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This paper introduces a general model of matching that includes evolving public Bayesian
reputations and stochastic production. Despite productive complementarity, assortative matching
robustly fails for high discount factors, unlike in Becker (1973). This failure holds around the highest
(lowest) reputation agents for “high skill” (“low skill”) technologies. We find that matches of likes
eventually dissolve. In another life-cycle finding, young workers are paid less than their marginal
product, and old workers more. Also, wages rise with tenure but need not reflect marginal products:
information rents produce non-monotone and discontinuous wage profiles.

1. INTRODUCTION

Consider a static Walrasian pairwise matching economy where output depends solely on
exogenous abilities. Becker (1973) showed that positive assortative matching (PAM) arises
when abilities are productive complements. This is the foundational paper in the noncooperative
theory of decentralized matching markets, and has established PAM as the benchmark allocation
in the matching literature. Shimer and Smith (2000) and Atakan (2006) have since found
complementarity conditions under which PAM still obtains in this fixed type framework with
random matching and search frictions.

In a static world, productively complementary individuals assortatively match by their
expected abilities. We introduce and explore a recursively solvable continuum agent matching
model where agents have slowly evolving characteristics. In this dynamic model we prove
existence of a steady state equilibrium and the welfare theorems quite generally. We then
specialize to a world where all abilities are simply “high” or “low”. We assume unobserved
abilities, and stochastic but publicly observable output, where the separate contributions to joint
production are unseen. Everyone is then summarized by the public posterior chance that he
is “high”–namely, his reputation is his characteristic. Within this general learning framework
we consider two specific models. We focus on the partnership model, in which workers with
unobserved abilities are matched in pairs to produce output. In the employment model, these
workers are matched one-to-one with jobs whose characteristics are known.

The partnership model can be interpreted literally as a model of production partnerships,
or as a parable for production in teams within-firms, or finally as a model of within firm

3
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task assignment. Output in many organizations is largely produced by teams: academic co-
authoring, movie production, advertising, the legal profession, consulting, or team sports. The
O-Ring example of Kremer (1993) illustrates the role of stochastic joint production in high-tech
industrial production.

The partnership model. Our analysis of the partnership model begins with a two period
setting. Becker’s result yields PAM in the final period. This yields a fixed convex continuation
value function. We then deduce that the fixed expected continuation values are strictly convex
in the reputation of one’s partner. We show that this induces strict gains from rematching any
assortatively matched interior agents with 0 or 1 (i.e. surely low or surely high individuals), or
both, opposing production complementarity. Despite this informational gain to non-assortative
matching, PAM will again obtain in the first period with sufficient weight on the current period.
However, since the static production losses from non-assortative matching in the first period
are bounded, PAM cannot be optimal with sufficient weight on the future (Proposition 2).

Finite horizon models can have drastically different predictions than their infinite horizon
counterparts. Is our two period analysis representative of the general setting? While our findings
hang in the balance, we rescue a failure of PAM that turns on a trade-off between value
convexity due to learning and static input complementarity.

To see where our earlier logic goes wrong, we observe that the two period analysis
critically relies on fixed continuation values. With an infinite horizon, the continuation value is
endogenous to the discount factor, and in a troubling fashion: as is well known, it “flattens out”
with rising patience. So as the discount factor rises to 1, current production and information
acquired in a match both become vanishingly important. A flattening value function is well
understood, but we find a more subtle change. While it is true that the value function becomes
less convex for any fixed reputation, it becomes more convex in a neighbourhood of the
extremes 0 and 1; thus, we are led once again to check whether PAM fails near these extremes.
Our analysis requires a very precise characterization of the extremal behaviour of the value
function to resolve the knife-edged tradeoff between information and productive efficiency as
patience rises.

The paper then turns to a labour economics story. Call the technology high skill if matches of
one or two “low” agents are statistically similar. For example, the production function in Kremer
(1993) (in which project success requires success in all subtasks) is a high skill technology.
Proposition 3 shows that efficient matching depends on the nature of the technology: PAM fails
for high (low) reputations when production is sufficiently high (low) skill. Not all technologies
are high or low skill. The information effect may reinforce the static output effect near 0
and 1, yielding PAM for any level of patience. In general, the PAM failure is quite robust.
Proposition 4 shows that for randomly chosen production technologies, the chance of both a
high and low skill technology tends to one, as the number of production outcomes grows. We
also offer simulation evidence that these conditions are extremely likely to hold in practice
with few production outcomes.

Unlike other matching models with fixed types, ours affords an economically compelling
micro-story as well. While the market is in steady-state, individuals proceed through their life-
cycle, and their reputations randomly change, converging towards the underlying true abilities.
So, with enough patience, if two genuinely high abilities are paired, then we should expect
their reputations to rise as time passes. Eventually, they enter the region where PAM fails, and
the partnership will dissolve.

Employment model. We next specialize our model to one where workers are matched
to jobs whose types are known. Workers still have unknown abilities revealed over time via
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stochastic production outcomes. We assume that workers’ and firms’ types are productive
complements, and so ideally should sort by type. But with incomplete information, a worker’s
job assignment determines both his expected output and the quality of information revealed
in production. We then arrive at a much different PAM result: workers near the reputational
extremes will always match assortatively (Proposition 6), since the productive effects there
are strongest. This difference is the key empirical distinction between the partnership and
employment models.

A parsimonious model for labour economics. Our partnership and employment models
together provide a single coherent framework for understanding a variety of stylized facts in
labour economics.

1. Wages Drift Up. Wages generally rise with work experience. Our model delivers this
prediction, since expected values rise over time by Corollary 2, and so on average wages rise.
But also consistent with the reality, wages sometimes fall from period-to-period. Both facts are
true of our partnership and employment models.

2. Job Tenure, Mobility and Wages. Wages rise with job tenure, separation rates fall with
job tenure, and high current wages are correlated with low subsequent mobility (see Jovanovic,
1979; Moscarini, 2005). Just as in MacDonald (1982), our employment model with discrete
known jobs matches these stylized facts. To see why, note that workers at the reputational
extremes are assortatively matched. Since a worker’s wage equals his expected output, these
workers receive the highest wages. Finally, over time workers’ reputations are pushed to the
extremes as their true types are revealed. Thus, the longer a worker is with the same firm,
the closer its reputation will be to the extremes and the higher its wage. Finally, the closer a
worker’s reputation to the extremes, the longer until its type crosses an interior threshold for
job changing.

3. Life Cycle Marginal Products versus Wages. Several empirical studies (e.g. Medoff and
Abraham, 1980; Hutchens, 1987; Kotlikoff and Gokhale, 1992) have found evidence for an
increasing relationship between wages and productivity over the life cycle: young workers
earn less than their marginal product and old workers more. In our partnership model, workers
at the reputational extremes are paid an informational premium, and others sacrifice for type
revelation. But if we follow a cohort of workers over time, their reputations move toward the
extremes as their types are revealed. So on average, younger workers will see their wages
lag their productivity, while the reverse holds for older workers. Observe how this result in
our partnership model is entwined with our PAM failure. With assortative matching, the two
partners each receive half the output in wages, and there is no wage productivity gap.

4. Wage Dispersion by Cohort. Huggett et al. (2006) find that earnings dispersion across
individuals within a cohort increases with age. This is consistent with both our partnership
and employment models. Agents who have been around longer should have more accurate
reputations than those at the beginning of their careers, and thus their reputations are more
dispersed.

Related work. PAM fails in Kremer and Maskin’s (1996) complete information matching
model–but so does productive complementarity. In Serfes (2005) and Wright (2004), negative
assortative matching arises in a principal–agent framework.

There is a small literature of equilibrium matching with incomplete information. Jovanovic
(1979) considers a model where slow revelation of information about worker abilities causes
turnover. Niederle and Roth (2004) match three key features of our model: complementarity,
uncertain types, and publicly revealed signals. Chade (2006) extends Becker’s work to
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uncertain abilities, but assumes private information, reinforcing PAM, by way of a new
“acceptance curse”. MacDonald (1982) also considers matching with incomplete information.
But in his model, the information revelation is invariant to the match. Unlike these papers, we
show that Becker’s finding robustly unravels given an informational friction that depends on
match assignment.

Our model is also related to the learning paper by Easley and Kiefer (1988), who ask
when the decision maker eventually learns the true state. Incomplete learning requires that a
myopically optimal action be uninformative at some belief. Easley and Kiefer show that no
such action is dynamically optimal for a patient enough decision maker. Here, the statically
optimal action (PAM) is not chosen given sufficient patience. Bergemann and Välimäki (1996)
and Felli and Harris (1996) are related in that an element of the static price is information
value, as with our wages.

Paper outline. In Section 2, we set up our general model, define a Pareto optimum
and competitive equilibrium, and establish the welfare theorems and existence. Our theory
thereby applies both to the efficient and equilibrium analyses; however, our interest in the
planner’s problem is for the information it provides us about individual agents, since the
planner’s multipliers are precisely the agents’ private present values of wages. In Section 3,
we develop Becker’s model for workers with uncertain abilities, explore the tradeoff between
static complementarity and dynamic information gathering, and prove our PAM failure result.
In Section 4, we analyse the employment model. A technical appendix follows.

2. THE MATCHING ECONOMY

2.1. The static matching model

We consider a matching model with a continuum of agents, each described by a scalar human
capital x belonging to [0, 1]. Let Q(x, y) denote the static output of the match of types x and
y. We assume that Q(x, y) is symmetric, twice smooth, increasing in x and y, with a nonzero
cross partial, lest matching trivialize. As we assume everyone is risk neutral, Q can be either
a deterministic output function or the expected output from stochastic production.

A twice differentiable function Q is strictly supermodular iff Q12 > 0, and strictly
submodular when Q12 < 0. Although we do not require any special assumptions on Q for
our existence and welfare theorems, the following assumption is used in some characterization
results.

Assumption 1 (Supermodularity). Q12(x, y) > 0.

Assume a distribution G over human capital x ∈ [0, 1]. The social planner maximizes the
expected value of output. For now, let F(x, y) be the measure of matches inside [0, x] × [0, y].
As the planner cannot match more of any type than available, he solves:

V(G) = max
F

∫
[0,1]2

Q(x, y)F (dx, y)dy (1)

s.t. Feasibility: F(x, y) ≤ G(x) ∀y. (2)

The matching set is the support of F(x, y). Positive assortative matching (PAM) obtains if the
matching set coincides with the 45◦ line, so that F(x, y) = G(min(x, y)). Negative assortative
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matching (NAM) obtains when every reputation x matches only with the opposite reputation
y(x) solving G(y(x)) = 1 − G(x). Then:1

Proposition 1 (Becker, 1973). Given supermodularity, PAM solves the planner’s static
maximization problem.2 NAM is efficient given submodularity.

In a competitive equilibrium, each worker x chooses the partner y that maximizes his
(expected) wage w(x|y), achieving his value v(x). Also, wages of matched workers exhaust
output, and the market clears. Altogether, a competitive equilibrium (CE) is a triple (F, v,w)

where F obeys the feasibility constraint (2), while F, v,w satisfy:

• Worker maximization: v(x) = w(x|y) and v(y) = w(y|x) for all (x, y) ∈ supp F.

• Value maximization: v(x) = maxy w(x|y).

• Output shares: w(x|y) + w(y|x) = Q(x, y). (3)

Becker proved the welfare theorems which Theorem 3 revisits in a dynamic setting.

Theorem 1 (Becker, 1973) . The First and Second Welfare Theorems obtain, and the competitive
equilibrium wage is w(x | y) = Q(x, y) − v(y) for any matched pair.

2.2. Dynamically evolving human capital

We now develop our model in a stationary infinite horizon context over periods 0, 1, 2,....
Crucially, human capital evolves with each match. For instance, when junior and senior
colleagues match, each is changed from the experience. We capture these dynamic effects
by positing a transition function τ (s|x, y), which is the sum of the transition chances that x

updates to at most s, and that y updates to at most s, when x matches with y. Let X∗ be the
space of matching measures on [0, 1]2, with generic cdf F . For any z ∈ [0, 1], let B : X∗ → Z

be the posterior cdf

B(F)(z) = ∫ z

0

∫
[0,1]2 τ (s|x, y)F (dx, dy)ds.

Towards a nondegenerate steady state, we assume that agents live to the next period with
survival chance σ , and to maintain a constant mass 1 of agents, posit a 1 − σ weight on the
inflow cdf G. To properly align incentives, we assume that the agents’ implicit rate of time
preference equals the planner’s discount factor γ < 1 scaled by the survival chance, namely
δ ≡ σγ . To avoid trivialities, G does not place all weight on 0 and 1.

Given an initial type cdf G, the planner chooses the matching cdf F in each period to
maximize the average present value of output, respecting feasibility. Let �(G) be the feasibility
set in (2). For any F ∈ �(G), define the policy operator

TFV(G) = (1 − δ)

∫ ∫
Q(x, y)F (dx, dy) + δV((1 − σ)G + σB(F )). (4)

1. Our propositions are descriptive matching results, and theorems are technical equilibrium results.
2. Becker proved this for the discrete case. For our purposes, Lorentz (1953) is more appropriate as he proved

the formal result in the continuum case (albeit without providing any economic context).
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Here, (1 − σ)G + σB(F ) is next period’s type distribution. Thus, the planner solves for the
Bellman value V, namely a fixed point of the operator T V(G) = maxF∈�(G) TFV(G).

The planner trades off more output today for a more profitable measure over types tomorrow.
This trade-off lies at the heart of our paper. A steady state Pareto optimum (PO) is a triple
(G, F, v) such that (F, v) solves the planner’s problem given G, and G = (1 − σ)G + σB(F ).
Just as in the analysis of the modified golden rule in growth models, the social planner does
not maximize across steady states. Instead, she chooses an optimal matching in each period,
after which the steady state requirement is imposed. While our results obtain both in and out
of steady state, we focus on the steady state for simplicity.

2.3. Existence and welfare analysis

Theorem 2 (Pareto optimum). A steady state Pareto optimum exists.

The appendix proves this. The first order conditions (FOC) for this problem are:

(x, y) ∈ supp(F ) ⇒ v(x) + v(y) − (1 − δ)Q(x, y) − δ�v(x, y) = 0 (5)

v(x) + v(y) − (1 − δ)Q(x, y) − δ�v(x, y) ≥ 0, (6)

where v(x) is the multiplier on the constraint (2), i.e. the shadow value of an agent x, and
�v(x, y) = ψv(x|y) + ψv(y|x) is the sum of the expected continuation values ψv(x|y) =
E[v(x ′)|x, y]. So the sum of the shadow values in any matched pair (a) equals the planner’s
total value of matching them, and (b) weakly exceeds their alternative value in other matches.

In a competitive equilibrium (CE), let w(x|y) be the wage that agent x earns if matched
with y. Anticipating a welfare theorem to come, we overuse notation, letting v(x) denote the
maximum discounted sum of wages that x can earn–the private value. A steady state CE is
a 4-tuple (G, F, v,w), where G = (1 − σ)G + σB(F ), F obeys constraint (2), wages w(x|y)

are output shares (3), dynamic maximization obtains:

• Worker maximization: v(x) = max
y

[(1 − δ)w(x|y) + δψv(x|y)], (7)

and finally y is a maximizer of (7) whenever (x, y) ∈ supp (F ).

Theorem 3 (Welfare theorems) . If (G, F, v, w) is a steady state CE, then (G, F, v) is a steady
state PO. Conversely, if (G, F, v) is a steady state PO, then (G, F, v, w) is a steady state CE,
where for all matched pairs (x, y), the wage w(x|y) of x satisfies:

w(x|y) =

static wage︷ ︸︸ ︷
Q(x, y) − v(y) +

dynamic rent (y to x)︷ ︸︸ ︷
δ

1 − δ
[ψv(y|x) − v(y)]. (8)

See how we assert that the planner’s shadow values and the private values coincide. These
welfare theorems are greatly complicated by the evolution of types. Fortunately, continuation
values are linear, and therefore convex, in measures of matched agents.

The competitive wage has two components. First is the static wage, or the difference
between match output and one’s partner’s outside option. Second is the dynamic rent, or
the discounted excess of one’s partner’s continuation value over his outside option. That
the dynamic benefits are publicly observed sustains the welfare theorems, since they can be
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compensated. For instance, in our Bayesian model the public reputations serve as the types.
Here, dynamic rents will be positive by convexity even when identical agents match, and
reputations near 0 and 1 will earn greater dynamic rents.

For some insight into why this wage decentralizes the Pareto optimum, consider a pair
(x, y) matched in equilibrium. Worker maximization (7) requires that v(x) equal

(1 − δ)w(x|y) + δψv(x|y) = (1 − δ)
[
Q(x, y) − v(y)

] + δ[ψv(y|x) − v(y) + ψv(x|y)]

using our computed wage (8). With some simplification, we get:

v(x) + v(y) = (1 − δ)Q(x, y) + δ
[
ψv(x|y) + ψv(y|x)

]
,

which holds if (x, y) are matched in the Pareto optimum, by the planner’s FOC (6).
Finally, we consider existence. Theorem 2 proved that a steady state PO exists; also, any

such PO can be decentralized as a CE, by Theorem 3. Altogether:

Corollary 1. There exists a steady state competitive equilibrium.

2.4. Values, shadow values, and dynamic rents

We next exploit the equivalence between the competitive equilibrium and Pareto optimum, and
prove that agents’ private values v(x) are convex. The convexity of the multipliers is a separate
new contribution.

Theorem 4 (MPS and convexity) . Assume bilinear, strictly supermodular output Q(x, y),
with

∫ z

0 τ (s|x, y)ds convex in x and y, and convex along the diagonal y = x.
(a) The planner’s value V strictly rises in mean-preserving spreads (MPS) of types.
(b) The shadow value v(x) is everywhere convex (i.e. convex and nowhere locally flat).
(c) The expected continuation value function ψv(x|y) is separately convex in x and y.

Proof of (a). V strictly rises in mean preserving spreads. Let’s consider monotonicity of the
planner’s value V in mean preserving spreads:

(P) V(Ĝ) ≥ V(G) whenever Ĝ is a mean preserving spread of G.

We prove below that if V obeys P, then T V obeys P, and because P is closed under the sup
norm, the fixed point V = T V obeys P. In fact, we prove that T V obeys the stronger property
P+, where strict inequality obtains, so that V strictly rises in MPS.

Let Ĝ be an MPS of G (the premise of P). Write ζ (x) = Ĝ(x) − G(x), where
∫ 1

0 xdζ (x) =
0, and ζ does not almost surely vanish. Let F ∈ �(G) be optimal for G, and define a new
matching F̂ (x, y) = F(x, y) + min(ζ (x), ζ (y)). So F̂ differs from F insofar as it places all
weight not common to G and Ĝ along the diagonal. Since Ĝ is an MPS of G, and Q(x, x) is
everywhere convex, being bilinear and strictly supermodular:∫

QdF̂ − ∫
QdF = ∫

Q(x, x)dζ (x) = ∫
Q(x, x)dĜ(x) − ∫

Q(x, x)dG(x) > 0.

For the same reason, and since B(F) is a linear operator, we have B(F̂ )(s) − B(F)(s) =∫
τ (s|x, x)dε(x) = ∫

τ (s|x, x)dĜ(x) − ∫
τ (s|x, x)dG. Changing the order of integration:∫ z

0 B(F̂ )(s)ds − ∫ z

0 B(F)(s)ds = ∫ ∫ z

0 τ (s|x, x)ds dĜ(x) − ∫ ∫ z

0 τ(s|x, x)ds dG(x)

which is non-negative because
∫ z

0 τ(s|x, x)ds is convex and Ĝ is an MPS of G.
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Proof of (b). Convexity of the shadow value. For any x in the support of G, equally spread
a small fraction ε of the G distribution near x to x ± h, where h > 0 is feasible and arbitrary.
The slope of V(G) = ∫

v(x)G(dx) in ε is proportional to [v(x + h) + v(x − h)]/2 − v(x), at
ε = 0. Since V(G) rises in any MPS of G, this must be strictly positive. So the planner’s
shadow value v(x) is everywhere convex.

Proof of (c): Convexity of the continuation shadow value. For any (x, y) in the support of
F , equally spread a small fraction ε of the distribution near (x, y) to (x ± h, y), where h > 0 is
feasible and arbitrary. Likewise spread (y, x) to (y, x ± h). Since

∫ z

0 τ(s|x, y)ds is bi-convex,
the continuation distribution incurs an MPS, and continuation values weakly rise. As F is
symmetric, so is �v , and the slope of V(B(F )) = ∫

�v(x, y)F (dx, dy) in ε is proportional
to [�(x + h, y) + �(x − h, y)]/2 − �(x, y), which must be non-negative. Altogether, �v is
convex in x, and likewise y. ‖

Since the shadow value is everywhere convex, it is less than its continuation.

Corollary 2 (Dynamic rents) . Dynamic rents for interior types are positive, or ψv(x|y) −
v(x) > 0 when 0 < x < 1 and y is the reputation of x’s match partner.

For a foretaste of the general applicability of our framework, we briefly explore an example
with a supermodular integrated transition chance

∫ z

0 τ(s|x, y)ds. In such an example, by the
logic of the last proof, PAM maximizes static payoffs

∫
QdF and the integrated continuation

values cdf
∫ z

0 B(F)(s)ds. So the planner’s value rises in any MPS and PAM constitutes a
PO allocation. For instance, assume that individuals pull towards their partner’s type in a
deterministic way. Specifically, after x matches with y, his type moves to αx + (1 − α)y.
Then the integrated transition cdf equals∫ z

0
τ(s|x, y)ds = max{0, z − αx − (1 − α)y} + max{0, z − (1 − α)x − αy}.

Any maximum of linear functions is supermodular by Topkis 2.6.2(a).

3. REPUTATION IN A PARTNERSHIP MODEL

3.1. Static production and reputations

We now specialize to a matching model where each agent can either be “high” (H) or “low” (L).
Only nature knows the abilities. There are N > 1 possible nonnegative output levels qi . For each
pair of matched abilities, there is an implied distribution over output levels. Output qi is realized
by pairs {H,H}, {H,L}, and {L,L} with respective chances hi,mi , and �i . As probabilities,
we have

∑
i hi = ∑

i mi = ∑
i �i = 1. The expected outputs are H = ∑

hiqi, M = ∑
miqi ,

and L = ∑
�iqi , while we define column vectors h = (hi), m = (mi), and � = (�i). Stochastic

output is essential, as we seek a model in which uncertainty about abilities persists over time;
we do not want true abilities revealed after the first period. Figure 1 summarizes.

Each of a continuum [0, 1] of individuals has a publicly observed chance x ∈ [0, 1] that
his ability is H. Call x his reputation. So a match between agents with reputations x and y

yields output qi ≥ 0 (i = 1, . . . , N ) with probability

pi(x, y) = xyhi + [x(1 − y) + y(1 − x)]mi + (1 − x)(1 − y)�i .

The expected output of this match is

Q(x, y) = xyH + [x(1 − y) + y(1 − x)]M + (1 − x)(1 − y)L.

© 2009 The Review of Economic Studies Limited
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Figure 1

Match output

Since qi > 0 for all i, we have Q(x, y) > 0 and matching is always optimal. As our
production function Q is bilinear, we define the constant π ≡ Q12(x, y) = H + L − 2M . Thus,
Assumption 1 simplifies to π > 0. Here, π is the premium to pairing {H,H} and {L,L} rather
than matching {L,H} twice.

Since output is SPM, Proposition 1 implies that PAM obtains in a static matching model.
Then we have v(x) = Q(x, x)/2, which is strictly convex, as Q is bi-linear and supermodular:

Q(x, x) = x2H + 2x(1 − x)M + (1 − x)2L = πx2 + 2(M − L)x + L.

This convexity is crucially exploited in the last period of the two period model below.

Two reinterpretations. One may reinterpret this as a model of within-firm team
assignment with unknown worker types. If pairs of workers perform tasks and the firm
maximizes the present value of its output, then it solves our planner’s problem.

We can also dispense with the assumption that tasks must be performed by groups of
workers, but assume workers are employed. We perform this transformation in Section 4.

3.2. Matching in a two period model

To build intuition for our infinite horizon results, consider a stylized two period model with
payoffs weighted by 1 − δ ∈ [0, 1) and δ. While δ < 1/2 in a truly two period model with
strict time preference, δ > 1/2 obtains if period 2 means “the future” in an infinite horizon
model. Thus, δ → 1 captures increasing patience. The value function varies with the discount
factor in the infinite horizon model. But with two periods, we can exploit the strict convexity of
the final fixed value function. This dodges a hard complication, allowing us to prove a strong
impossibility result.

Bayesian updating and continuation values. In a dynamic model, agents x and y produce
publicly observed output qi when matched; their reputations are then updated by Bayes’ rule.
Agent x’s posterior reputation is

zi(x, y) ≡ pi(1, y)x/pi(x, y).

Also, Assumption 1 precludes h =m =�, and thus the dynamic economy is not a trivial
repetition of the static one. For if h 
= m or � 
= m, then all reputations but 0 and 1 shift
with positive chance after each match: zi(x, y) 
=x for some i, if x 
=0, 1.

By Theorem 4, v(x) and ψv(x|y) are strictly convex in x, while ψv(x|y) is strictly convex
in one’s partner’s reputation y too. Specifically:

ψv
yy(x|y) = π

∑
i pi(x, y)[ziy(x, y)]2 > 0.

© 2009 The Review of Economic Studies Limited
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PAM failure in the two period model. We now deduce an unqualified failure of PAM
unique to this setting which cleanly captures the opposition between the value convexity
and production supermodularity. For an extreme case, assume everyone cares only about
future output. Then type x’s match payoff function would be ψv(x|·). PAM would then
require that ψv(x|y) + ψv(y|x) be supermodular on the matching set. This requirement cannot
be met.

Proposition 2. Fix x ∈ (0, 1). Given matches (0, 0), (x, x), and (1, 1), the expected total
continuation value is strictly raised by rematching x with either 0 or 1.

Since ψv(x|y) is strictly convex in y, either ψv(x|0) > ψv(x|x) or ψv(x|1) > ψv(x|x).
So matching the unknown agent x with either of the known abilities 0 or 1 is dynamically
more profitable than assigning him to another x. Since agents 0 and 1 have the same posterior
reputation regardless of partner, this implies that either:

ψv(x|0) + ψv(0|x) > ψv(x|x) + ψv(0|0) or ψv(x|1) + ψv(1|x) > ψv(x|x) + ψv(1|1). ‖
Assume PAM in period zero. Re-match as many of the reputations x ∈ (0, 1) with 0 or 1

as possible (the choice governed by Proposition 2). The informational gains of this rematching
are strictly positive, and swamp the production losses, for large δ.

Corollary 3. In the two period model, PAM is not an equilibrium for large δ < 1.

One might venture that extreme agents 0 and 1 are informationally valuable because all
match output variance owes to the uncertain ability of the middle type x. But our argument
shows only that at least one extreme agent must be informationally valuable: they both need
not be. In the numerical example below, the dynamic effect reinforces the static output effect
near one extreme and conflicts near the other.

Illustrative example of assortative matching failure. We consider an example technology
reminiscent of the O-ring failure in Kremer (1993). Assume that production requires two
high abilities, in which case output is produced with chance 1/2. Specifically, assume
(q1, q2) = (0, 4), h = (1/2, 1/2), and m = � = (1, 0). This yields supermodular output, since
π = H + L − 2M = 2. A matched pair (x, y) produces output 4 with chance xy/2. Reputation
x updates to z1(x, y) = (2 − y)x/(2 − xy) after output q1 = 0, and to z2(x, y) = 1 after output
q2 = 4.

Given PAM in period two, the value of reputation x at the start of the second period is:
v(x) ≡ Q(x, x)/2 = x2. Now, agent x’s expected continuation value is

ψv(x|y) ≡ p1(x, y)v(z1(x, y)) + p2(x, y)v(z2(x, y)) =
(

1 − xy

2

)(
(2 − y)x

2 − xy

)2

+ xy

2
.

The present value of the match (x, y) is v(x, y) ≡ 2(1 − δ)xy + δ�v(x, y).
To illustrate Proposition 2, consider the reputation x = 1/2. Since m = � there is no

informational advantage to matching any x ∈ (0, 1) with x = 0. But if x assortatively
matches, this is dynamically valuable – it may well be a {H,H} match. Thus, PAM
dynamically dominates matching with 0. However, there are informational gains matching
with a 1, for example, ψv

( 1
2 |1) − ψv

( 1
2 | 1

2

) ≈ 0.048. More generally, whenever �v
12 > 0,

then v is supermodular, and PAM is efficient and an equilibrium. So we check along the

© 2009 The Review of Economic Studies Limited



ANDERSON & SMITH DYNAMIC MATCHING REPUTATIONS 13

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

−0.04

−0.02

0.02

0.04

Figure 2
Two period example. On the left, we depict the shaded submodular total value region (where vxy < 0), and the

resulting discontinuous optimal matching graph G = {(x, y(x)), 0 ≤ x ≤ 1} (solid line). On the right, we plot the

equilibrium wage function w(x) ≡ w(x|y(x)) (solid line). Given the high discount rate δ = 0.99, the wage

w(x|y(x)) is almost entirely an information rent ψv(y(x)|x) − v(y(x))–whose discontinuity forces a jump in the

wage profile. We superimpose the surplus in optimal values over assortative values. The solution was produced by

linear programming with a discrete mesh on [0, 1]

diagonal y = x and find �v
12(x, x) ≷ 0 for x ≶ 0.36. Here, learning reinforces the productive

supermodular effect for low reputations x, but opposes it for high reputations. Figure 2
depicts the solution for δ = 0.99, for an initial uniform density over reputations and no
entry.

Here is an intuition for the shape of the matching set G in Figure 2. By local optimality
considerations, G is decreasing whenever the match value v(x, y) is submodular (shaded
region). Next, it cannot exit the supermodular region on a downward slope. Third, by the
uniform density on reputations, G has slope ±1 whenever continuous.3

Over 80% of all agents non-assortatively match, paying or earning an informational rent
payment. High reputation agents are willing to match “down” (the solid line in the right-hand
panel of Figure 2), as they earn a wage premium for doing so. The wage profile jumps at each
match discontinuity. Indeed, the information rent in (8) jumps up at the first break point near
0.16, and down at the next two break points near 0.4 and 0.75.

3.3. Infinite horizon matching by reputation

In principle, to update the reputations of individuals after any match, one can exploit information
about the outcomes of the current matches involving their past partners. This would render
our model both intractable and unrealistic, since it would entail complicated output sharing
arrangements, involving transfers between past partners. At the same time, we do not want
completely anonymous individuals, for that would limit our empirical applications. We adopt
a simple compromise:

3. See Kremer and Maskin (1996) for formal characterizations of solutions in a one-shot matching model where
match non-supermodular match values induce wage discontinuities.
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Assumption 2. The entire output history of currently matched individuals is observable;
however, once a partnership dissolves, only the reputation of each individual is recorded.

With this assumption, reputation is a sufficient statistic for the information from all previous
matches, and yet we may still speak of partnerships in a meaningful sense.

Value convexity. The convexity of the value function in beliefs for a single agent learning
problem is well known (see Easley and Kiefer, 1988). Although Theorem 4(b) is new, it admits
the standard intuition that information is valuable–only here, its value is to the planner. Why?
Suppose that a signal is revealed about the true ability of an agent with reputation x. This
resulting random reputation has mean x (so a “fair” gamble). The signal also cannot harm the
planner–for she could choose to ignore it. Recall that a decision maker is averse to all fair
income gambles iff his utility function is concave. Inverting this logic, the value function is
strictly convex since the information is strictly beneficial. For the planner is not indifferent
across matches when π = H + L − 2M 
= 0, since there is a productive reason to prefer
assortative or non-assortative matches.

Not only is information about one’s own ability valuable, but so too is information about
one’s partner. The intuition for Theorem 4(c) is one step upstream from value convexity.
Given a better signal about x’s partner, the match yields a better signal about x. By the Jensen
Theorem logic, the function ψv(x|y) must be convex in y.

Productive versus informational efficiency. Our two period result obtains because the
continuation value function is fixed, given PAM in the final period (by Becker); further, it is
boundedly and strictly convex. Thus, PAM fails with sufficient patience, given our either–or
inequality in Proposition 2.

But with no last period, the continuation value function depends on the discount factor in
a way that undermines the two period logic of Proposition 2: for as the discount factor δ rises,
the value function vδ flattens out in the limit–hereby indicating the dependence on the discount
factor δ. Not only do the static losses from PAM vanish, but so too do the dynamic gains. We
may then have been misled: an infinite horizon model is needed to resolve this race to perfect
patience.

A matching is productively efficient if it yields the highest current output. It is dynamically
efficient if no other matching yields a greater continuation output. A necessary condition
for either efficiency notion is that no marginal matching change can raise output today or
in the future. Suppose we shift from assortatively matching (x, x) and (x + �, x + �) to
cross-matching (x, x + �) and (x + �, x). By a second order Taylor Series, the static welfare
change is approximately Q12(x, x)�2 = π�2. The dynamic change from such a rematching
is approximately �δ

12(x, x)�2. The net welfare change from this matching change is therefore
proportional to:

static production losses︷ ︸︸ ︷
(1 − δ)π +

dynamic informational change︷ ︸︸ ︷
δ�δ

12 . (9)

For PAM to be efficient, this weighted sum must be positive. But our tradeoff is knife-edged
in the limit: both the static losses from not matching assortatively and the dynamic gains vanish
as δ → 1, as the value converges upon a linear function: vδ(x) → xvδ(1) + (1 − x)vδ(0). Thus,
the cross partial �δ

12 vanishes in the limit δ → 1.
Actually the asymptotic behaviour of the value function is more complex than this logic

suggests. While the second derivative v′′
δ (x) at any interior x tends to zero, the integral
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Figure 3
Value function vδ and derivatives v′

δ and v′′
δ . This graph depicts the value function flattening, and the convexity

explosion near 0, 1: limx→0 v′′
δ (x) = limx→1 v′′

δ (x) = ∞

∫ 1
0 v′′

δ (x)dx is constant in δ. Perforce, v′′
δ (x) explodes near the extremes 0 and 1 (as in Figure 3).

This suggests that we should try to prove our PAM failure near the extremes.4 There are three
logically separate steps that we must take to prove our main result.

• Lemma 1 finds when dynamic and productive efficiency conflict near 0 and 1.
• Proposition 3 finds when dynamic efficiency dominates for large δ.
• Proposition 4 shows that this domination generally occurs for large δ, as N ↑ ∞.

The sign of the information effect assuming PAM. Determining the optimal value function
in general is an intractable problem. So instead, we derive the PAM value function and then
show that PAM is not optimal for the induced value function vδ(x), by applying a new finding
in Anderson (2009) that if a fixed policy generates a convex static payoff, then the second
derivative of the value function explodes at a geometric rate near extremes 0 and 1. Specifically,
Claim 5(a) in Appendix B.1 proves that the PAM value function satisfies:5

v′′
δ (x) ∼ κδx

−αδ x → 0, where αδ solves 1 ≡ δ
∑

i �i(mi/�i)
2−αδ

v′′
δ (x) ∼ κδ(1 − x)−βδ x → 1, where βδ solves 1 ≡ δ

∑
i hi(mi/hi)

2−βδ
(10)

when δ < 1 large enough. We next find when dynamic and productive efficiency conflict near
x = 0 or 1. This fully exploits (10), and not only the explosive nature.

4. This is only meaningful if the steady state cdf G assigns positive weight to extremal reputations. Since we
do not have h = m = �, whenever x /∈ {0, 1} matches with x, his type updates down and up with positive chance.
Thus as long as G does not put all weight on 0 and 1 (as assumed), PAM implies that in any steady state, G will
assign positive weight to every open interval of reputations.

5. Standard in asymptotics, we write a(δ) ∼ b(δ) if a(δ)/b(δ) → 1, in the given δ limit, say δ → 1.
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We now introduce an asymmetric correlation function for three vectors a, b, c. Let:

S(a, b, c) ≡
∑

i

[
(bi − ai) log

(
bi

ci

)
+ b2

i − aici

ci

]
.

We know of no precedent for this expression. Generally, S(a, b, c) ≥ 0 when the vectors a , b,
c are close. For instance, S(a, b, b) = 0, S(a, a, c) > 0, and S(a, b, a) > 0.6

Lemma 1. [Dynamic efficiency] There exists δ∗ < 1, such that for all δ > δ∗, PAM is not
dynamically efficient near x = 0 if S(h, m, �)>0 and near x = 1 if S(�, m, h)>0.

Proof sketch. Claim 6 in Appendix B.1 uses our approximation (10) to prove that the expected
continuation value has cross partial �δ

12(x, x) ∼ [κδ/(1 − αδ)]x1−αδR(αδ) near x = 0, where
κδ/(1 − αδ) converges to a positive constant as δ → 1, and R(α) is a function with R(1) = 0
and slope R′(1) = S(h,m, �). Thus, �δ

12(x, x) shares the sign of −S(h,m, �) near x = 0, and
−S(�,m, h) near x = 1. So a conflict between dynamic and productive concerns �δ

12(x, x) < 0
arises near x = 0 or x = 1 iff S(·) > 0. ||

For more intuition, assume m = �–so that m 
= h, by Assumption 1. Then the superior
{H,H} matches can be statistically distinguished from the {L,H} and {L,L} matches, but
the latter two cannot be so nuanced.7 Consider the signal from an x paired with 0 or 1.
Type 0 provides no information, as {L,H} and {L,L} yield the same output distribution. So
we should not expect PAM failures near (x, x) = (0, 0). But since S(m, m, h) > 0, PAM is
informationally inefficient near (x, x) = (1, 1).

In the extreme case, m = �, it takes two “high” agents for stochastically better production;
when at least one agent is low ability, the ability of the other agent is irrelevant. With this
observation, let’s call this a perfectly high skill technology. By the same token, h = m yields
a perfectly low skill technology.

Note that S(h, m, �) > 0 in the perfectly high skill case, while S(�, m, h) > 0 in the
perfectly low skill case. Thus inspired, we call a technology high skill iff S(h, m, �) > 0,
and low skill iff S(�, m, h) > 0. While supermodularity rules out technologies that are
simultaneously perfectly high and perfectly low skill (i.e. h = m = �), a technology can be
both high and low skill. We soon argue that such technologies are “common”.

The race to perfect patience. We have seen that S(h, m, �) > 0 forces a tradeoff between
dynamic and productive efficiency near x = 0. We now characterize when the dynamic
efficiency dominates for high δ.

Proposition 3 (PAM failure). There exists δ∗ < 1 such that ∀ δ > δ∗, in the infinite horizon
model, PAM fails in a neighbourhood of (0, 0) or respectively (1, 1) if:

S(h, m, �) > 2
∑

i mi log(mi/hi) and S(�, m, h) > 2
∑

i mi log(mi/�i). (11)

6. Indeed, S(a, a, c) ≡ ∑
i (ai − ci )ai/ci >

∑
i (ai − ci ) = 0, while S(a, b, a) ≡ ∑

i [(bi − ai) log (bi/ai ) +
(b2

i /ai ) − ai ] = ∑
i [(bi − ai) log (bi/ai ) + (b2

i /ai ) − bi ] = ∑
i [non-negative terms] + S(b, b, a) > 0.

7. In Kremer (1993), production success requiring no mistakes by all parties is an excellent example of such a
technology. More positively, creative work really identifies whether both parties are talented.
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Figure 4
Infinite horizon vs. two-period models. In the left panel, the value function vδ in the infinite horizon model for

δ ∈ {0, 0.9, 0.99} is depicted as a solid line, while the two period model v0 for δ = 1 is a dashed line. In the right

panel, the dark shaded region is the correspondence between δ and the set of reputations x (vertical axis) that do not

match assortatively in the infinite horizon model. The lightly shaded region is the same correspondence for the two

period model

Proof. Since both terms in (9) vanish, we divide by −(1 − δ), and take the limit:

π + lim
δ→1

δ�δ
12(x, x)

1 − δ
= π + lim

δ→1

κδ

1 − αδ

R(αδ)

1 − δ
x1−αδ = π − S(h, m, �)∑

i mi log(mi/hi)
lim
δ→1

κδ

1 − αδ

(12)

using l’Hôpital’s rule to get limδ→1 R(αδ)/(1 − δ) = R′(1)α̇1, and then R′(1) = S(h, m, �)

and α̇1 = ∑
i mi log(mi/hi) from (10), given α̇1 = ∂αδ/∂δ evaluated at δ = 1. If the limit

(12) is negative, then PAM fails near x = 0. The same expression arises for x near 1 with the
analogues κδ , αδ , and S(�, m, h). The sum of (12) and its analogue near x = 1 is negative
when limδ→1[κδ/(1 − αδ) + κδ/(1 − αδ)] ≥ π , given (11). Is this inequality true? Integrating
approximation (10),

v′
δ(x) ∼ v′(0) + κδ

1 − αδ

x1−αδ and v′
δ(1 − x) ∼ v′(1) − κδ

1 − αδ

x1−αδ

for small x ≈ 0. As δ → 1, vδ becomes linear, while v′
δ(x) converges to a constant for any

x ∈ (0, 1). That is, v′
δ(x) → v′

δ(1 − x) as δ ↑ 1 for any x ∈ (0, 1). This leads to:

lim
δ→1

[
κδ

1 − αδ

+ κδ

1 − αδ

]
= v′

δ(1) − v′
δ(0).

Finally, Appendix B.2 proves that v′
δ(1) − v′

δ(0) = π . Thus, PAM fails near 0 or 1. ||
For an idea of how large the deviations from PAM may be, we now extend the earlier two

period example to an infinite horizon. In Figure 4, we have graphed the value function in the
infinite horizon model for three discount factors δ ∈ {0, 0.9, 0.99} as solid lines. At x = 0, the
value functions coincide. They flatten out as δ ↑ 1. For comparison purposes, we depict the
first period expected value function v0 in the two period model for δ = 1 as a dashed line.

The right panel of Figure 4 shades in the agents for whom PAM fails. Reflecting the
diminished convexity with longer horizon models, the PAM failure set is strictly smaller at
all discount factors δ in the infinite horizon. PAM obtains in the infinite horizon model for
δ ≤ 0.9. No x ≥ 0.14 is matched assortatively at δ = 0.99.
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PAM fails for “almost all” production technologies. We have developed sufficient
conditions for non-assortative matching at the extremes, and yet we claimed an almost
general failure of PAM. How can we justify our assertion? For indeed, with fixed N , the
inequalities (11) are not always satisfied, and therefore PAM may well obtain for both
high and low reputations. Here is a simple parameterized example of this phenomenon.
Let h = (3ε2, 1/2 − 3ε2, 1/2), m = (ε, 1 − 2ε, ε), and � = (1/2, 1/2 − 3ε2, 3ε2), where q =
(q1, q2, q3) = (0, 0.1, 1). For this technology, we have S(h, m, �) = S(�, m, h) ≈ (constant)
+ log(ε)/2 < 0 for small ε. For this example, PAM is optimal even for high δ in the infinite
horizon model.

We now assert that this example, while robust for fixed N = 3, is vanishingly rare when
the number N of production outcomes grows:

Proposition 4. With technologies (h, m, �, q) drawn from an atomless distribution, PAM
fails near 0 and 1 with chance tending to 1 as N → ∞.

Despite the nature of this result, simulations suggest that PAM failures are extremely likely
even for low N . For example, with parameters (h, m, �, q) uniformly generated on the unit
simplex, we found simultaneous violations of (11) only 43, 18, 5, and 1 out of one billion
times for the N = 3, 4, 5, 6 cases respectively.

Yet again, the exact asymptotic form of the value v is critical for Proposition 4. To see
this, suppose instead that v(x) = x log x − x + constant . Then v′(x) = log x and v′′(x) = x−1.
This value function is convex and further v′′ is unbounded near x = 0; however, v′′ lies just
outside the geometric family (10), and in fact, Proposition 4 fails.

Long run match dynamics. Our focus until now has been on a failure of PAM in the
large –on the distribution of matches in an economy. Our model also admits a rich unfolding
micro story: agents are born and then form and dissolve partnerships as their reputations evolve
over time. We finally focus our lens on this subplot with turnover, and the breakup of seemingly
successful partnerships. Let’s turn to the limit behaviour of an individual’s reputation.

First we ensure that no agent ever gets stuck at any reputation.

Assumption 3. It is not true that
�i − mi

hi + �i − 2mi

= c ∀i for some constant c ∈ [0, 1].

This housekeeping condition follows from setting zi(x, y) ≡ x, and is generically valid.
Also, its failure yields L − M = y(H − 2M + L) > 0, or non-monotonic output.

Proposition 5. Fix an agent with reputation xt at time-t = 0, 1, 2, . . . (with x0 given).
(a) If he is not eventually matched forever with the same partner, then xt → 0 or 1 with time-0
chances 1 − x0 and x0, for generic technologies.
(b) If he is eventually matched with the same partner (initially y0), then generically, xt → 0,
1/2, 1 with ex ante chances (1 − x0)(1 − y0), (1 − x0)y0 + x0(1 − y0), and x0y0.

Indeed, reputations are beliefs about underlying abilities, and thus are martingales: namely,
one’s current reputation is the expected future reputation. It is then well known that they
converge to stationary reputations. Assume first case (a). Intuitively, as long as someone does
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not have the same-reputation partner each period, any reputation x ∈ (0, 1) is subject to change
as information is revealed. So his ability is eventually revealed: H or L, or x = 0 or x = 1.

In case (b), the market’s ability to learn an agent’s ability is frustrated by its lack of
knowledge of his partner’s type. The applicable “match state space” here is really {{H,H},
{L,L}, {H,L}, and {L,H}}. Since production is symmetric, state {H,L} is indistinguishable
from {L,H}. Thus, if matches are permanent, we may end up with x∞ = y∞ = 1/2–that is,
it may be clear from observing the (infinite) past output realizations that one person in the
match is high and one low, but given that only joint output is observable, there is no way to
tell which is which.

Now that we know how individual agents’ reputations behave in the long run, we can
discuss the micro structure of match dynamics.

Corollary 4. Assume δ high enough. Then any match of two high (low) agents eventually
breaks up with chance tending to 1 as N → ∞.

Convergence to (1/2, 1/2) obtains for a long-lived match {H,L}. The limit is (1, 1) for
{H,H} and (0, 0) for {L,L}, by Proposition 5. If, in addition, the technology is both high and
low skill, then Proposition 3 implies that as we approach {H,H} or {L,L}, like reputation
agents cannot stay matched, and so they must break up.

4. PARTNERSHIPS VERSUS THE EMPLOYMENT MODEL

4.1. The worker–job benchmark

In this section, we consider a benchmark model in which workers of uncertain talents are
matched to known jobs (or firms). We retain the assumption that workers can be one of two
underlying types: {H,L} with x equal to the chance the worker has type H. We may extend all
of our results in the previous sections to a model with a continuum of fixed publicly observable
job types y ∈ [0, 1], as this is little more than a re-labelling of what we already have.8 Instead
we consider in more detail a case that is both closer to the existing literature, and substantively
different than our partnership model, and with quite different results. Not only does this model
serve as a bridge between our partnership model and the existing assignment literature, it is
also a more natural model to consider some stylized facts, like worker mobility.

Related work. Roy (1950) considers a static assignment problem with discrete types of
jobs (which he terms sectors), plus a continuum of worker characteristics. As in our discrete
jobs benchmark, he assumes costless creation of jobs, thus the one-period version of our discrete
jobs benchmark is a simple version of Roy’s model.

MacDonald (1982) generalized the Roy model by adding symmetric incomplete information
about worker types, and is the closest model to the benchmark we consider here. What he
shares with our benchmark: two known jobs and two types of workers with optimal task
assignments differing by worker type. Like us, he assumes symmetric incomplete information
about each worker’s type. At the end of every period a public signal for each worker is revealed.
Critically, and different than in our framework, signals of worker type are uncorrelated with
task assignment, while we have made the natural assumption that production is the signal of
type. By introducing incomplete information, the distribution over workers is changing over

8. This would yield a dynamic incomplete information version of Sattinger (1979).
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time in MacDonald, but the dynamic process is exogenous to the assignment, which implies that
each period’s equilibrium maximizes static output given the current distribution over worker
types.

The model with known jobs. As in our partnership model, assume workers are either
type H or L, and each is distinguished by the public belief x that he is type H. Each worker
must be matched to one job (or firm). There are two types of jobs, and there is complete
information about job types. We abuse notation and use H and L for the types of jobs as
well as workers, so that, as with our partnership model there are four underlying types of
matches: {H,H}, {H,L}, {L,H}, {L,L}. To further draw a parallel with our earlier results we
continue to assume symmetry–that {H,L} and {L,H} matches produce identical distributions
over output, although now this is clearly a stronger assumption.

We assume the same conditional output distributions as in the partnership model, illustrated
in Figure 1. We maintain that these distributions are non-degenerate: hi,mi, �i > 0 and
that matching like types yields strictly higher expected output than cross matching: π ≡
H + L − 2M > 0. For the market equilibrium, we assume free entry of jobs at zero cost.
Thus, in equilibrium workers are paid their marginal products in their jobs. Since job creation
is costless, the planner maximizes the discounted value of production for each worker, just as
each worker would do in the decentralized market. Thus, the welfare theorems again obtain,
and further, the assignment problem can be solved worker by worker as a single agent dynamic
learning problem.

4.2. Comparison of results

The two period model. We first consider a two period version. In the final period, the
assignment solution will be degenerate if output monotonically increases in types: H > M > L.
In this case all workers will be employed by H type jobs. To avoid this trivial solution to the
static problem, we assume for the purposes of this benchmark model (as in Roy and MacDon-
ald) that: min{H,L} > M . As a result both types of jobs will employ workers in period 2. In
the final period, we get Roy’s solution a threshold reputation x = (L − M)/π < 1, such that all
workers with reputation below x match with job type L and all workers with reputation above
x match with job type H. In this equilibrium the value to a reputation x worker in period 2 is:

v(x) =
{

Mx + L(1 − x) x < x

Hx + M(1 − x) x ≤ x
.

Now consider the first period. Conditional on matching with a type H job, a reputation
x worker updates to zi(x, 1) with chance pi(x, 1). Alternatively x can match with a type L
and update to zi(x, 0) with chance pi(x, 0). As mentioned, MacDonald (1982) studies the case
of assigning workers of unknown types to known jobs when signals of worker productivity
are uncorrelated with task assignment. In our model, signals are production outcomes, and we
cannot simply assume that signals are exogenous to assignments. In fact, except for certain
degenerate sets of parameters, assignments in period 1 will impact the distribution over worker
reputations in period 2.9

9. For example, assume two output levels, with like types producing high output with chance λ > 1/2, and
unlike types succeeding with chance 1 − λ. Then the distribution over signals is uncorrelated with task assignment,
and we get a simple version of MacDonald’s model.
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The continuation value for a reputation x worker matched to a job of type H is ψv(x, 1) =∑
i pi(x, 1)v(zi(x, 1)), and similarly ψv(x, 0) is the continuation value when matched to L.

Then a reputation x worker will be assigned to job type H iff :

(1 − δ) (Hx + M(1 − x)) + δψv(x, 1) ≥ (1 − δ) (Mx + L(1 − x)) + δψv(x, 0) ⇒
(1 − δ) ((H − M)x + (M − L)(1 − x)) ≥ δ

(
ψv(x, 0) − ψv(x, 1)

)
. (13)

The left hand side is the weighted difference in the static expected payoff from matching the
worker with job type H rather than L and linearly rises at rate π > 0. Since we have assumed
bounded signals, the right side vanishes for all x near the extremes {0, 1}. Thus, workers and
jobs are matched assortatively at the extremes.

Infinite horizon model. Showing that assortative matching occurs near the extremes {0, 1}
in an infinite horizon model is not as immediate for high δ. As in the partnership model we
must carefully balance the static losses from not matching assortatively with the (potential)
dynamic gains to see how this trade off plays out for high δ. We carry out this analysis near
x = 0. The analysis near x = 1 is symmetric.

First we establish (in the Appendix) the analogue to our earlier result on dynamic efficiency
near the extremes in the partnership model (Lemma 1).

Lemma 2. There exists δ∗ < 1 such that for all δ > δ∗, matching workers having
reputations near x = 0 with the type L job maximizes continuation values iff:∑

i

mi log

(
mi

�i

)
>

∑
i

hi log

(
hi

mi

)
. (14)

In the partnership model, static and dynamic efficiency are generally at odds as the
number of productive outcomes grow. In the employment model this is no longer true. Indeed,
inequality (14) and its converse are equally likely if parameters are drawn uniformly over the
simplex for all N . Thus, the a.s. failure of PAM that obtained in the partnership model, cannot
obtain in this employment model benchmark.

Nevertheless, we can still ask (as we did in the partnership model) whether dynamic
efficiency dominates static efficiency for high δ. Or put another way: when inequality (14)
is reversed, can we show that all x near 0 match with job type H for high enough δ? In
the continuum case we showed PAM failed by considering an infinitesimal rematching at the
extremes. Of course, in the discrete jobs model we cannot do such a marginal rematching.
Instead, our approach in the Appendix is to compare the static loss from matching with H
rather than L to the dynamic gain from such a rematching for x near the extremes {0, 1}. It
turns out that for all values of δ, the static loss of non-assortative matching dominates any
dynamic gain. Specifically:

Proposition 6. In the employment model, assortative matching obtains for all reputations
in an open interval around each extreme reputation at all discount factors δ < 1.

Altogether, the partnership model that we have introduced radically differs from the
analogous employment model. In the partnership model, failures of assortative matching
robustly obtain at the extreme reputations and thus assortative matches eventually break up.
Conversely, in the employment model, assortative matching fails for interior reputations, and
all workers are assortatively matched in the long run.
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5. CONCLUSION

We have developed a general dynamic matching model in which the characteristics of agents
stochastically evolve depending on their chosen match partner. We have shown that a steady
state competitive equilibrium exists and coincides with a competitive equilibrium in which
agents choose their partner.

Within this general framework, we have considered two applications in which the
characteristics that evolve can be interpreted as reputations. In the partnership model, we found
that contrary to Becker (1973), production complementarity no longer implies global PAM. We
instead find a conflict between productive and dynamic efficiency. Given enough patience, PAM
cannot arise in a stylized two period model, while PAM may well be dynamically efficient for
high or low types. We have argued, however, that it cannot globally be dynamically best when
agents are patient enough: either high or low reputation agents will match non-assortatively,
not necessarily both. What matters is a new statistically-based condition on the production
technology alone that is completely unrelated to supermodularity. Our proof also relies on a
knife-edge trade-off between dynamic and productive efficiency, as δ races up to 1.

In the employment model, we have shown that informational concerns dominate productive
concerns for workers with reputations near some interior cutoff, while productive concerns
dominate near extreme reputations. Thus, unlike in the partnership model, workers with extreme
reputations will be assortatively matched in the employment model.

This paper offers both theoretical and applied insights. First, we have developed a proof by
counterfactual for the failure of PAM by exploiting the convexity of shadow values. Second, we
have shown that our learning model provides a single coherent framework for understanding a
host of time series and cross-sectional properties of the labour market, ranging from job tenure
to wage growth. These properties can therefore be seen as owing to the factors identified here.
Finally, we also identify a new phenomenon–the efficient break-ups of matched stars (like the
Beatles) in industries with high skill technology–on which more empirical work is needed.

APPENDIX A. EXISTENCE, WELFARE THEOREMS, AND VALUES

Here, we assume that the social planner chooses the measure over matches μ, where μ(X × Y ) is the mass of
matches (x, y) in the product space [0, 1]2, where x ∈ X and y ∈ Y , for measurable sets X, Y ⊂ [0, 1]. Let λG(A)

be the measure of any measurable sets A ⊂ [0, 1] associated with cdf G (see Theorem 12.4 in Billingsley (1995) for
existence and uniqueness of such a measure).

A.1. Steady-state Pareto optima: proof of Theorem 2

Equip10 W ≡ L∞([0, 1]2) with the standard norm topology. The dual W ∗ of W is the space of bounded measures
on [0, 1]2, in which our joint cdf’s F dwell. Endow W ∗ with the weak* topology. Let Z be the space of cdfs on
[0, 1] with the sup-norm (discrepancy metric) defined on their measures, i.e. ||G − Ĝ|| = supA |λG(A) − λ

Ĝ
(A)|. Let

� : Z ⇒ W ∗ be the correspondence from distributions G ∈ Z into feasible matchings given (2):

�(G) = {μ ∈ W ∗ : λG(A) ≥ μ(A × [0, 1]) ∀A measurable}. (A1)

Claim 1. The correspondence � given by (A1) is continuous and compact valued.

Proof. By Alaoglu’s Theorem (see Royden, 1988, Section 10.6), if �(G) ⊂ W ∗ is weak* closed, bounded,
and convex, then �(G) is weak* compact. Convexity and boundedness are immediate. For weak-* closed, let IY

10. We are indebted to Ennio Stacchetti for providing the key insights for this proof.
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be the indicator function of the set Y . Let B
A
[a,b] = {μ : a ≤ ∫

IA×[0,1]dμ ≤ b}, and likewise define notation for open
intervals and half-open and half-closed intervals. Note that �(G) = ⋂

A B
A
[0,λG(A)] and that IA×[0,1] ∈ W . By definition,

B
A
[0,λG(A)] is weak* closed, and thus �(G) is weak* closed.

We show that this correspondence is upper and lower hemi-continuous (u.h.c. and l.h.c.). Now � is pointwise
closed, and we can assume without loss of generality that it maps into a compact subset of W ∗, say with upper
bound M < ∞. Thus, u.h.c. follows if � has the closed graph property–i.e. if for any G ∈ Z: μ /∈ �(G) implies that
O ∩ �(G) = ∅ for some open set O containing μ. But μ /∈ �(G) if μ>λG(A) for some A. The result follows from
continuity of λG(A)=∫

IA×[0,1]dμ in μ.
Recall that a correspondence � is l.h.c. at G ∈ Z if for every open set O in W ∗ with O ∩ �(G) 
= ∅, there

exists η > 0 such that O ∩ �(Ĝ) 
= ∅ for all Ĝ with ‖G − Ĝ‖ < η. We need only consider (basis) open sets of
the form O = ⋂m

k=1 B
Ak
(ak,bk ). Pick μ ∈ O ∩ �(G). Define με by με(A × [0, 1]) ≡ μ(A × [0, 1]) − ελ(A) for all A.

We claim that there exists ε, η > 0 such that με ∈ O ∩ �(Ĝ) for all Ĝ ∈ Z with ‖Ĝ − G‖ < η. Pick any such
Ĝ. Easily, με ∈ O for small ε > 0. We show that με ∈ �(Ĝ) for any η ≤ ε, namely λ

Ĝ
(A) ≥ με(A × [0, 1])

for all A. Since ‖G − Ĝ‖ < η and λ(A) ≤ 1, this follows if |λG(A) − λ
Ĝ
(A)| < ηλ(A) for all A, or simply if

λĜ
(A) > λG(A) − ηλ(A). But λG(A) − ηλ(A) ≥ μ(A × [0, 1]) − ελ(A) given λG(A) ≥ μ(A × [0, 1]) and η ≤ ε. ‖

Using the norm ‖V‖ = sup‖G‖≤1 |V(G)| on value functions, define:

V = {V : Z → R : V is homogeneous of degree 1, continuous, and ‖V‖ < ∞}.

The planner’s present value of output

�(V, μ) = (1 − δ)
∫
Qdμ + γV((1 − σ)G + σB(μ)).

For G ∈ Z, then define the Bellman operator T on V by

T V(G) = max
μ∈�(G)

�(V, μ).

Claim 2. T: V → V.

Proof. The mapping clearly preserves boundedness and homogeneity. We now show that T preserves continuity.
First, �(V, μ) is weak* continuous in (V, μ) ∈ V × W ∗. Indeed, μ �→ ∫

Qdμ and μ �→ B(μ) are bounded linear
operators (recall ρ ∈ W ∗), and thus are weak* continuous on W ∗. For each V ∈ V , the composition V(B(μ)) is
continuous in μ. Thus, (V, μ) �→ �(V, μ) is continuous. Also, the constraint correspondence is continuous and
compact-valued by Claim 1. Then T V is continuous by the generalization of Berge’s Theorem of the Maximum
in Robinson and Day (1974). ‖

Claim 3. For any cdf G, a Pareto optimal value V and matching measure μ exists.

Proof. First, the Bellman operator T is a contraction. Indeed, T is monotonic and T (V + c) = T V + γ c, where
0 < γ < 1 and c is real. Thus, T is a contraction by Blackwell’s Theorem, has a unique fixed point V in V by the
Banach Fixed Point Theorem. So V is continuous, as is the composition V(B(μ)). Thus, the maximizer μ of the
continuous function �(V, μ) on the compact constraint set �(G) exists. ‖

Claim 4. There exists a cdf G and a matching measure μ that is a steady-state PO.

Proof. Define the correspondence T ∗ : Z → W ∗ by T ∗(G) = arg maxμ∈�(G) �(V, μ), where G ∈ Z. Let � :
W ∗ → Z be the function capturing the transition equation: �(μ) = (1 − σ)G + σB(μ), for μ ∈ W ∗. If the map
T ∗◦

� : W ∗ →W ∗ has a fixed point G∗ =T ∗(G∗), then we can assume a constant optimal matching measure
μ∗ ∈ �(G∗).

By an extension of the Kakutani Fixed Point Theorem in (1981, Section 10), it suffices that T ∗◦
� be

nonempty, convex-valued, closed-valued, and u.h.c. Claim 3 yields non-emptiness. Now, T ∗ is u.h.c. and closed-
valued by Robinson and Day (1974). It is convex-valued, as � is linear in μ and the constraint set �(G) is convex.
Claim 2 proved � continuous. As a composition of a continuous function and a u.h.c. correspondence, T ∗◦

� is u.h.c.
Also, � is linear in μ, and preserves closedness and convexity; thus, T ∗◦

� is convex-valued and closed-valued. It
has a fixed point G∗ =T ∗(G∗). ‖
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G  G
T ∗ (Maximization) Θ (Transition equation)

u.h.c., Convex-and closed-valued Continuous and linear
m

Figure A1

Existence. This schematic illustrates the proof of steady state existence

A.2. Welfare theorems: proof of Theorem 3

A. First welfare theorem. Define 〈Q,F 〉 ≡ (1 − δ)
∑∞

t=0 γ t
∫

[0,1]2 Q(x, y)F (dx, y)dy. Assume that (F, v,w) is a

CE, but F is not a PO. Thus, there exists feasible F̂ with 〈Q, F̂ 〉 > 〈Q,F 〉. Define wy(x, y) = w(y|x). By
definition of a competitive equilibrium and (3), we have 〈w + wy, F 〉 = 〈Q,F 〉 and 〈w + wy, F̂ 〉 = 〈Q, F̂ 〉. Hence,
〈w + wy, F̂ 〉 > 〈w + wy, F 〉. By symmetry, 〈w, F̂ 〉 = 〈wy, F̂ 〉, and so 〈w, F̂ 〉 > 〈w,F 〉.

Let Ĝ be the density associated with the matching F̂ , and let ρt (z, x, F ) be the chance that agent x at time 0
updates to z at time t . By worker maximization (7),

∑
t δt

∫ ∫
z∈supp G

w(z|y)ρt (z, x, F )dF (z|y)dy ≥ ∑
t δt

∫ ∫
z∈supp G

w(z|y)ρt (z, x, F̂ )dF̂ (z|y)dy.

Integrate over x to get 〈w,F 〉 ≥ 〈w, F̂ 〉, contrary to 〈w, F̂ 〉 > 〈w,F 〉. Thus, F is a PO.
To prove that v is a multiplier in the planner’s problem for the given (efficient) F , we show that (F, v) satisfies the

planner’s FOC. Take any matched pair (x, y). If we sum the worker maximization conditions (7) for x and y we obtain:

v(x) + v(y) = (1 − δ)(w(x|y) + w(y|x)) + δ�v(x, y).

Since w(x|y) + w(y|x) = Q(x, y), the planner’s FOC (6) is satisfied for this matched pair. Now take any (x, y) (not
necessarily matched). Worker maximization (7) implies:

v(x) ≥ (1 − δ)w(x|y) + δψv(x|y) and v(y) ≥ (1 − δ)w(y|x) + δψv(y|x).

Summing these two inequalities and applying (3) yields:

v(x) + v(y) ≥ (1 − δ)(w(x|y) + w(y|x)) + δ�v(x, y) = (1 − δ)Q(x, y) + δ�v(x, y). ‖

B. Second welfare theorem. Let (F, v) be a PO. Assume that the pairs (x, y) and (x̂, ŷ) are matched in
the PO, but there does not exist a competitive equilibrium in which these pairs are matched. Let V (x, y) ≡
(1 − δ)Q(x, y) + δ�v(x, y). By definition of PO, we have:

V (x, y) + V (x̂, ŷ) ≥ V (x, ŷ) + V (x̂, y).

As this holds for any matched pairs, output shares w exist so that (F, v,w) is a CE. ‖

APPENDIX B. NON-ASSORTATIVE MATCHING

B.1. Asymptotic analysis for Lemma 1 and Proposition 3

We proceed by contradiction, assuming PAM and using the implied value function vδ . Indeed, given v′
δ(0) = M − L

and v′
δ(1) = H − M fixed,

∫ 1
0 v′′

δ (x)dx is constant in δ. Since the value function flattens (limδ→1 v′′
δ (x) = 0) for

any interior x ∈ (0, 1), convexity must accumulate at 0 and 1, as in Figure 3. Curiously, we now show that
δ
∑

i m2
i /�i > 1 suffices near x = 0, so that the convexity explosion may occur far from δ = 1: for instance,

if �= (0.01, 0.99) and m =h = (0.99, 0.01), then δ>(
∑

i m2
i /hi )

−1 ≈ 1/98 works.

Claim 5. Assume PAM and δ
∑

i m2
i /�i > 1. Define αδ ∈ (0, 1) by (10). Then:

(a) v′′
δ (x)∼κδx

−αδ near x = 0, where κδ >0
(b) limδ↑1 κδ/(1 − αδ) = κ , where κ > 0.
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Likewise, for δ < 1 big enough that δ
∑

i m2
i /hi > 1, we have v′′

δ (1 − x) ∼ κδx
−βδ near x = 1 for βδ ∈ (0, 1) given

by (10); further, κδ/(1 − βδ) → κ as β ↑ 1, for some κ > 0.

Part (a) provides a functional form for the second derivative near x = 0 at fixed δ. Essentially, v′′ geometrically
blows up as fast as it can and still leave v′ integrable.

Proof. By Anderson (2007),11 for any twice continuously differentiable policy function a(x), the second derivative
v′′(x) obeys part (a) if v(x) is convex, the static output function Q(x, a(x)) is strictly convex, and δ

∑
i m2

i /�i > 1
holds. These assumptions obtain here, since a(x) = x, and Q(x, x) is strictly convex.

Part (b) also follows from Anderson (2007). Beyond the assumptions needed for part (a), the derivative of the
policy function must be finite at x = 0, and |piy(x, y)| < ∞. Since a(x) = x and pi(x, y) is linear, these assumptions
are met. ‖

Define R(α) ≡ ∑
i (hi − mi)(mi/�i )

1−α + (1 − α)
∑

i [(hi�i − m2
i )/�i ](mi/�i )

1−α .

Claim 6 (Diagonal cross partial). �δ
12(x, x)∼κδR(αδ)x

1−αδ /(1 − αδ) near x =0, where R(1) = 0 and
R′(1) = S(h,m, �).

Proof. Computing �δ
12(x, x) we have:

θδ(x) ≡ �δ
12(x, x) = ∑

i (πivδ(zi ) + ai(x)v′
δ(zi) + bi(x)v′′

δ (zi)), (B1)

where πi = hi − 2mi + �i , ai(x) = hi − mi + O(x), bi(x) = [(hi�i − m2
i )mi/�

2
i ]x + O(x2).12

We can integrate our asymptotic approximation from Claim 5, written as v′′
δ (x) = κδx

−αδ (1 + o(1)), to yield
expressions for vδ and v′

δ in (B1). Making this substitution and zi (x) = (mi/�i )x + O(x2), the terms in θδ(x) are:

∑
i

π ivδ(zi ) =
∑

i

π i

[
κδ

(1 − αδ)(2 − αδ)
z

2−αδ
i + v′

δ(0)zi + vδ(0) + o(x2−αδ )

]
= (∑

i π i (mi/�i )
)
v′

δ(0)x(1 + o(1))∑
i

ai (x)v′
δ(zi ) =

∑
i

(hi − mi + O(x))

[
v′

δ(0) + κδ

1 − αδ

z
1−αδ
i (1 + o(1))

]

= κδ

1 − αδ

∑
i

(hi − mi)

(
mi

�i

)1−αδ

x1−αδ (1 + o(1))

∑
i

bi (x)v′′
δ (zi ) = κδ

∑
i

[
(hi�i − m2

i )mi

�2
i

x + O(x2)

](
mi

�i

x

)−αδ

(1 + o(1))

= κδ

∑
i

hi�i − m2
i

�i

(
mi

�i

)1−αδ

x1−αδ (1 + o(1)).

Thus,

θδ(x) = κδ

1 − αδ

R(αδ)x
1−αδ (1 + o(1)).

We need to know that this term is negative and bounded away from zero as δ → 1. We have already shown that
κδ > 0 for δ < 1 (Claim 5 (a)). Thus, we need only show now that R(α) < 0 for large α < 1, since α1 = 1 and
αδ is increasing in δ near 1. Given R(1) = 0, we are done since R′(1) > 0, for then θδ(x) < 0 for δ near 1 and
small x. ‖

11. We can translate to the Anderson (2007) framework by letting the action a(x) be the reputation of the agent
to match with x, and hiy + mi(1 − y) and miy + �i (1 − y) be the probabilities of realizing signal qi given action y

in the high and low state of the world, respectively.
12. φ(x) = o(g(x)) iff limx→0 φ(x)/g(x) = 0 while φ(x) = O(g(x)) if lim supx→0 |φ(x)/g(x)| < ∞.
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B.2. Proof that PAM implies v′
δ(1) − v′

δ(0) = π

PAM yields vδ(x) = (1 − δ)Q(x, x)/2 + δ
∑

i vδ(zi (x, x)). Anderson (2007) proves that v′
δ exists and is continuous

on [0, ε], for some ε > 0. Differentiation yields:

v′
δ(0) = (1 − δ)Q′(0, 0)/2 + δv′

δ(0)

since zi (0, 0)=0,
∑

i p′
i (0, 0)=0 and

∑
i z′

i (0, 0)pi(0, 0)=1. Thus, v′
δ(0)=Q′(0, 0)/2. Similarly, v′

δ(1) = Q′(1, 1)/2,
and so v′

δ(1) − v′
δ(0) = [Q′(1, 1) − Q′(0, 0)]/2 = π . ‖

B.3. PAM almost always fails: proof of Proposition 4

As we have shown, PAM fails near x = 0 iff: π − S(h,m, �)α̇1κ < 0, where κ = limδ→1 κδ/(1 − αδ) > 0. Thus, we
need the measure of parameters (h,m, �) for which this inequality fails (the opposite weak inequality holds) to vanish
as N increases.

We cannot apply a Law of Large Numbers, since the summands are dependent (e.g.
∑

i hi = 1), and the domain
(�N)3 changes in N . But if we can show that under a uniform distribution over parameters the probability that
PAM fails converges to 1, then the measure of the parameters (h, m, �) for which PAM fails also converges
to 1. Thus we assume that the probabilities h, m, � are each uniformly distributed on �N , i.e. the density �N

is (N − 1)! and has marginals (λ is Lebesgue measure) dλi(h
N
i ) = (N − 1)(1 − hN

i )N−2 and dλij (h
N
i , hN

j ) =
(N − 1)(N − 2)(1 − hN

i − hN
j )N−3.

Define the random variables, SN = S(h, m, �) and AN = 1/α̇1 = ∑
i mN

i log(mN
i /�N

i ). We need Pr[SN/AN >

π/c] → 1. We shall establish this in two steps:
Step 1. AN → 1 a.s. as N → ∞.
Define χN

i = mN
i log(mN

i /�N
i ). Direct calculation with the densities yields: E[

∑
i χN

i ] = NEχi = (N − 1)/N .
If we can show var(

∑
i χN

i )) → 0, we are done.

var

(∑
i

χN
i

)
= Nvar(χN

i ) + N(N + 1)cov(χN
i , χN

j ).

By direct calculation, cov(χN
i , χN

j ) ≤ 0. Alternatively, each (mN
i ,mN

j ) pair is only correlated by the restriction∑
i mN

i = 1, and thus negatively (likewise (�N
i , �N

j )). This negative correlation and the monotonicity of χN
i in mN

i

and �N
i imply cov(χN

i , χN
j ) ≤ 0.

So, Nvar(χN
i ) → 0 is sufficient to establish the result. Substituting from above: var(χN

i ) = E[(χN
i )2] − (N −

1)2/N4, where direct calculation yields for large N :

E[(χN
i )2] ∝ �[N]

�[N + 2]

(
�′[N]

�[N]

)2

where �(N) ≡ ∫ ∞
0 sN−1e−sds is the gamma function, i.e. �′(N) = ∫ ∞

0 log(s)sN−1e−sds. Since the ‘ψ function’
obeys �′(N)/�(N) ∼ log N as N → ∞, we have:

NE[(χN
i )2] ∝ N�[N]

�[N + 2]
(log N)2 .

This converges to 0 as N → ∞. So var(
∑

i χN
i ) → 0, and Step 1 is true.

Step 2. Pr[SN/N ≥ 2] → 1.
Define s1

N = (1/N)
∑

i log(mN
i /�N

i )(mN
i − hN

i ) and s2
N = (1/N)

∑
i (m

N
i )2/�N

i , so that SN/N = s1
N + s2

N .

Claim 7. The sum s1
N vanishes in probability: s1

N ⇒ 0.

Proof. First Es1
N → 0. Given the above densities, Es1

N = ((N − 1)/N2)(ς + �′(N)/�(N)), where ς is Euler’s
constant. So Es1

N > 0.
Then by routine calculations, var(s1

N) → 0. Thus, Pr[|s1
N − Es1

N | ≥ ε] → 0 ∀ε. ‖

Claim 8. The sum s2
N converges in probability to some constant ≥ 2.

Proof. Define �̃N
i = �N

i if �N
i ≥ 1/N2 and 1/N2 otherwise. Let s̃2

N = s2
N with �N

i replaced with �̃N
i , and note that

s2
N ≥ s̃2

N . It suffices to prove s̃2
N ⇒ 2.
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We first claim that Es̃2
N → 2. Indeed, if ρN = 1 − (1 − 1/N2)N−1 is the chance that �i ≤ 1/N2, then

E(1/�̃N
i ) = N2ρN + ∫ 1

1/N2 (N − 1)(1 − s)N−2/sds ≤ N2. Letting ρN → 1 yields E(1/�̃N
i ) = N2 + o(N2). Finally,

E(mN
i )2 = 2/N(N + 1), so that Es̃2

N → 2.
It thus suffices that Pr[|s̃2

N − Es̃2
N | ≥ ε] → 0 ∀ε. By similar reasoning as above, E(1/(�̃N

i )2) = N4 + o(N4),
and E((1/�̃N

i )(1/�̃N
j )) = N4 + o(N4). Also, E((mN

i )4) = 24/(N(N + 1)(N + 2)(N + 3)), and E((mN
i )2(mN

j )2) =
4/(N(N + 1)(N + 2)(N + 3)). Then the variance of s̃2

N equals

1

N
E

(mN
i )4

(�̃N
i )2

+ N − 1

N
E

(mN
i mN

j )2

�̃N
i �̃N

j

−
(

E
(mN

i )2

�̃N
i

)2

= 4N2(N − 1)

(N + 1)2(N + 2)(N + 3)
+ o(N)

using the independence of mN from �̃N –i.e., var(s̃2
N) → 0. ‖

B.4. Long run match dynamics: proof of Proposition 5

Case (a). By Easley and Kiefer (1988), the reputation may only converge to a potentially confounding point, where
it is unchanged. If x 
= 0, then zi (x, y) = x iff pi(1, y) = pi(x, y). Since ∂pi(x, y)/∂x is constant in x, this requires
∂pi(x, y)/∂x = (hi + �i − 2mi)y + mi − �i = 0, or y = (mi − �i )/(hi + �i − 2mi) ∀ i, contrary to Assumption 2.
As there are no interior potentially confounding beliefs, the long run density g∞ has support {0, 1}. Reputation being
a martingale, the weights are (1 − x0, x0). ‖

Case (b). Let PHH, PHL, PLH, PLL be the current beliefs over the possible state space {{H,H}, {H,L}, {L,L},
(L,L)}. Let P̂HH ≡ hiPHH/(hi + mi(PHL + PLH) + �iPLL) be the updated chance that the state is {H,H}, and define
similar updated beliefs P̂HL, P̂LH, P̂LL. Note that P̂ii = Pii iff Pii = 1, while P̂ij = Pij iff Pij = 1 or Pij = Pji = 1/2.
Thus, these are the only potentially confounding beliefs. ‖

APPENDIX C. ANALYSIS FOR DISCRETE JOBS BENCHMARK

C.1. Extremal approximation given matching

Near the extremes x = 0 and x = 1 the same functional asymptotic approximation for v(x) holds as in the partnership
model when we assumed PAM. Near 0, the value function v(x) is approximately equal to a linear function plus xαθ (δ)

if the worker is matched to a type θ ∈ {H,L} firm where the αθ (δ) solve:

1 ≡ δ
∑

i

mi

(
hi

mi

)αH(δ)

and 1 ≡ δ
∑

i

�i

(
mi

�i

)αL(δ)

.

Static payoffs are trivially convex in x, and static payoffs zi (x, y), and pi(x, y) are all twice differentiable in x.
Further, beliefs are a martingale and near x = 0 the belief process is approximately linear, satisfying:

zi (x, 1) ∼ (hi/mi) x pi(x, 1) ∼ mi x → 0
zi (x, 0) ∼ (mi/�i ) x pi(x, 0) ∼ �i x → 0.

Together these assumptions yield some δ∗ < 1 such that the desired match contingent value approximations hold with
αθ (δ) ∈ (1, 2) continuously falling in δ for all δ ∈ (δ∗, 1) and αθ (1) = 1 by Lemma 2 and Proposition 1 in Anderson
(2007).

C.2. Extremal ordering of values for high δ

We have shown that when matching with firm type θ , the worker’s value function is approximately linear plus xαθ (δ)

near x = 0. Thus, for low enough x the value to matching with a type H job will be higher than matching with a
type L job iff αH(δ) < αL(δ). Since we have αH(1) = αL(1) = 1 and α′

θ (δ) < 0, for δ close to 1:

|α′
H(1)| < |α′

L(1)| ⇔ αH(δ) < αL(δ).

By the Implicit Function Theorem:

α′
H(1) = −

(∑
i

hi log

(
hi

mi

))−1

and α′
L(1) = −

(∑
i

mi log

(
mi

�i

))−1

© 2009 The Review of Economic Studies Limited



28 REVIEW OF ECONOMIC STUDIES

and so:

|α′
H(1)| < |α′

L(1)| ⇔
∑

i

hi log

(
hi

mi

)
>

∑
i

mi log

(
mi

�i

)
.

C.3. PAM still obtains at extremes with high δ

We now show that the static effect dominates near x = 0 for δ arbitrarily close to 1. Matching with job type H rather
than job type L results in a static loss valued at:

(1 − δ) ((H − M)x + (M − L)(1 − x))

which converges to 0 as δ → 1 and to a positive constant as x → 0 for any fixed δ < 1.
Given our asymptotic approximation, the dynamic change in value is approximately:

�ψ(x, δ) ≡ δ

[
xαH(δ)

∑
i

mi

(
hi

mi

)αH(δ)

− xαL(δ)
∑

i

�i

(
mi

�i

)αL(δ)
]

.

But since αθ (1) = 1, limδ→1 �ψ(x, δ) = 0, static and dynamic effects vanish as δ → 1.
To determine the rate of convergence, we normalize the static and dynamic effect, dividing both by 1 − δ. The

static loss is then simply a linear function of x, converging to (M − L) > 0 as x → 0. The dynamic effect is more
complicated. By L’Hopital, we have:

lim
δ→1

�ψ(x, δ)

1 − δ
= lim

δ→1
−�ψδ(x, δ),

where limδ→1 �ψδ(x, δ) equals

α′
H(1)

[
x log x + x

∑
i

hi log

(
hi

mi

)]
− α′

L(1)

[
x log x + x

∑
i

mi log

(
mi

�i

)]

= x log x

⎡
⎣ 1∑

i mi log
(

mi
�i

) − 1∑
i hi log

(
hi
mi

)
⎤
⎦

which is k x log x for some constant k. So even if the dynamic gain to matching x near 0 with H rather than L is
positive, assortative matching obtains for all x such that:

k x log x < (H − M)x + (M − L)(1 − x).
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BERGEMANN, D. and VÄLIMÄKI, J. (1996), “Learning and Strategic Pricing”, Econometrica, 64, 1125–1149.
BILLINGSLEY, P. (1995), Probability and Measure, 3rd edn. (John Wiley and Sons, Cambridge, MA).
CHADE, H. (2006), “Matching with Noise and the Acceptance Curse”, Journal of Economic Theory, 129 (1), 81–113.
EASLEY, D. and KIEFER, N. (1988), “Controlling a Stochastic Process with Unknown Parameters”, Econometrica,

56 (5), 1045–1064.

© 2009 The Review of Economic Studies Limited



ANDERSON & SMITH DYNAMIC MATCHING REPUTATIONS 29

LEONARDO, F. and HARRIS, C. (1996), “Learning, Wage Dynamics, and Firm-Specific Human Capital”, The
Journal of Political Economy, 104 (4), 838–868.

HUGGETT, M., VENTURA, G. and YARON, A. (2006), “Human Capital and Earnings Distribution Dynamics”,
Journal of Monetary Economics, 53 (2), 265–290.

ISTRATESCU, V. (1981), Fixed Point Theory (D. Reidel Publishing Company, Boston, MA).
JOVANOVIC, B. (1979), “Job Matching and the Theory of Turnover”, The Journal of Political Economy, 87 (5),

972–990.
KREMER, M. (1993), “The O-ring Theory of Economic Development”, Quarterly Journal of Economics, 108 (3),

551–575.
KREMER, M. and MASKIN, E. (1996), “Wage Inequality and Segregation by Skill (NBER Working Paper 5718).
LORENTZ, G. (1953), “An Inequality for Rearrangements”, American Mathematical Monthly, 60, 176–179.
MACDONALD, G. (1982), “A Market Equilibrium Theory of Job Assignment and Sequential Accumulation of

Information”, American Economic Review, 72 (5), 1038–1055.
MOSCARINI, G. (2005), “Job Matching and the Wage Distribution”, Econometrica, 73 (2), 481–516.
NIEDERLE, M. and ROTH, A. E. (2004), “Market Culture: How Norms Governing Exploding Offers Affect Market

Performance” (Mimeo, Harvard University).
ROBINSON, S. and DAY, R. (1974), “A Sufficient Condition for Continuity of Optimal Sets in Mathematical

Programming”, Journal of Mathematical Analysis and Applications, 45, 506–511.
ROY, A. (1950), “The Distribution of Earnings and Individual Output”, Economic Journal, 60, 489–505.
ROYDEN, H. L. (1988), Real Analysis, 3rd edn. (Prentice Hall, New Jersey).
SATTINGER, M. (1979), “Differential Rents and the Distribution of Earnings”, Oxford Economic Papers, 31 (1),

60–71.
SERFES, K. (2005), “Risk Sharing Versus Incentives: Contract Design Under Two-Sided Heterogenity”, Economics

Letters, 88, 343–349.
SHIMER, R. and SMITH, L. (2000), “Assortative Matching and Search”, Econometrica, 68 (2), 343–369.
TOPKIS, D. (1998), Supermodularity and Complementarity, Princeton University Press, Princeton, NJ.
WRIGHT, D. (2004), “The Risk and Incentive Trade-Off in the Presence of Heterogenous Managers”, Journal of

Economics, 83, 209–223.

© 2009 The Review of Economic Studies Limited


