome as does s in Gψ(δ). After the history ht in the

mediated game Gλ(δ), the correlation device draws a “fictitious private history” hti
for each player i ∈ N according to the true posterior probability of that history

conditional on the actions of history ht. The device then recommends the actions

prescribed at that private history profile ht by the continuation strategy profile s(ht).

By induction on the period t, we show that the distribution over recommendations in

the mediated game coincides with the distribution of actions in Gψ(δ). In our next

step, we argue that if s is a sequential equilibrium strategy profile of Gψ(δ), then λ

constitutes a PCE. For if some player has a profitable deviation in Gλ(δ), then we

argue that he must also have one in Gψ(δ). The argument turns on the equivalence

of beliefs about continuation play in Gλ(δ) and Gψ(δ).

B. A Tight Upper Bound. Since this upper bound is independent of the mon-

itoring structure ψ, one might think that the inclusion in Theorem 3 could not be

tight. In fact, this is true, but only because correlated play in a private monitoring

game starts no earlier than the second period. So inspired, we now exploit the MPCE

payoffs to deduce a tight upper bound for equilibrium payoffs of private monitoring

games.

For a standard repeated game played in periods 1, 2, 3, . . ., we can remove the first

period correlation from MPCE. An admissible pair (µ, k) is called Nash admissible

if µ is the result of independent mixtures, i.e. µ ∈
∏

i∆(Ai). We then obtain the

operator from APS, here denoted by BNE :

BNE(W ) =
{

v = Eµ[(1− δ)π(a) + δk(a, ã)] ∣∣(µ, k) is Nash admissible w.r.t. W
}

This collects the Nash equilibrium payoffs of all auxiliary games formed with contin-

uation value functions mapping into W . Since first period strategies are uncorrelated

in Gψ(δ), we use a two-stage procedure. First, we compute the MPCE payoff set, and

then use this set W = V ∗ as continuation payoffs in BNE(W ).
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Theorem 4 (Tightness) A payoff is Nash admissible w.r.t. the MPCE set of G(δ)

if and only if it is a sequential equilibrium payoff of Gψ(δ) for some monitoring struc-

ture ψ, so that
⋃

ψ∈Ψ

Vψ = BNE(V
∗)

Without reference to the monitoring structure, there exists no tighter bound on the

sequential equilibrium payoffs in a repeated game of private monitoring.

In the example of Section 2, Theorem 3 demonstrates that (66/17, 66/17) is the

highest symmetric sequential equilibrium payoff in the infinitely repeated game with

any monitoring structure, and so all symmetric payoffs in (66/17, 4] are unattainable.

In fact, except for the payoffs (132/17, 0) and (0, 132/17), all efficient payoff vectors

are unattainable in a sequential equilibrium.

C. How Restrictive Is Perfect Public Equilibrium? We are finally able to

address one of our key motivations, and ask how restrictive is the public monitoring

assumption that the literature has settled on. Does it ever greatly understate the

sequential equilibrium payoff set? Since the set of PPE payoffs is a subset of subgame

perfect payoffs, the demonstrated gap between the MPCE and SPE payoff sets implies

that a public solution concept may fail to capture the potential outcomes of environ-

ments with richer information in which the folk theorem is silent. Thus a regulator

attempting to detect antitrust violations may, upon observing payoffs inconsistent

with some PPE, draw the wrong conclusion about collusion. These efforts ought to

keep in mind the strategic opportunities afforded by complex information structures;

This is done precisely by using MPCE in the place of a public monitoring solution

concept. Furthermore, in many applications the relevant monitoring structure is diffi-

cult to determine, and thus PPE is difficult to use. Thus unlike PPE, MPCE enables

one to study equilibrium payoffs while being agnostic about the monitoring structure.

We will now demonstrate that for a generic class of prisoner’s dilemma games, if

the discount factor is high, but not too high, correlation improves upon subgame perfect

equilibrium, and hence perfect public equilibrium. Consider the infinite repetition of

the following prisoner’s dilemma.

As before, we assume that (C,C) is the efficient action profile (i.e. b− c < 2), and

that the gain to defecting when the opponent plays C is larger than the gain when he

plays D (i.e. b− 1 < c). Stahl (1991) characterizes the subgame perfect equilibrium

payoff correspondence with respect to the discount factor. If δ < c/b then the only

such payoff vector is the stage game Nash equilibrium payoff (0, 0). When δ ≥ 1−1/b,
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C D
C (1,1) (-c,b)
D (b,-c) (0,0)

Figure 3: Prisoner’s Dilemma (b > 1, c > 0)

every feasible and individually rational payoff vector is a subgame perfect equilibrium

payoff vector. But for intermediate discount factors δ ∈ [c/b, 1− 1/b) then the set of

subgame perfect payoffs is the triangle T = {(0, 0), (b− c, 0), (0, b− c)}.

Observe next that for intermediate levels of discounting in this range, correlation

can be used to support a payoff vector (v∗, v∗) /∈ T . To see this, let us exploit the

logic at the end of section 2.A and the intuition of Kandori (2009), which suggests

there are gains to confusing the players about the history. Consider the continuation

value function: k(a, ã) = 









































(v∗, v∗) if a = ã = (C,C)

(b− c, 0) if a = ã = (D,C)

(0, b− c) if a = ã = (C,D)

(0, 0) if a = ã = (D,D)

(0, 0) if a 6= ã

We now check whether the auxiliary game implied by this continuation value function

induces the game of “chicken”, and therefore has non-trivial correlated equilibria. We

will then check that there exists a correlated equilibrium with an expected payoff

outside of the triangle T . “Chicken” requires that

(1− δ) + δv∗ ≤ (1− δ)b

(1− δ)(−c) + δ(b− c) ≥ 0

Both expressions are satisfied for a payoff vector v∗ /∈ T over the entire range of

parameters considered.

Since the continuation payoffs to all outcomes except a recommended (C,C) are

subgame perfect, we can focus on supporting the current MPCE payoff v∗. Consider
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the distribution over recommendations

µ(a) =



















p if a = (C,C)

1−p
2

if a = (C,D)

1−p
2

if a = (D,C)

Then the expected payoff satisfies the equation

v∗ = p[(1− δ) + v∗] +
1− p

2
[(1− δ)b] +

1− p

2
[(1− δ)(−c) + δ(b− c)]

which implies that the target payoff

v∗ =
b(1− p) + (2 + c− 2δ)p− c

2(1− δp)

Incentive compatibility requires

2p[(1− δ) + v∗] + (1− p)[(1− δ)b] ≥ 2p[(1− δ)(−c) + δ(b− c)]

Since the auxiliary game is “chicken”, there exists a probability p > 0 that satisfies

incentive compatibility. When p > 0 the target payoff v∗ is larger than (b− c)/2 and

thus outside of T . This establishes our earlier claim.

7 Conclusion

Understanding the equilibria of repeated games with private monitoring has long

been the next frontier in game theory. Yet finding sequential equilibria here has

been hard, because existing recursive methods only capture subsets of them. In

this paper, we have developed a new solution concept for repeated games, Markov

Perfect Correlated Equilibrium, with a recursively computable payoff set. This is

the smallest set that contains all equilibrium payoffs of the analogous repeated game

endowed with any monitoring structure. It therefore provides insights into important

economic environments while being agnostic about specific, possibly unobservable,

informational aspects of the game. We also hope our bound will offer a rebirth to

the recursive methods of Abreu, Pearce, and Stacchetti (1990) in settings with richer

information structures than they had envisioned. Finally, we have shown that the

restriction to perfect public equilibrium can be misleading at times — for instance in
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games with a prisoner’s dilemma structure.

A Omitted Proofs

A.1 Any PCE Payoff is an MPCE Payoff: Proof of Lemma 1

Let W ⊂ Rn be a compact, convex set with extreme points denoted ext W . The

continuation value function k : A2 →W ⊂ Rn has the bang-bang property if k(a, ã) ∈
ext W for all action profiles a ∈ A and recommendation profiles ã ∈ A.

We first argue that any continuation value function can be replaced with one that

takes values in ext W .

Claim 1 (Bang-Bang) Any continuation value function is equivalent to one with

the bang-bang property.

Proof of Claim 1: We adapt the proof of Theorem 3 in APS, accounting for correlation

and a finite domain of the continuation value function.6 For a bounded set W ⊂ Rn,
let K(W ) be the set of all functions from A×A to W , and K(W |w) ⊆ K(W ) the set

of continuation value functions that support w onW . Since K(W ) = W |A|2, andW is

compact, it is compact in the product topology, by Tychonov’s Theorem. Next, since

a convex combination of admissible pairs is also an admissible pair , K(W |w) is a

convex set. As a closed subset of a compact set, it is compact. By the Krein-Milman

Theorem, any k ∈ K(W |w) can be written as a convex combination of extreme points

of K(W |w). Finally, linearity of incentives and payoffs implies that k̂ is a convex

combination of extreme points of K(ext W |w), and consequently has the bang-bang

property. 2

Proof of Lemma 1: Let [x1, . . . , xm] be the convex hull of the points (x1, . . . , xm). Let

VPCE be the set of PCE payoffs. Fix a PCE λ ∈ Λ with payoff w ∈ VPCE. Define the

product space V ≡ VPCE
|A|2. To prove that the payoff w is attainable in an MPCE,

we show that there exists a correlation device λM ∈ ΛM that delivers the payoff w and

is incentive compatible. Thus, we want to show that the payoff vector w is supported

by the convex hull of a self-generating set of |A|2 payoff vectors.

6In APS, an equilibrium prescribes continuation behavior for each of a continuum of possible
public signals. This required an appeal to Aumann (1965) for technical reasons. In our context,
a continuation value function is defined on a finite set. The set of continuation value functions,
therefore, is a simpler object that can be treated with simpler mathematical tools.
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Any continuation value function can be written as an ordered |A|2-tuple of payoff

vectors, one for each action profile and recommendation. Define the correspondence

on |A|2-tuples of payoff vectors φ : V → 2V by

φ(v1, . . . , v|A|2) = [K( VPCE|v1 ), . . . ,K(VPCE|v|A|2] )] ∩ [v1, . . . , v|A|2]

The correspondence φ maps |A|2-tuples of payoff vectors to the convex hull of sup-

porting sets of |A|2-tuples of payoff vectors.

We now claim that the correspondence φ satisfies the hypotheses of the Kakutani

Fixed Point Theorem. Since VPCE is non-empty, compact and convex, V is non-

empty, compact and convex. The correspondence has non-empty values: since vj

is a PCE payoff, K(VPCE, vj) is not empty. Since by Claim 1 continuation payoffs

can equivalently be taken from ext VPCE, the intersection with the convex hull of

an arbitrary set of PCE payoffs is non-empty. Furthermore, φ takes compact convex

values as the intersection of two compact, convex sets. By Claim 1 and the Theorem

of the Maximum, K(VPCE , vj) is upper hemi-continuous in vj. Similarly, [v1, . . . , v|A|2]

is upper hemi-continuous. Then φ is the intersection of upper hemi-continuous corre-

spondences and therefore also upper hemi-continuous. Thus, by the Kakutani Fixed

Point Theorem there exists a fixed point (v∗1, . . . , v
∗
|A|2).

For each element v∗j of the fixed point, j = 1, . . . , |A|2, there exists a probability

distribution µ∗
j on A2 used to enforce it, since each is a PCE payoff. Then the

device λM making recommendations according to µ∗
j for j = 1, . . . , |A|2 is Markovian

and incentive compatible by construction. 2

A.2 Characterization of MPCE: Proof of Theorem 1

Part (a) Factorization: First we show that if W is self-generating, then B(W ) ⊆

V ∗. For any payoff vector w ∈ B(W ) there exists a pair (µ, k) that enforces w on W .

Since W is self-generating, k(a, ã) ∈ W for all outcomes (a, ã). Each payoff k(a, ã) is
enforced onW . In this way, we can (by the Axiom of Choice) recursively define a PCE

by constructing admissible pairs ad infinitum. By Lemma 1, the PCE payoff w is an

MPCE payoff. Thus, W ⊆ V ∗. Next, we prove that V ∗ is a fixed point of B(·). Since

V ∗ contains every self-generating set, we need only show that V ∗ is self-generating.

Consider an MPCE payoff w ∈ V ∗. There exists a pair (µ, k) such that k(a, ã) ∈ V ∗

for each pair of action and recommendation profiles (a, ã). Hence, w is admissible

w.r.t. V ∗, or equivalently that w ∈ B(V ∗).
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Finally, suppose that there exists a fixed pointW of B(·) that strictly contains V ∗.

Then W is self-generating, and so is contained in the MPCE set V ∗. This contradicts

the premise that W strictly contains V ∗. So V ∗ is the largest fixed point of B(·). 2

Part (b) Compact and Convex: First, we want to show that B(W ) is compact if

W is compact. Since B(W ) is bounded, by the Heine-Borel Theorem it is compact if

it is also closed. Consider a sequence {bj} in B(W ) that converges to some b ∈ Rn.
Each bj ∈ B(W ) is supported on W by an admissible pair (µj, kj). Endow the space

of such functions that map A × A2 into ∆(A) ×W with the weak-* topology (i.e.

pointwise convergence). The sequence is bounded, and so by the Bolzano-Weierstrass

Theorem it has a convergent subsequence {µl, kl}. The weak inequalities that define

incentives are satisfied pointwise in the sequence {µl, kl}, and hence are also by the

limit (µ, k), which thus enforces b ∈ Rn. Then b ∈ B(W ), and so B(W ) is closed. 2

Part (c) Contains SPE Payoffs: Since the mediated game has perfect monitoring

of actions, players may ignore the correlation device, and instead play the subgame

perfect equilibrium behavior after every history. 2

Part (d) Nondecreasing δ: The proof is very similar to that of APS, Theorem 6. 2

A.3 Algorithm: Proof of Theorem 2

We extend the methods of Judd, Yeltekin, and Conklin (2003) to allow for correlation.

Let W be the set of all convex subsets of V , partially ordered by set inclusion. Then

the operator B(·) is monotone on the complete lattice W. By Tarski’s Fixed Point

Theorem, B(·) has a largest fixed point V ∗. LetW 0 = V and recursively define W k =

B(W k−1) for k = 1, 2, . . .. First, by monotonicity V ∗ = B(V ∗) ⊆ B(W 0) = W 1. Next,

suppose that V ∗ ⊆ W k. Monotonicity again yields V ∗ = B(V ∗) ⊆ B(W k) = W k+1.

By induction, V ∗ ⊆ W k for all k = 1, 2, . . . ,

The sequence {W k}∞k=0 is bounded and monotone, and therefore converges (in the

Hausdorff topology) to a point in the complete lattice W. Let W∞ = limk→∞W k.

This limit is a fixed point of B(·), and by construction contains V ∗. But V ∗ cannot

be a strict subset ofW∞, since that would imply that V ∗ is not the largest fixed point

of B(·), contrary to Theorem 1. 2
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A.4 MPCE as an Upper Bound: Proof of Theorem 3

At the information set hti, player i believes that the other players’ private history

profile is ht−i with posterior probability µti,s(h
t
−i|h

t
i), and that their period t action

profile is a−i with posterior probability

βti(a−i|h
t
i, s) =

∑

ht
−i

∈Ht

−i

µti(h
t
−i|h

t
i, s) s−i(a−i|h

t
−i)

Player i’s continuation payoff under the strategy profile s at the private history hti is

therefore

κti(h
t
i|s) = (1− δ)E

[

∞
∑

r=t+1

δr−t−1ui(β
r
i )

∣

∣

∣

∣

∣

hti, s

]

(3)

where ui(β
t
i |h

t
i, s) =

∑

a
−i∈A−i

ui(si(h
t
i), a−i)β

t
i(a−i|h

t
i, s). Then player i’s expected

payoff under the strategy profile s at the private history hti is

vti(s|h
t
i) = (1− δ)ui(β

t
i)|h

t
i, s) + δκti(h

t
i|s)

As is well-known, a strategy profile s is a sequential equilibrium if and only if there

are no profitable one-shot deviations. This is equivalent to

(1− δ)ui(β
t
i |h

t
i, s) + δκti(h

t
i|s) ≥ (1− δ)ui(β

t
i |h

t
i, s̃i, s−i) + δκi(h

t
i|s̃i, s−i) (4)

for all players i, private histories hti, and strategies s̃i 6= si.

Recall that s and v denote, respectively, the strategy profiles and payoffs in Gψ(δ),

and s and v denote, respectively, the strategy profiles and payoffs in Gλ(δ).

Claim 2 (The Correlation Device) For any strategy profile s ∈ S of Gψ(δ), there

exists a correlation device λs ∈ Λ and strategy s ∈ S in the mediated game that induces

the same outcome in Gλs(δ) as s does in Gψ(δ).

Proof of Claim 2: For any strategy profile s ∈ S, let βt (at|(a1, . . . , at−1), s) be the

induced posterior probability of the action profile at in period t given the action

history (a1, . . . , at−1). The action mixture in period 1 is simply β1(a1) = α1(a).

Given the realized action profile a1, action profile a2 occurs with chance β2(a2|a1) =
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∑

m1∈M ψ(m1|a1)s(a2|a1, m1) using the joint density of signals ψ(·|a1). In general,

βt
(

at|s, (a1, . . . , at−1)
)

=
∑

(m1,...,mt−1)∈M t−1

s
(

at|(a1, . . . , at−1), (m1, . . . , mt−1)
)

t−1
∏

k=1

ψ(mk|ak)

For all action histories ht ∈ Ht, define λs(ht) = βt(·|s, ht). Then, the recommendation

distribution of λs coincides with the distribution of actions in Gψ(δ). Call s̄ the

obedient strategy in Gλs(δ) — namely, where players obey the recommendation of the

correlation device λ after all histories. Since λs recommends the same outcome as w,

the obedient strategy s̄ in Gλs(δ) delivers the same outcome as s. 2

Wemust prove that obeying λs is a mutual best response, or vti(s̄|λs) ≥ vti(s′i, s̄−i|λs)
∀s′i ∈ S. We’ll argue that for every deviation s′i ∈ Si in the mediated game, there is a

corresponding strategy s′i ∈ Si with vti(s′i, s̄−i|λs) = vti(s
′
i, s−i). Namely, any deviation

in the meditated game yields the same payoff as some strategy in the repeated game

of private monitoring; this cannot be a profitable deviation against the sequential

equilibrium profile s−i. So vti(s̄|λs) = vti(s) ≥ vti(s
′
i, s−i) = vti(s′i, s̄|λs), as required.

Claim 3 (Verifying Incentives) If s ∈ S is a sequential equilibrium strategy of

Gψ(δ), then the correlation device λs ∈ Λ is a PCE of G(δ).

Proof of Claim 3: By the one-shot deviation principle, the obedient strategy is a best

reply to itself iff there is no history after which a player would choose to disobey his

recommendation once, and return to the obedient strategy thereafter. So, it suffices

to restrict attention to alternative strategies that differ from the obedient strategy in

one history. Consider a history ht ∈ Ht at which strategy s′i instead plays the action a′i

in period t. Let H(ht) ⊆ H t be the set of private histories consistent with the action

history portion of ht in the mediated game. At any private history hti ∈ H(ht):vti(si, s̄−i) = (1− δ)Eλ
[

ui(a
′
i, a

t
−i)|a

t
i, ht]+ δEλ

[

∞
∑

r=t+1

δr−t−1ui(a
r)

∣

∣

∣

∣

(a′i, ht)]
=(1− δ)ui(a

′
i, s−i(α|h

t
i)) + δκt+1

i ((hti, a
′
i)|(s

′
i, s−i))

= vi(s
′
i, s−i)

Thus, if s′i is a profitable deviation from that recommended by the device λs in

the mediated game, then there exists a profitable deviation in Gψ(δ). This would

contradict the premise that s is a sequential equilibrium profile in Gψ(δ). Since any
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strategy in Gλs is equivalent to some non-profitable deviation in Gψ(δ), the correlation

device λs and the obedient strategy s̄ constitute a PCE of G(δ). 2

A.5 MPCE Inclusion is Tight: Proof of Theorem 4

(⊆): Fix a game Gψ(δ), and consider a sequential equilibrium strategy profile s with

payoff v. Construct a PCE that induces the same outcome as s. Absent a pre-play

signal, first period actions owe to independent mixtures, and so the PCE recommends

an independent mixture in the first period. Next, by Lemma 1, the continuation values

prescribed by the PCE are in V ∗. Thus, the payoff v is Nash enforced on V ∗. 2

(⊇): We want to show that for every payoff w in BNE(V
∗), there exists a monitoring

structure ψ and a sequential equilibrium s of Gψ(δ) with the same payoff w. Consider

one such payoff and the pair (µ, k) that Nash enforces it on V ∗. Thus, for every action

profile aj ∈ A, j = 1, . . . , |A|, there is a payoff wj ∈ V ∗ that is enforced on V ∗ by the

admissible pair (µj, kj). Let the monitoring structure ψ provide perfect monitoring of

actions, as well as a vector of private signals for each player. In particular, after the

action profile aj , each player privately observes his component of a draw from µj. So

defined, consider the following strategy profile s in Gψ(δ). “In the first period, mix

according to µ. Following every subsequent history, choose the action correspond-

ing to the most recently received message.” Since the private messages are MPCE

recommendations, s constitutes a Nash equilibrium. Then there exists a sequential

equilibrium with the same path as s. So, there exists a private monitoring sequential

equilibrium with the payoff w. 2

24



References

Abreu, D., P. Milgrom, and D. Pearce (1991): “Information and Timing in

Repeated Partnerships,” Econometrica, 59(6), 1713–1733.

Abreu, D., D. Pearce, and E. Stacchetti (1986): “Optimal Cartel Equilibria

With Imperfect Monitoring,” Journal of Economic Theory, 39, 251–269.

(1990): “Toward a Theory of Discounted Repeated Games with Imperfect

Monitoring,” Econometrica, 58(5), 1041–1063.

Aumann, R. (1974): “Subjectivity and Correlation in Randomized Strategies,” Jour-

nal of Mathematical Economics, 1, 67–96.

(1987): “Correlated Equilibrium as an Expression of Bayesian Rationality,”

Econometrica, 55(1), 1–18.

Bhaskar, V., and I. Obara (2002): “Belief-Based Equilibria in the Repeated

Prisoners’ Dilemma with Private Monitoring,” Journal of Economic Theory, 102,

40–69.

Blackwell, D. (1953): “Equivalent Comparisons of Experiments,” Annals of Math-

ematical Statistics, 24(2), 265–272.

Ely, J., J. Horner, and W. Olszewski (2005): “Belief-free Equilibria in Re-

peated Games,” Econometrica, 73(2), 377–415.

Ely, J., and J. Valimaki (2002): “A Robust Folk Theorem for the Prisoner’s

Dilemma,” Journal of Economic Theory, 102(1), 84–105.

Forges, F. (1986): “An Approach to Communication Equilibrium,” Econometrica,

54(6), 1375–1385.

Fuchs, W. (2007): “Contracting with Repeated Moral Hazard and Private Evalua-

tions,” American Economic Review, 97(4), 1432–1448.

Fudenberg, D., D. K. Levine, and E. Maskin (1994): “The Folk Theorem with

Imperfect Public Information,” Econometrica, 62(5), 997–1039.

Green, E. J., and R. Porter (1984): “Noncooperative Collusion Under Imperfect

Price Information,” Econometrica, 52(1), 87–100.

25



Hernandez-Lerma, O. (1989): Adaptive Markov Control Processes. Springer-

Verlag.

Judd, K., S. Yeltekin, and J. Conklin (2003): “Computing Supergame Equi-

libria,” Econometrica, 71(4), 1239–1254.

Kandori, M. (1992): “The Use of Information in Repeated Games with Imperfect

Monitoring,” The Review of Economic Studies, 59(3), 581–593.

Kandori, M. (2002): “Introduction to Repeated Games with Private Monitoring,”

Journal of Economic Theory, 102, 1–15.

Kandori, M. (2009): “Weakly Belief-Free Equilibria in Repeated Games with Pri-

vate Monitoring,” mimeo.

Kandori, M., and I. Obara (2006): “Efficiency in Repeated Games Revisited:

The Role of Private Strategies,” Econometrica, 74(3), 499–519.

Lehrer, E. (1992): “Correlated Equilibria in Two-Player Repeated Games with

Nonobservable Actions,” Mathematics of Operations Research, 17(1), 175–199.

MacLeod, W. B. (2003): “Optimal Contracting with Subjective Evaluation,” The

American Economic Review, 93(1), 216–240.

Piccione, M. (2002): “The Repeated Prisoners Dilemma with Imperfect Private

Monitoring,” Journal of Economic Theory, 102, 70–83.

Porter, R. H. (1983): “A Study of Cartel Stability: The Joint Executive Commit-

tee, 1880-1886,” The Bell Journal of Economics, 14(2), 301–314.

Prokopovych, P. (2006): “Perfect Correlated Equilibria in Repeated Games,”

University of Michigan Manuscript.

Sekiguchi, T. (1997): “Efficiency in the Prisoners’ Dilemma with Private Monitor-

ing,” Journal of Economic Theory, 76, 345–361.

Stahl, D. (1991): “The Graph of Prisoners’ Dilemma Supergame Payoffs as a Func-

tion of the Discount Factor,” Games and Economic Behavior, 3, 368–384.

Stigler, G. (1964): “A Theory of Oligopoly,” Journal of Political Economy, 72(1),

44–61.

26


