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1 Matching Foundations of Markets

Economics explores how societies allocate scarce resources. Most allocation problems are
solved by a price system. Sometimes a price faces legal or ethical objections (e.g. organ
donors, public-school places to children, etc). Moreover, even if the price system exists
the perfect competition assumption is hardly satisfied. How do we solve the allocation
problem in this kind of markets? We explore a theory for the optimal allocation of
resources when there is no price system.1 We then see how prices and money change
everything. We explore this model, eventually arriving at standard double auctions.

1.1 Pairwise Matching with Nontransferable Utility

Assume individuals are of several observable types. We develop a model of a two-sided
market with complete information, or just a two sided market if the information structure
is understood, e.g. buyer-seller, worker-firm, worker-task, etc. We will use the label men
and women to refer to the general case, but this is just metaphorical. Their different
types will determine the payoff each agent in one side of the market receives from being
matched with each player of the other side of the market. Ultimately we want to answer
the question about the optimal way men and women should match.

A finite number of women x ∈ X and men y ∈ Y can pair off in a “matching market” —
inspired by the genetics XX and XY. We will think of X,Y ⊂ R+, for simplicity. Everyone
can match with at most one partner (polygamy is infeasible). Write m(x, y) = 1 if woman
x is matched to man y, and m(x, y) = 0 otherwise. A feasible matching obeys symmetry
m(x, y) = m(y, x) for all x, y (so if x is matched with y then the opposite holds), and no
overmatching : for every x, we have m(x, y) = 1 for at most one y. So woman x remains
single if m(x, y) = 0 for all y ∈ Y . We letM denote the set of all feasible matchings, and
if it is unique, µ(x) the partner of woman x, µ(y) the partner of man y.

Everyone only has rank order preferences over all matches as well as the single status.
While we will represent these by numerical payoffs (in consumer, called utility), they
cannot be traded and we thus describe this as nontransferable utility (NTU).

Economics is based on the notion of mutual consent, or the “double coincidence of
wants”.2 To do so, we instead characterize matching allocations that ensure that no
matches are severed. If no one prefers a different pairing (possibly with the empty set),
we call such a matching allocation stable, and otherwise it is unstable. More formally: An
assignment of men and women is unstable3 if there is a blocking pair, namely, a woman
x and man y not matched, even though x prefers y to his partner, and y prefers x to his

1The 2012 Nobel prize was awarded jointly to Alvin E. Roth and Lloyd S. Shapley “for the theory of
stable allocations and the practice of market design”.

2The Alfred Hitchcock film “Strangers on a Train” was premised on a murderer finding someone who
also wants a murder done, and each doing the murder for the other. William Stanley Jevons (1875),
Money and the Mechanism of Exchange, Chapter 1.

3This stability notion is in Gale and Shapley’s (1962) “College Admissions and Stability of Marriage”.
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partner. Indeed, double coincidence of wants is at the heart of economics: x prefers y and
y prefers to match with x.

Example — Rappers & Classic Rock artists. Assume a contest in which a
rapper that has to match with a classic rock artist to collaborate on a song. We represent
preferences by the utilities below, and assume a zero utility for not matching.

Pink Floyd Bob Dylan J.Hendrix

Jay-Z 6,9 12,12 18,15
50 C 4,16 8,18 12,20

Snoop 2,23 4,24 6,25

The bold match is stable if the unmatched payoff is zero, because Snoop and J. Hendrix
get their most desirable partner when 50 C and Bob Dylan get their most desirable partner
among the rest, and matching with Jay-Z or Pink Floyd beat remaining single.

The following algorithm arrives at this allocation: Rappers first propose, everyone
asking their top rocker, J. Hendrix. Jimmy Hendrix accepts his most preferred option,
Snoop. Then 50 C and Jay-Z ask their top remaining partner, Dylan, who in turn accepts
his most preferred suitor 50 C. Finally, Jay-Z and Pink Floyd match.

This is an example of the Gale-Shapley deferred acceptance algorithm (1962).4 The
algorithm involves the following stages:

1. All men start unengaged and women start with no suitors.

2. Each unengaged man proposes to his most-preferred woman (if any) among those
he has not yet proposed to, if matching with her beats remaining single;

3. Each woman gets engaged to the most preferred among all her suitors, including
any engagements, if matching with him beats remaining single.

4. Repeat steps 2–3 until no more proposals are possible. Engagements become matches.

Proposition 1 (a) The algorithm stops in finite time. With an equal number of men and
women, if matching beats remaining single, then everybody matches. (b) The algorithm
produces stable marriages. With strict preferences, the algorithm yields a unique matching.

Proof: To see (a), notice that at each iteration, one man proposes to some woman to
whom he has never proposed before. With n men and n women, this is n2 possible events.5

Let Alice and Bob be married, but not to each other. After the algorithm, both cannot
prefer each other to their current partners. If Bob prefers Alice to his current partner,
then he must have proposed to Alice before his current partner. If Alice accepted, yet is
not married to him at the end, then she must have dumped him for someone she prefers;

4This is a stylized algorithm, and not intended to be realistic. It ignores waiting or search costs, and
assumes obedience to the algorithm. For an attempted search foundation of sorting with NTU, see Smith
(2008), The Marriage Model with Search Frictions, Journal of Political Economy. For the TU version,
see Shimer and Smith (2000), Assortative Matching and Search, Econometrica.

5The maximum number of steps in the DAA is precisely n2 − 2n+ 2. See Appendix A.
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so she doesn’t prefer Bob to her current partner. If Alice rejected his proposal, then she
was already engaged to someone she prefers to Bob. �

It is easy to see that if everyone prefers any match to being single, then everyone gets
married in the DAA with an equal number of men and women.

If there are several stable matches, then a stable allocation is called male (female)
optimal if all men (women) agree that they weakly prefer their match under this allocation
than under any other stable allocation. Similarly an allocation is male (female) pessimal
if they all agree on it being the worst allocation among the stable allocations.

Suppose there is more than one stable matching. In this case, we can compare them
in a natural way. We call a stable matching m male-optimal if given any other stable
matching m′, each man y prefers his match with m to his match m′. Similarly, define m
as female-optimal. Call m female-pessimal if given any other stable matching m′, each
woman x prefers her match with m′ to her match m.

Proposition 2 The DAA chooses a male-optimal and female-pessimal stable matching.

Proof: If male optimality fails, then some man M is rejected by his most preferred
woman in a stable matching µ, say W = µ(M), in favor of another man M ′ — for whom
M ′ �W M . Assume (F): this is the first period say k where this happens to any man.

Since M ′ proposed to W , and was not yet rejected by any woman partner by period
k in any stable matching (assumption (F)), in particular by W ′ ≡ µ(M ′), he must have
preferred W �M ′ W ′. But then

M ′ �W M and W �M ′ W ′

In this case, (M ′,W ) block the stable matching µ that pairs man M and woman W .

To see female-pessimal, suppose woman W strictly prefers the DAA matching µ to a
stable matching µ′. Then W must match with some man M = µ(W ). Since µ′ is stable,
man M prefers his partner W ′ = µ′(M) to W , contradicting µ male-optimal. �

Corollary 1 The DAA produces the same matching, regardless of which side proposes, if
and only if there is a unique stable matching.

Proof: Since the DAA always produces a stable matching, if the stable matching is unique,
then the DAA produces the same result regardless of which side proposes. Conversely, if
the algorithm produces the same result regardless of which side proposes, it must be the
unique outcome because it is both optimal and pessimal for both sides. �

We now give an example illustrating this result. The example in Figure 1 (with a zero
outside option payoff) has several stable matchings.

If women propose to men, the DAA finishes in round one. W1 propose to M2, W2 to
M3 and W3 to M1. All of them accept since the value of the outside option is 0. If men
propose to women, the algorithm also finishes in one: M1 propose to W2, M2 to W3 and
M3 to W1. Of course each woman accepts. Hence, the DAA gives two stable pairings:

(M1,W3), (M2,W1), (M3,W2) and (M1,W2), (M2,W3), (M3,W1)
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M1 M2 M3

W1 5,5 6,2 2,6
W2 2,6 5,5 6,2
W3 6,2 2,6 5,5

Figure 1: Three Stable Matchings, but two Outcomes from the DAA. In the
male-optimal and female pessimal matching, all men earn 6 and all women earn 2. In
the female-optimal and male pessimal matching, all men earn 2 and all women earn 6. A
third stable matching yields payoffs of 5 for everyone.

as in Proposition 1. If men propose, then each man gets a payoff of 6 and each woman 2.
If women propose, then each man gets 2 and each woman 6. So, when men propose, the
matches are male optimal, that is each man is better off.

To see that while the DAA always yields a stable outcome, the converse is not true.
Here is a third stable matching that gives everyone his/her second choice:

(M1,W1), (M2,W2), (M3,W3)

For no two people want to divorce and rematch: at least one of them is made worse off.
In order to characterize the stable allocations, let us now index types by a scalar

from shortest to tallest, poorest to richest, etc. Positive assortative matching (PAM)
with respect to the index occurs if the relationship between matched types is monotone
increasing — from low types matched with low types to high types with high types.
Negative assortative matching (NAM) means a monotone decreasing relation — high types
with low types and vice-versa. Whether a matching is PAM or NAM (or even assortative
at all) crucially depends on how the agents are indexed. For example, a matching that is
positively assortative on one attribute might be negatively assortative in another.

Let f(y|x) the utility of man x when matched with woman y and g(x|y) the payoff of
woman y when matched with man x. Let us assume that the payoffs of an unmatched
man x or woman man y is f(0|x) or g(0|y), writing 0 for matching with no partner. These
are strictly comonotone if both are increasing, or both decreasing:

[f(y2|x)− f(y1|x)] · [g(x2|y)− g(x1|y)] > 0 ∀x, y and ∀y2 > y1, x2 > x1 (1)

With differentiable functions, these notions are easily expressed by the partial derivative
signs. It is reverse comonotone if f is increasing while g is decreasing, or vice versa.

Proposition 3 PAM is the unique stable matching if f and g are strictly comonotone.
The unique stable matching is NAM if f and g are reverse comonotone.

Proof for PAM : We assume f and g are comonotone, since the reverse comonotone case
is similar. First, PAM is stable since if (x′, y′) and (x, y) are matched, where x′ > x
and y′ > y, and if perchance y′ prefers x to x′, then g(x|y′) > g(x′|y′); therefore, by
comonotonicity, we have f(y|x) > f(y′|x), and so x prefers y to y′.

4
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Pink Floyd Bob Dylan Jimi Hendrix

Jay-Z 6,9 12,12 18,15
50 C 4,16 8,18 12,20

Snoop 2,23 4,24 6,25

 

PF BD JH

JZ 15 24 33
50C 20 26 32

S 25 30 31

Figure 2: Rappers and Rockers. At left are the musicians’ contest payoffs, and at right
are the total match payoffs. These are respectively relevant to NTU and TU matching.

Next, assume that PAM is not the unique stable matching. Then there exists a stable
matching with matched pairs (x, y′) and (x′, y), where x′ > x and y′ > y. In other words,
if f(y|x) ≥ f(y′|x) then g(x′|y) ≥ g(x|y). In other words, if x prefers y to y′ then this
preference is not reciprocated. This violates comonotonicity, since it says it requires that
f and g both be increasing or both decreasing. �

Example — Rappers & Rockstars Sorting. To generate payoffs here, label
rapper Jay-Z as x = 3, 50 C as x = 2 and Snoop as x = 1, and rock stars Pink Floyd as
y = 1, Bob Dylan as y = 2 and Jimi Hendrix as y = 3. f(y|x) = 2xy for rappers, and
g(x|y) = x(y − 8) + 30 for rock stars. Observe that

∂f(y|x)

∂y
= 2x > 0 and

∂g(x|y)

∂x
= y − 8 < 0

Proposition 3 predicts that NAM is the stable outcome.
Note that in every case we have considered so far the number of people on each side

have been equal. In general, however, one side may have more (less) people than the
other. We will refer to this side as the long (short) side of the market. In this case, a
stable matching will necessarily have unmatched individuals.

Additionally, we have only thus far considered cases with discrete agents. We could
additionally consider a model with a continuum of agents. While the DAA will not finish
in finite time, there is an intuitive prediction nonetheless with co-monotone preferences. In
this case, instead of a number of agents, we will have a mass of agents. In the continuum
case, an allocation must have the property that any subset of matched men must have
the same mass as the subset of women to whom they are matched.

1.2 Pairwise Matching with Transferable Utility

In nontransferable utility (NTU) world, the match partner determines your payoff, and
so the theoretical predictions are the same with ordinal utility. Assume these payoffs are
actually money, and thus transferable across agents (which utility normally is not). A
richer matching problem then emerges, in which individuals decide on whom to match
with and money transfers. In this world of transferable utility (TU) matching, agents can
be compensated his partner for an inferior match quality, or might pay for a better match.

NTU presumes that match differences cannot be equalized by monetary transfers. The
TU model formally introduces side payments which will later be called transfers or wages.
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Example — Rappers & Rock stars Revisited: Let us start with the unique
stable NTU matching we found, but then allow transfers (it might help to think of these
as “bribes”).6 In this case, the matching unravels. For Jay-Z is willing to offer Jimi
Hendrix up to 18− 6 = 12 to match with him and sever his match with Pink Floyd. This
strictly exceeds Jimi’s loss of 25− 15 = 10 from doing this rematch. Thus, any payment
to Jay-Z between 10 and 12 leaves both musicians willing abandon their partners for this
new match. The NTU stable matches are bolded at left, and the different matching that
will arise with TU is bolded at right.

It is natural to ask then which matchings are immune to side payments, namely, stable
even in the presence of transfers. We claim that it is:

(Jay-Z, Jimmy Hendrix); (50 C, Bob Dylan); (Snoop, Pink Floyd)

Intuitive only the total match payoffs matter with side payments. Let h(x, y) =
f(y|x) + g(x|y) be the payoff of the match between woman x and man y, as given in the
table. In the unisex model, the two sides of the market enter symmetrically, and thus
h(x, y) ≡ h(y, x)); this best captures a partnership model.

A matching m is pairwise efficient with TU if for all matched pairs (x1, y1) and
(x2, y2):

h(x1, y1) + h(x2, y2)− h(x1, y2)− h(x2, y1) ≥ 0 (2)

If this condition failed, then a simple rematching to (x1, y2) and (x2, y1) and suitable side
payments would undo the original matching. Otherwise, one can split the gains from
rematching among all four agents via side payments and make everyone happy about the
divorce and repairing. With NTU, we did not need to worry about the losses of dumped
partners, but this condition essentially incorporates their payoffs.

But one might imagine that a richer rematching involving three, four, or more couples
might be needed to secure a payoff improvement. One in general could imagine rematching
all agents, and securing a higher total payoff across all matches. An efficient matching
m ∈M maximizes the sum of all match outputs, and thereby precludes any such possible
profitable rematching. Naturally, pairwise efficiency is necessary for efficiency.

Lemma 1 Any efficient matching m ∈M is pairwise efficient.

The converse of this lemma is false (Figure 3, by Andrea Wilson at Georgetown).
Assume a matching market for men and women. the monetary payoffs are the wage

w(y) to man y and v(x) to woman x. Imagine that match makers can compete to offer
wages v(x) and w(y) to attract men and women, and earn profits h(x, y)− v(x)− w(y).
With free entry of match makers (or free creation of matches), all such profits are nonpos-
itive for any match, or some other match maker would enter, and tease away both agents
by offers higher wages, and yet still earn strictly positive profits. On the other hand, there
is free exit of match makers, so that if a match does indeed form, then it must be possible

6 This analysis sheds light on why we sometimes see bribes emerge in matching environments when
transfers are disallowed. For instance, the NCAA bans payments to athletes, since it has monopoly power
(!). Not surprisingly, every year some teams engage in bribery.

6



An Economic Theory Masterclass Lones Smith

Y1 Y2 Y3

X1 3 3 0
X2 0 3 3
X3 2 0 3

Figure 3: Pairwise Efficiency versus Efficiency. The pairwise efficient green matching
has a lower total payoff than the pairwise efficient cyan matching, and is inefficient.

to pay wages out of match output. Equivalently, the match maker earns nonnegative
profits. A competitive equilibrium is a matching and wage profile (m,w, v) satisfying:

(a) Feasibility: m(x, y)≥0 and
∑

xm(x, y)≤1 ∀y ∈ Y, and
∑

y m̂(x, y)≤1 ∀x ∈ X

(b) Free Entry: v(x) + w(y) ≥ h(x, y) for any (x, y) ∈ X× Y

(c) Free exit: v(x) + w(y) ≤ h(x, y) for any matched (x, y) ∈ X× Y, i.e. m(x, y) > 0

In other words, since there is free entry of agents into matches, it cannot be that some
potential match exists that yields positive profits to the agents (or to a matchmaker).
Likewise, since there is free exit from matches, it cannot be that some actual match yields
negative profits. The word “competitive” reflects the free entry and exit conditions. Just
as well, agents take wages as given when they match, as they are set by match makers
competing with each other. Conditions (b) and (c) imply v(x) + w(y) = h(x, y) for all
matched agents x, y. We might more simply think of this as a feasibility constraint.

In other words, wages of matched agents precisely exhaust output and no agents could
match and earn positive residual profits. So the matching survives free entry and free exit
— specifically, a new match cannot form that earns positive profits (no profitable entry)
and an existing match can dissolve and save money.

We now introduce a strong endorsement of the free market.

Proposition 4 (First Welfare Theorem of Matching) Any competitive equilibrium
(m, v, w) yields an efficient matching m.

Proof: We argue by contradiction. Suppose there exists a competitive equilibrium (m, v, w)
that is not efficient. Then, there exists a feasible matching m̂ ∈M with a strictly higher
payoff across all matches. This is the middle inequality below:∑
x

v(x)+
∑
y

w(y) ≥
∑
y

∑
x

h(x, y)m̂(x, y) >
∑
y

∑
x

h(x, y)m(x, y) =
∑
x

v(x)+
∑
y

w(y)

The first inequality reflects free entry: For v(x) +w(y) ≥ h(x, y) for all (x, y) ∈ X× Y, as
well as feasibility: 1 ≥

∑
x m̂(x, y) for all y ∈ Y, and 1 ≥

∑
y m̂(x, y) for all x ∈ X. �

Computing Wages Example. Consider a simple example of a divergence between
NTU and TU in Figure 4. Then the best stable outcome for the X’s matches each Xi

with Yi, but the best stable outcome for the Y ’s matches (X1, Y2) and (X2, Y1). Only the

7
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Y1 Y2

X1 2,0 0,7
X2 0,7 2,0

Y1 Y2

X1 2 7
X2 7 2

Figure 4: NTU versus TU matching, with wages. Here we see how the inability to
make transfers can worsen social welfare.

latter matching is efficient. And now we claim that it alone is a competitive equilibrium.
For if outside options are zero, wages obey v1, v2, w1, w2 ≥ 0 and:

v1 + w1 ≥ 2 v1 + w2 = 7
v2 + w1 = 7 v2 + w2 ≥ 2

Many wages solve this system. Given the two degrees of freedom, say v1, v2, feasibility
gives w1 = 7 − v2, w2 = 7 − v1. Then free entry gives 2 ≤ v1 + w1 = v1 + 7 − v2, and
thus v2 − v1 ≤ 5. Likewise, 2 ≤ v2 + w2 = v2 + 7 − v1 implies v1 − v2 ≤ 5. Hence,
−5 ≤ v1 − v2 ≤ 5, which is nonempty. One set of wages is v1 = 5, v2 = 0, w1 = 7, w2 = 2.

But it would have been impossible to support the black allocation in Figure 4. For
then

v1 + w1 = 2 v1 + w2 ≥ 7
v2 + w1 ≥ 7 v2 + w2 = 2

But then 2+2 = (v1 +w1)+(v2 +w2) = (v1 +w2)+(v2 +w1) ≥ 7+7, which is impossible.
Does an efficient outcome exist? And does the converse of Proposition 4 obtain?

Namely, is an efficient matching also a competitive equilibrium? To answer this, we turn
to another example of transferable utility matching: the assignment problem, namely,
the efficient allocation of goods to traders that maximizes total value. Koopmans and
Beckmann (1957) posed this problem for the optimal assignment of plants to locations.7

Assume that plants i in location j yields output hij ≥ 0. Shapley and Shubik later in
1971 explored the formally identical problem in a trading context that yields the welfare
theorem we seek.8 Assume every trader either supplies or demands exactly one indivisible
unit, like a house or a car. The units need not be alike, and different buyers may have
different values for the same unit. The model is a special case of our TU matching model,
and all proofs extend to any TU matching model.9

As in any TU matching model, the double coincidence of wants vanishes, since sellers
have no preferences over buyers, but simply wish to sell at the highest positive price.
Assume I ≥ 1 sellers (homeowners) and J ≥ 1 prospective buyers. The i-th seller values
his house at (opportunity cost) ci > 0 dollars, while the j-th buyer values the same house
at ξij > 0 dollars. If ξij > cj, and seller i to sell his house to buyer j for some price
pi dollars, then i’s payoff is exactly pi − ci and j’s payoff is exactly ξij − pi (quasilinear

7This was the primary paper for Koopmans’s 1975 Nobel Prize in Economics.
8This was a key cited paper for Shapley’s 2012 Nobel Prize in Economics.
9Shapley and Shubik (1971) gave no algorithm for reaching stable allocations with transferable utility,

but Crawford and Knoer (1981) showed that a generalized Gale-Shapley algorithm does the trick.
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House Seller Costs Buyer Valuations
i ci ξi1 ξi2 ξi3

1 18 23 26 20
2 15 22 24 21
3 19 21 22 17

Figure 5: The Housing Example. The numbers are in units of $10,000.

utility). Since seller i need not sell his house to buyer j, their match payoff is

hij = max{0, ξij − ci}

This specifies how to divide the gain hij between players i and j. The choice variable is
mij = 1 or 0 depending on whether j buys i’s house.

Just as in Kantorovich’s solution of the transportation problem (see Appendix B), we
no longer build our theory on matchings m ∈ M but instead convexify the choice set
by allowing fractional purchases of houses. Let seller i sell fraction mij ≥ 0 of house i
to buyer j. Think of this as buying and selling “time shares” on condominiums. We
end up with six constraints on the sums of mij ≥ 0, three stating that no house can be
oversold, and three stating that no buyer can buy more than one house. These constraints
incorporate the possibility that some seller i might not sell a house (if mij = 0 for all j)
or some buyer j might not purchase a house (if mij = 0 for all i):

max
(mij)

I∑
i=1

J∑
j=1

hijmij s.t.
J∑
j=1

mij ≤ 1 ∀i ∈ {1, . . . , I} and
I∑
i=1

mij ≤ 1 ∀j ∈ {1, . . . , J} (3)

Proposition 5 An efficient matching m ∈M exists.

As (3) is a maximization of a continuous function on a compact set, a solution exists.
Figure 5 gives an example with J = 3 buyers (also called 1, 2, 3) and I = 3 sellers

(called 1, 2, 3). Assume the following costs and valuations for houses (in $100K units): As
the objective function is continuous in m ∈ R9, on a compact domain, the problem has a
solution. More subtly, the maximum includes a “vertex” of this six-dimensional polytope,
with mij = 0 or 1, so that time sharing is never required. This is geometrically intuitive.10

We now apply the LP duality Lemma 5 in §C to our optimization (3). Here, the
fraction of the good sold is the primal variable z = m, and the wages u = (v, w) are the
dual variable. In other words, vi is seller i’s shadow value, or his equilibrium producer
surplus. Meanwhile, wj is buyer j’s shadow value, or his equilibrium consumer surplus.

Lemma 2 The dual problem to the output maximization (3) is the cost minimization:

min
vi,wj

I∑
i=1

vi +
J∑
j=1

wj s.t. vi + wj ≥ hij ∀i, j and vi, wj ≥ 0 ∀i, j (4)

10For a convincing intuition, imagine dropping a polyhedron on the floor, and think of “down” as the
direction of maximization. While it may by chance land on an edge or even perchance a face of the
polyhedron, it is always the case that a vertex lands first, possibly in a tie. See Appendix C.
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Proof: We prove this by applying Lemma 5, for suitable A, q, p, z, and y. For simplicity,
we assume two buyers and two sellers. Let m′ = (m11,m12,m21,m22), where mij is the
share bought from seller i by buyer j. Let h′ = (h11, h12, h21, h22), where hij is the (i, j)
match trade surplus. Let q′ = (1, 1, 1, 1). Finally, define

A =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


Write the primal problem (3) as∑

i

∑
j

hijmij = max
m≥0

h′m s.t. Am ≤ q

The first two constraint rows correspond to sellers’ no-overselling constraints, and the
second two rows to the buyers’ no-overbuying constraints.

Next, define the shadow values for sellers’ and buyers’ no-overselling and no-overbuying
constraints (v, w)′ = (v1, v2, w1, w2). These are the respective payoffs to the buyers and
sellers. Then the dual problem in Lemma 5 can be written as (4) since

min
w,v≥0
{v1 + v2 + w1 + w2} = min

v,w≥0
(v, w) · q s.t. (v, w) · A ≥ h �

Accounting for the complementary slackness conditions, the dual trading problem (4)
is a cost minimization over shadow values v, w ∈ R3

+ such that

vi + wj

{
≥ hij for all i, j

= hij if buyer xi and seller yj trade (mij > 0)
(5)

In words, the sum of the shadow value of any buyer and seller is at least the trade surplus,
and equal if they trade. These inequalities ensure that a buyer trades with a seller only
when the seller and buyer cannot afford to pay their surpluse shadow values from the
house sale. So the cheapest way to afford all match output subject to entry and free exit
constraints (5) of a competitive equilibrium occurs at the efficient matching. Further,
these two ways of measuring output — corresponding to gross national product and gross
national income — coincide at the optimum.

Proposition 6 (Second Welfare Theorem of Matching) An efficient matching m
is a competitive equilibrium (m, v, w) for some prices (v, w).

The welfare theorems still hold for a continuum type model that we assume in §1.3.11,12

11They are formally established in “The nonatomic assignment model” by Gretsky, Ostroy, and Zame
(1992). But the math is naturally far more involved than simple linear programming.

12A major part of Becker’s paper was linking the efficient outcomes and competitive equilibrium, but
he was apparently unaware of the prior work by Shapley and Shubik (1971).
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y1 y2 y3 Seller payoffs vi
House 1 5 8 2 v1 = 4
House 2 7 9 6 v2 = 5.5
House 3 2 3 0 v3 = 0

Buyer payoffs wj w1 = 2 w2 = 4 w3 = 0.5

Figure 6: Example of Wages Solving the Housing Example.

The welfare theorem is natural in light of the dual formulations. For the primal
maximum equals the dual minimum at the optimum. The shadow value interpretation of
the multipliers (v, w) is consistent with the welfare theorems — for the wages of individuals
coincide with the marginal values of the planner. In other words, individual decisions do
not diverge from the socially optimal decisions.

The proof argued that in any supposed efficient matching with a higher total output
than an existing competitive equilibrium, total wages exceed the value of match output.

Lemma 1 and Propositions 4 and 6 can be summarized as:

competitive equilibrium ⇐⇒ Efficient outcome =⇒ Pairwise efficient (6)

The welfare theorems arise more readily from the equivalence of the dual and primal
problems.13 The dual problem is the decentralized outcome to the primal social planner’s
problem, since every trader best responds to prices, independent of other traders.

The last implication in (6) asserts that the competitive equilibrium (m,w, v) is graft-
free: matches can be undone by side payments: no buyer and seller that are not trading
with each other, that would like to do so. This is a nice stability property of free market
outcomes, and is an important reason why economists prefer the free market.

The unique optimal assignment in the housing example is shown in Figure 6. While
the allocation is generally unique (generically, more precisely), the shadow values are far
from unique! For the incentive constraints define a convex set six-dimensional subset of R6

— i.e., not only are there infinitely many equilibrium prices, but the set is of full measure.
To wit, price multiplicity is not a “zero chance” event. It must be treated seriously.

v1 + w1 ≥ 5 v1 + w2 = 8 v1 + w3 ≥ 2
v2 + w1 ≥ 7 v2 + w2 ≥ 9 v2 + w3 = 6
v3 + w1 = 2 v3 + w2 ≥ 3 v3 + w3 ≥ 0

The matrix indicates one solution. The total shadow value measure of gains is (2 + 4 +
0.5) + (4 + 5.5 + 0) = 16 thousand dollars. Using these surpluses, and the initial matrix
of costs ci and valuations vj, we find that the prices supporting this equilibrium are p1 =
c1+v1 = 18+4 = 22, p2 = c2+v2 = 15+5.5 = 20.5 and p3 = c3+v3 = 19. Equally well, we
could have computed prices p1 = h12−w2 = 26− 4 = 22, p2 = h23−w3 = 21− 0.5 = 20.5
and p3 = h31 − w1 = 21 − 2 = 19. Given these prices, the first buyer clearly prefers the

13Since efficiency is stronger than Pareto efficiency later in the course, the first equivalence is a stronger
version of the First Welfare Theorem and Second Welfare Theorem later on.
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third house, as his gain is maximum and equal to $2,000. Similarly, the second buyer
prefers the $4,000 gain at house 1 and the third buyer only considers the second house.

From a computational perspective, in this example the dual problem is harder to
solve than the primal. One need only check the outputs of the 3! = 6 matchings in the
primal problem. But assume as the number I = J = n of matched agent types increases,
the number of possible matchings and the number of primal variables mij rises as n!, and
grows exponentially fast.14 But in the dual problem, the number 2n of prices rises linearly.
So the decentralized matching market tackles a computationally much easier problem.

1.3 Assortative Matching in the Marriage Model

We have so far described equivalent centralized and decentralized approaches to finding
the best allocation. To say something about who matches with whom, we assume a
continuum of female and male types x, y ∈ [0, 1]. Specifically, let the mass cdf of women
be Φ and the mass cdf of men be Γ. So a measure Φ(x) of women lies below type x and a
measure Γ(y) of men lies below type y. If Φ(1) > Γ(1) then there are more women than
men, and so women are on the long side of the market; oppositely, when Φ(1) < Γ(1),
men are on the short side of the market. But not everyone on the short side of the market
need will choose to match, if the option of remaining unmatched is sufficiently enticing.

We explore the “Marriage Model” by Gary Becker (1973). Assume supermodular
match output h(x, y), and let us usually assume a zero unmatched payoff. Our benchmark
matching is positive assortative matching (PAM), i.e. the partner of woman x is man y(x),
where Γ(1)−Γ(y(x)) = Φ(1)−Φ(x), so that higher type women are paired to higher type
men. The function h(x, y) is supermodular (strictly supermodular) if

h(x′, y′) + h(x, y) ≥ (>) h(x′, y) + h(x, y′) (7)

for any pair of women x′ ≥ x and men y′ ≥ y. If match output is supermodular, then
PAM is pairwise efficient, by (2). If inequality (7) is strict whenever x′ > x and y′ > y,
then h is strictly supermodular, and PAM is uniquely pairwise efficient. Submodularity
corresponds to the reverse inequality h(x′, y′) + h(x, y) ≤ h(x′, y) + h(x, y′) always, and
modularity is h(x′, y′) + h(x, y) = h(x′, y) + h(x, y′) always. Consequently,

Proposition 7 If production is supermodular, then PAM is an efficient matching. If
it is strictly supermodular, then PAM is the unique efficient matching. If production is
modular for a set of agents that match, then any re-matching among them is also efficient.

If production is strictly supermodular, then PAM is pairwise efficient. For if there is
at least one ordinal mismatch, with marriages (x, y′) and (x′, y) for women x′ > x and
men y′ > y, then (7) fails. More strongly, PAM is uniquely pairwise efficient. Since an
efficient matching exists, PAM is also uniquely efficient, by Lemma 1. Next, add εxy to
any supermodular production, where ε > 0, and get a strictly supermodular production;
thus PAM is the limit of efficient matchings (as ε ↓ 0), and therefore is efficient.

14By Stirling’s factorial approximation, this grows exponentially as n! ∼
√

2nπ(n/e)n.
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On the other hand, purely additive (modular) payoffs h(x, y) = a(x) + b(y) are also
supermodular, as (7) holds with equality, and in this case, any matching is efficient. Less
extreme, in any intermediate case where (7) is sometimes strict and sometimes weak,
PAM is a possible efficient allocation, but there may be others. For any other allocation,
total output weakly rises with each pairwise swap that undoes sorting mismatch.15 In
other words, the very definition of supermodularity coincides with the claim that pairwise
devisions from PAM are unprofitable.16

Corollary 2 If production is submodular, then negative assortative matching (NAM) is
efficient. If production is strictly submodular, then the unique efficient matching is NAM.

Prices with a finite number of agents are not unique, because the competitive forces on
sellers (respectively buyers) only come from a finite number of other sellers (respectively
sellers). But with a continuum of types there can be arbitrarily nearby types that offer
competitive forces. That holds here, and we shall find that a unique competitive wage
emerges. Let v(x) be the wage of woman x and w(y) the wage of man y. In a competitive
equilibrium, the matchmaker profits namely, output minus wages paid:

π(x, y) = h(x, y)− v(x)− w(y) (8)

of a potential match of x and y are nonpositive, and vanish for all matches that form.17

Since match profits (8) attain their maximum of zero at the optimal partner for an
agent, by free entry and exit, namely at y(x) for every x, and this is an interior optimum
of a smooth function, the FOC holds:

∂π(x, y)

∂x
= 0 and

∂π(x, y)

∂y
= 0 (9)

The partner y that maximizes profits π(x, y) increases in the type x when π(x, y) is super-
modular, and thus when h(x, y) is supermodular (by Topkis’ Theorem). By considering
this maximization, we can deduce what the wage schedule is. We see that the FOC pins
down the slope of the wage profile, and thus in any competitive equilibrium, the wage is
uniquely pinned down if the production function is smooth.

Consider the unisex model where h(x, y) ≡ h(y, x). Suppose h12 > 0 so that PAM is
uniquely efficient, and is a competitive equilibrium, and wages should be v(x) = h(x, x)/2,
namely equal sharing of the output. Also, if there is an outside option payoff of the single
status that pays v0, then every type x with h(x, x) > 2v0 matches according to PAM.

Next, relax the unisex assumption. Consider the payoff function h(x, y) = x2y of
woman x with man y, both uniformly distributed. Assume single option payoffs vO
and wO. Since hxy = 2x > 0, PAM is the unique efficient outcome. Profits π(x, y) =
x2y − v(x)− w(y) achieve a maximum of 0 at y = x under PAM. The FOC are:

2xy − v′(x) = 0|y=x ⇒ v′(x) = 2x2 and x2 − w′(y) = 0|x=y ⇒ w′(y) = y2

15Think of the bubble sort algorithm in computer science for putting words in alphabetical order.
16Becker kindly attributes this proof or observation to William Brock.
17We can deduce that the competitive equilibrium matching exhibits PAM. For by basic monotone

comparative statics, the profit-maximizing partner y(x) maximizing π(x, y) increases in x if πxy =hxy>0.
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Integrating yields:
v(x) = 2

3
x3 + b and w(y) = 1

3
y3 + d

Given PAM and Φ(x) ≡ x and Γ(y) ≡ y, the least man and woman who match have a
shared type x0. Also, by arbitrage, each earns the same matched and unmatched. Thus,
2
3
x3

0 + b = vO, and 1
3
x3

0 + d = wO. Since match output of (x, x) is x3 = 1
3
x3 + 2

3
x3, the

transfers b and d across the two sides of the market balance: b = −d. Altogether,

b = vO − 2
3
x3

0 = −[wO − 1
3
x3

0] ⇒ xO = (v0 + wO)1/3 and b = vO − 2
3
(v0 + wO)1/3

In the matching model, women compete against other women, and men compete against
other men. But there is a degree of freedom in pinning down how women vs. how men
do, collectively. In general, one side of the market can make transfers to the other side.
A dowry d > 0 > b (transfer paid from women to men) arises if the outside option of
women is zero, namely vO = 0. In another special case, if the outside option of men is
zero, namely wO = 0, then there is a bride price b > 0 > d.

1.4 Double Auctions

Let us now relax the double coincidence of wants in a pairwise matching model. We
simplify the housing assignment model, and explore the double auction with homogeneous
goods. We let ξj denote buyer j’s value of any seller i’s good. This is a special case of
the assignment model, now with ξij = ξj for all j.

Let h(ξ, c) ≡ max{0, ξ−c} be the gains from trade for a buyer with value ξ and a seller
with cost c. The efficient allocation maximizes the sum of the realized match surpluses∑

i

∑
j xijh(ξj, ci), where xij = 1 if seller i trades with buyer j, and xij = 0 otherwise.

Lemma 3 (Trade Surplus Function) The trade surplus function h is submodular: If
ξ1 ≤ ξ2 and c1 ≤ c2, then h(ξ2, c2) + h(ξ1, c1) ≤ h(ξ2, c1) + h(ξ1, c2).

Proof : If ξ1 ≥ c2, then two trades should occur, and so the total trade surplus is the same
regardless of who trades: h(ξ2, c2) + h(ξ1, c1) = h(ξ1, c2) + h(ξ2, c1) = ξ2 + ξ1 − c1 − c2. If
ξ2 ≤ c1, then no trades should occur, and so h(ξ2, c2)+h(ξ1, c1) = h(ξ1, c2)+h(ξ2, c1) = 0.
Finally, consider cases where exactly one trade should happen. If ξ2 ≥ c2 ≥ c1 ≥ ξ1, then
h(ξ2, c2) + h(ξ1, c1) = ξ2 − c2 ≤ ξ2 − c1 = h(ξ1, c2) + h(ξ2, c1). And if c2 ≥ ξ2 ≥ ξ1 ≥ c1,
then h(ξ2, c2) +h(ξ1, c1) = ξ1− c1 ≤ ξ2− c1 = h(ξ1, c2) +h(ξ2, c1). In each case, inequality
is strict if c1 < c2 and ξ1 < ξ2, since trade surplus falls when the wrong good is traded. �

Given Lemma 3, Corollary 2 implies NAM, i.e., the highest value buyers matched with
the lowest cost sellers. Corollary 2 also asserts that NAM is uniquely optimal when the
submodular inequality is globally strict. But equality holds in cases where both trades
should occur, or neither. In other words, swapping among them entails no loss. The
inequality is only strict when exactly one of the agents should trade. So there is NAM —
highest value buyers trade with lowest cost sellers, but who trades with whom is irrelevant.

Since all permutations of goods in the final assignment are equivalent, the Law of
One Price holds: pi = p for all i. To see this, observe that the Shapley-Shubik dual
solution now requires a shadow value vj = ξj − pi, and thus a constant price pj = p.
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Let’s interpret the cost ci for seller i as the cost of producing the good. The dual
conditions mean that in the competitive equilibrium, all traders maximize, taking prices
as given — namely, every buyer j with a seller surplus ξj − p > 0 buys, every seller i
with a buyer surplus p− ci > 0 sells, and it is optional whether a buyer j with a value
ξj = p buys, or a seller i with a cost ci = p sells. So NAM means that the highest value
buyers buy and the lowest cost sellers sell.

Re-order buyers from high to low valuations, and the sellers from low to high costs:

ξ1 > · · · > ξk > ξk+1 > · · · > ξN and cM > · · · > ck+1 > ck > · · · > c1

For this homogenous good world, assume that a competitive equilibrium is achieved via a
fictitious Walrasian auctioneer. He must choose a price p to clear the market, namely,
so that supply and demand balance because ck ≤ p ≤ ξk and ξk+1 ≤ p ≤ ck+1. In other
words, k units are traded, and the next unit sold by a seller or bought by a buyer would
yield nonpositive surplus. Unlike a normal auctioneer who merely raises the price when
there is excess demand, this auctioneer also lowers the price when there is excess supply.

Proposition 8 An efficient allocation exists, with trades by the highest k value buyers
and lowest k cost sellers, with positive trade if v1 ≥ c1. This allocation is a competitive
equilibrium for any price p ∈ [max(ck, ξk+1),min(ck+1, ξk)]. Any competitive equilibrium
is efficient, and thus maximizes the sum of gains from trade. It is immune to side bribes.

Non-economists are suspicious of markets. The very word scalping, e.g., is suggestive
of a nefarious activity. Likewise, “price gouging” is often illegal. But by Proposition 8,
no such retrade is profitable unless we did not start with a competitive allocation, and
any attempts to stifle retrade harms social welfare.18 Attempts years ago by Jay Leno to
stamp out retrade of his Tonight Show tickets could only serve to hurt the ticket owners
that he sought to help, had they succeeded; fortunately, they did not. Stubhub improves
our welfare, facilitating reallocation of tickets to those who prize them more.

For some historical background, consider the military draft, that used a lottery. A
draftee might receive a salary of $15,000. The equilibrium salary needed to attract workers
to an all-volunteer military might be $25,000. But some soldiers who were drafted could
have received a salary of $35,000 a year. This is the opportunity cost of drafting such
individuals. But under an all-volunteer military, individuals who volunteer for the military
do so if the value of their time in the military is higher than in alternative employments.19

In the spirit of this anti-market solution is an ingenious efficiency attack on gift-
giving. In his provocatively-labelled “The Deadweight Loss of Christmas”, Waldfogel
(1993) highlighted how giving gifts rather than cash invariably results in costs that swamp
benefits that in totality can amount to around ten billion dollars per holiday season.

18Adam Smith’s (1776) Wealth of Nation’ describes how free markets acts as if guided by an “invisible
hand” toward the best social outcome.

19Milton Friedman was instrumental in helping make the economic case to end the draft. Opposed to
an all-volunteer military, Gen. Westmoreland asserted that he did not want to command ”an army of
mercenaries.” Milton Friedman, on President’s Commission on an All-Volunteer Force, immediately shot
back: ”General, would you rather command an army of slaves?”
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Example. Consider 20 traders indexed 1 to 20. Assume traders j = 2, 4, 6, . . . , 20 are
buyers and traders i = 1, 3, 5, . . . , 19 are sellers. Buyer valuations are ξi = 2i and sellers
costs are cj = 3j. After re-ordering, values and costs are:

ξ ∈ {40, 36, 32, 28, 24, 20, 16, 12, 8, 4} and c ∈ {3, 9, 15, 21, 27, 33, 39, 45, 51, 57}

It is efficient for sellers j = 1, 3, 5, 7 to sell their good to buyers i = 20, 18, 16, 14. Also,
any price in the interval [24, 27] clears the market, since 24 ≤ p ≤ 28 and 21 ≤ p ≤ 27.

Suppose now agents indexed 1-25, with even traders buyers and odd traders sellers.
Assume instead that ξi = 3i and cost is cj = 2j. After re-ordering, values and costs are:

ξ ∈ {72, 66, . . . , 12, 6} & c ∈ {2, 6, . . . , 46, 50}

In this case the unique equilibrium price is p = 30 and the equilibrium quantity is eight.
When the price is not uniquely pin down, the quantity is uniquely pinned down. When
the quantity is not uniquely pin down, the price is uniquely pinned down.

Notably, heterogeneity is the source of all gains from trade. If everyone had identical
valuations, then no consumer secures consumer surplus at the market clearing price; the
more heterogeneous are consumers or producers, the larger the total gains from trade.
Heterogeneity is good.

A Maximum Number of Stages in the DA Algorithm

We draw on a claim by Gale and Shapley, later proved in Itoga (1978).20

Lemma 4 The maximum number of steps in the DAA is n2 − 2n+ 2.

20Stephen Y. Itoga (1978), “The Upper Bound for the Stable Marriage Problem”, The Journal of the
Operational Research Society. I am grateful to Han Wang for finding this article, and some insights above.
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Itoga’s Proof: First, at most one man M ends up with his worst possible partner W . For
M must have proposed to all n− 1 of preferred women. Since he was eventually rejected,
each woman preferred someone else. So when M proposes to W this must end the DAA,
and he must be the only proposer at this stage.

Next, there are only n2 possible proposals initially, in any event — namely, every man
proposing to every woman. In fact, the bound is less. For suppose n initial proposals by
the n men; this will occupy one step. At this point, each man has at most n−1 proposals
left. But we noted that at most one man can actually make n total proposals, and the
others must be limited to n− 1. Hence the number of proposals after the first stage is at
most (n− 1) + (n− 1)(n− 2). Since each subsequent stage requires at least one proposal,
the total number of stages cannot exceed 1 + (n− 1) + (n− 1)(n− 2) = n2 − 2n+ 2.

Next, the paper shows that can we attain this bound in an example. To maximize the
number of steps in the DAA, we minimize the number of men rejected each step, holding
it to one. So below, with n = 5 men and women, there are 17 DAA rounds. In this
example, each of n − 1 women rejects n − 1 men, and thus end up with their favorite
man. Only the last woman might not end up with her best partner. Also, the men’s and
women’s preferences are negative correlated, so the men initially ask the women most
inclined to dump them. The last woman’s preferences do not matter, so we omit them.

M1 1 2 3 4 5
M2 4 1 2 3 5
M3 3 4 1 2 5
M4 2 3 4 1 5
M5 1 2 3 4 5

W1 4 3 2 1 5
W2 3 2 1 5 4
W3 2 1 5 4 3
W4 1 5 4 3 2

W1 W2 W3 W4 W5

round 1 M1 M4 M3 M2 ∅
round 2 M1 M5 M3 M2 ∅
round 3 M1 M5 M4 M2 ∅
round 4 M1 M5 M4 M3 ∅
round 5 M2 M5 M4 M3 ∅
round 6 M2 M1 M4 M3 ∅
round 7 M2 M1 M5 M3 ∅
round 8 M2 M1 M5 M4 ∅

round 9 M3 M1 M5 M4 ∅
round 10 M3 M2 M5 M4 ∅
round 11 M3 M2 M1 M4 ∅
round 12 M3 M2 M1 M5 ∅
round 13 M4 M2 M1 M5 ∅
round 14 M4 M3 M1 M5 ∅
round 15 M4 M3 M2 M5 ∅
round 16 M4 M3 M2 M1 ∅
round 17 M4 M3 M2 M1 M5

Essentially, once any man gets rejected n− 1 times, then DAA must end in the next
step. For then each one of the n−1 women whom he proposed to also receives a proposal
from another preferred man.

B Historical Note on the Transportation Problem

In 1781, Gaspard Monge proposed what is now known as the transportation problem:
How do you most cheaply move sand from n source piles into n destination holes? Let
S be the set of all maps σ from equal size sources i to equal size destinations j, namely,
j = σ(i). Knowing the cost cij ≥ 0 per ton of sand transported from a place i to
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hole j, the problem is to decide how to allocate piles to holes so as to minimize the total
transportation costs:

min
σ∈S

∑
i

ciσ(i)

If we write output h(i, j) = −cij then this is equivalent to the assignment problem.
Much later, in WWII in 1942, Leonid Kantorovich returned to the transportation

problem. He transformed it into a linear problem on a convex set: the bistochastic n× n
matrices Π = πij (i.e.,

∑n
i=1 πij =

∑n
j=1 πij = 1). In the discrete case, his problem reduces

to minimizing:

min
π∈Π

∑
πijcij

Impressively, Kantorovich essentially invented dynamic programming to solve this. A few
years later, Dantzig (1946) derived linear programming duality that we we used earlier.

One optimal transport plan in Kantorovich’s problem solves Monge’s problem, since
we argued that some linear programming solution is at a vertex.21 The dual formulation
is:

min
Π

∑
πijcij = max

v,v

(∑
i

vi +
∑
j

wj

)
s.t. vi + wj ≤ cij

Intuitively, to transport soil from piles i to holes j, you can do it yourself, pay cij to
transport from place i to place j; this is the primal. Alternatively, you can hire someone
else to do the job. He could set a two-part price, charging one price vi for loading at pile i,
and another price wj for unloading at hole j. Then the shipping prices obey vi+wj ≤ cij.

C Linear Programming and Duality

We digress into optimization theory. For a given primal linear programming (LP) problem:

max{pz|Az ≤ q, z ≥ 0} (10)

there is a related dual problem

min{uq|uA ≥ p, u ≥ 0} (11)

These two problems have the same values, a fact known as Linear Programming Duality.

Lemma 5 (Duality) If problems (10) and (11) are finite, then the solutions coincide.

Roughly speaking, this theorem asserts that the dual of the dual is the primal.

21Not only did Shapley get the 2012 Nobel Prize in part for his work on thus dual matching problem,
but Kantorovich won the 1975 Nobel prize (with Tjalling C. Koopmans) “for their contributions to the
theory of optimum allocation of resources”.
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Proof: Primal feasibility22 ensures Az ≤ q, while dual feasibility implies uA ≥ p. So
pz ≤ uAz ≤ uq for all u, z ≥ 0: the value of the primal is at most the value of the dual.
This easy claim is known as weak duality. The reverse (strong) direction is harder to show.

Next, we look for a saddle point (z, u) of L(z, u) = pz + uq − uAz, simultaneously
maximal in z ≥ 0 given u ≥ 0, and minimal in u ≥ 0 given z ≥ 0. Such a saddle point
exists by the Minmax Theorem in game theory. In particular, this means that:

max
z≥0

min
u≥0

[pz + uq − uAz] = min
u≥0

max
z≥0

[pz + uq − uAz] (12)

Since L(z, u) = uq + (p − uA)z = pz + u(q − Az), the saddle point is not finite unless
p−uA≤0≤q−Az, with z`=0 when p`−(uA)`<0, and uk=0 when qk−(Az)k>0. Given
these complementary slackness conditions, the value of (10) is the left side of (12), and
the value of (11) is the right side of (12). In other words, both primal and dual programs
are feasible, and have the same optimum. �

The multipliers have economic meaning — namely, they are the shadow value of the
corresponding constraint. Specifically, uk measures the marginal value of additional slack
in the constraint qk − (Az)k > 0. To see this, note that (∂/∂qk)L(z, u) = uk, so that the
objective L(z, u) rises by uk(dqk) given the increment dqk. Likewise, the marginal value
of more slack in the constraint (uA)` − p` > 0 is z` because (∂/∂p`)L(z, u) = z`.

Here is the earlier promised graphical argument in Koopmans and Beckmann (1957)
for why the maximum is attained at a vertex:

22The maximum of any function on an empty set is defined to be −∞, and the minimum of any function
on an empty set is defined to be ∞.
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Figure 7: We depict examples of the payoff frontiers respectively for transferable utility,
imperfectly transferable utility, and strict nontransferable utility.

D Extension: Imperfectly Transferable Utility

We have explored assortative matching in both the TU and the NTU cases. The frontier
of payoffs achievable by a pair of matched agents is linear in the TU case, and collapses
to a point in the strict NTU case. In the arguably typical intermediate case — called
imperfectly transferable utility — where agents can transfer utility but not at a
constant rate, the frontier is decreasing but neither linear nor a single point, as in Figure 7.

To describe the payoff frontier for matched agents, let φ(x, y, w) be the maximum
utility that woman x generates when matched with man y who earns payoff w. For
simplicity, assume that φ is twice differentiable. Also, φ(x, y, w) is decreasing in w: φw < 0.

We assume what is known as a strict Spence Mirrlees condition, that

φxy − φwx[φy/φw] > 0 ⇔ −[φy/φw]x > 0 (13)

Namely, the marginal rate of substitution −φy/φw between the man’s type y and his payoff
w increases in one’s type x. So higher woman types x are willing to pay more payoff per
increment in the men’s types. Becker’s TU model automatically meets this condition, for
supermodularity asserts φxy > 0 while transferable utility implies that φwx = 0.

In equilibrium,23 given the wage function w(y), woman x solves V (x) = maxy V (x|y),
where V (x|y) ≡ φ(x, y, w(y)) is the payoff to man x. Firstly, note that w′(y) > 0 — for
by way of contradiction, if w′(y) ≤ 0 on an interval [y0, y1], then any woman x earns more
profits in a match with y1 than y0 (strictly higher output for a weakly lower payment).

Next, we use monotone comparative statics to deduce PAM. By the single crossing
property, the optimal man y for woman x is nondecreasing in x if Vy(x|y) ≥ 0 implies
Vx(x

′|y) ≥ 0 for x′ > x. To verify this implication, let’s compute:

Vy(x|y) ≡ φy(x, y, w(y)) + φw(x, y, w(y))w′(y) (14)

23Legros and Newman (2007) generalizes Becker’s supermodularity condition for PAM in this frame-
work, and Chade, Eeckhout and Smith (2016) find the differential version of this.
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Since φw < 0, this holds if and only if −(φy(x)/φw(x)) ≥ w′(y). But if x′ > x then
−(φy(x

′)/φw(x′)) ≥ w′(y), by (13). Then Vy(x
′, y) ≥ 0, verifying the SCP. This proves:

Proposition 9 If the woman’s maximum utility φ(x, y, w) obeys φxy ≥ 0 and the strict
Spence-Mirrlees condition (13), then PAM is the unique efficient matching m ∈M.
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