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1 INTRODUCTION

Conformity can arise when people collectively learn by seeing each other’s actions. This

was first formalized in herding models by Bikhchandani, Hirshleifer, and Welch (1992)

and Banerjee (1992). They let a sequence of privately informed individuals with identical

preferences choose actions from a common finite menu, after seeing all prior actions in

order. Eventually, a herd arises — over time, people settle on the same choice.

This is an important economic setting that should ring familiar. It involves an in-

formational externality, since actions partially convey hidden private signals, but myopic

individuals do not account for the value of signaling information to successors. For the

observable actions of predecessors offers a trail of breadcrumbs for others to follow. It is

then natural to wonder about the welfare properties. This was Banerjee’s primary issue:

“1. The equilibrium pattern of choices may be (and for a large enough population, will be)

inefficient in the ex ante welfare sense.”1 In this paper, we definitively address this issue.

We formulate the social planner’s optimization of the discounted sum of expected utilities

of all agents, formally addressing the inefficiency of the equilibrium. To keep our analysis

manageable, we consider the workhorse model with two states and a finite action set.

In his proposed remedy for the externality, Banerjee suggested excluding early agents

from viewing others’ actions, thereby rendering their actions independent signals; Sgroi

(2002) more carefully explored this idea. We find that the social planner can do better.

The planner should act like an experimenter who dictates how posterior beliefs should map

into actions. He trades off the myopic payoffs and the signaling value of actions. Both

considerations lead him to maintain the character of the herding model, whereby an agent

takes an action for an interval of posterior beliefs. Our main findings show that socially

optimal behavior demands that everyone err on the side of choosing more informative

actions in every period. This marginally discourages mimicry, but does not preclude it.

In Smith and Sørensen (2000), we showed that public beliefs (the planner’s beliefs,

here) almost surely converge to a cascade set, where actions reflect no private information.

In this case, a herd happens, and all signals lead to the same action. If private signals have

uniformly bounded precision, then the cascade sets of the two extreme actions are non-

trivial intervals. Our first main finding establishes that this remains true in the planner’s

solution: If selfish individuals succumb to errant herds, then it is inefficient to entirely

1Banerjee (1992) imagined a continuum of states and actions. Our analysis posits finite spaces like
Bikhchandani, Hirshleifer, and Welch (1992), and so does not strictly apply to this version of the model.
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preclude them. Proposition 2 shows that the cascade sets strictly shrink in the discount

factor, and at some point, the non-extreme cascade sets vanish altogether; in the perfect

patience limit, the two extreme sets converge to 0 and 1. The patient planner who values

the welfare of later individuals still allows herds, but simply waits for more extreme be-

liefs. In other words, we prove that herds and inefficient herds owe not to the selfishness of

agents, but to the problem of signaling private information through finitely many actions.

In our second major substantive finding, we explore how the social planner optimally

skews behavior for any fixed discount factor. In Proposition 3, we argue that under

general conditions, people should be encouraged to act in a contrarian fashion, leaning

against trending popular actions and relying more on private signals. More precisely, the

threshold posterior belief separating two actions — constant for myopic agents — should

increase in the public belief. This penalizes extreme action for extreme public beliefs.

We show how to implement the social planner’s optimum using a new Vickrey-Clarke-

Groves mechanism. As is well-known, such mechanisms internalize the externalities of

action choices. Even though this externality obviously depends on the unobserved state of

the world, Proposition 4 shows how the transfer to an agent need only be conditioned on

both his and his successor’s actions. This scheme works because the successor’s action is

informative of the true state. With just two actions, the incentive scheme rewards anyone

who is mimicked by their successor (Corollary 5). Notably, even though the planner wishes

to discourage mimicry, individuals are optimally rewarded by others mimicking them. In

the same spirit as academic citations, the social planner efficiently punishes conformity

with predecessors’ actions (contrarian logic) by rewarding emulation by successors.

These are the substantive conclusions of our model. But our paper makes a several

technical contributions that are generally useful in social learning and experimentation.

1. At the heart of our paper is a social planner’s optimal experimentation exercise. His

state variable is the public belief based on the action history. The optimization balances

current payoffs and future benefits from better information. This is not a bandit problem;

rather, it is a recommender system to someone playing a standard finite action choice.

Indeed, unlike the multiarmed bandit solved by the Gittins’ index, the action payoffs here

are not independent — for all payoffs are impacted by the same unobserved state of the

world. Nevertheless, we develop a tractable extension of this index logic.

Proposition 1 rewrites the Bellman equation optimization as a choice among finitely

many welfare indexes. Each index is a linear function of the current agent’s posterior

belief, namely, a subtangent to the value function. Each subtangent translates the value
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of that action to any predecessor as a function of his own posterior belief. An individual

selects the action with the highest welfare index for his posterior. With welfare indexes

linear in posterior beliefs, the planner’s problem is analogous to the myopic problem —

and each action is optimal for an interval of posterior beliefs. But the planner’s optimum

may invoke myopically dominated actions, or may map private signals to actions in a

myopically suboptimal fashion (see §5). Here we see the importance of the pure signaling

value of an action, since the optimal communication pattern might not be monotone.

2. Bayesian updating is subtle in social learning precisely because one learns from

actions and not signals. For one might think that conditional on seeing a fixed high action,

the posterior public belief should increase in the prior public belief. But this intuition fails,

because the observation of the high action no longer offers as strong an endorsement of

the high state. For instance, with a public belief 0.48, the high action might be optimal

when the private signal exceeds 0.52, but with a 0.52 public belief, the private signal need

only exceed 0.48. If there is large mass of private signals in (0.48, 0.52), then the final

posterior can jump down. Yet our contrarianism result depends on securing the intuitive

monotonicity, and so we must preclude masses in the private signals. We prove that a

sufficient condition for a monotone relation between the prior and posterior public belief

is that the unconditional distribution of the private log-likelihood ratios has a log-concave

density (Lemma 4). This is the general condition we alluded to earlier for contrarianism.

This result is also important for all social learning papers. For in light of Smith and

Sørensen (2000), no cascade starts after the first period in the standard herding model given

this robust signal property (Corollary 3). A vast array of papers exploiting the possibility

of sparking a cascade crucially rely on a non-monotone map from public to posterior

beliefs. This clarifies that the assumption of the multinomial distribution in Bikhchandani,

Hirshleifer, and Welch (1992) was not without loss of generality, but instead was one of

the very few standard distributions for which cascades could eventually start.

3. Pursuing any comparative static in dynamic programming, such as the contrarian

result, is immensely complicated. For lacking a twice differentiable value function, we

cannot apply the Implicit Function Theorem. Barring this standard approach, we are aware

of no general sensitivity analysis for that does not exploits some single crossing condition

— which also does not apply. We instead exploit convex duality to deduce a single-crossing

property about subtangents to a convex function. So equipped by this and the monotone

map from prior to posterior public beliefs, we deduce how the planner’s welfare indexes

shift. This allows us to exploit a recent advance in monotone comparative statics methods
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by Quah and Strulovici (2009) to prove our contrarianism result, Proposition 3.

Related Literature. We think that Banerjee was the first to propose a remedy

for the social learning externality. To reiterate, our planner has Banerjee’s remedy at

his disposal, but it is dynamically suboptimal.2 Centrally planned social learning is a

topical and important problem, and new optimal mechanisms have recently been explored

in applied settings by Glazer, Kremer, and Perry (2015) and Che and Hörner (2016).3

The planner’s optimum is also a team equilibrium (Radner, 1962), where everyone

seeks to maximize the sum of discounted expected utilities. There do however exist less

efficient equilibria among these altruistic agents, because successors cannot fully interpret

a deviation by an agent who chooses an unanticipated map of private signals into actions.4

Vives (1997) studies a team social learning problem in the market setting. He proves

that team members choose to reveal more of their private information.5 Our more elaborate

contrarianism comparative statics result finds that teams shy away more from the more

popular actions.6 Vives also finds that the optimal long-run Gaussian precision growth is

as low as in the selfish model. This may seem analogous to our finding that cascade sets

have a non-empty interior in the team setting, but he never finds incomplete learning.

In Dow (1991), a consumer observes a price realization, but in the next period can only

recall its partition interval. In the second and final period, another price realization is seen,

and a choice is made. The optimal determination of the first-period coarse price partition

is like our planner’s partition of signals. Like Dow, our planner trades off the present and

future, but the horizon is infinite, and he also struggles with an unknown state of the world.

The incorrect herding outcome is intuitively related to the familiar failure of complete

learning in optimal experimentation. Rothschild’s (1974) analysis of the two-armed bandit

2Closer to our spirit, Doyle (2010) considers the social planner’s problem in the endogenous-timing
herding model of Chamley and Gale (1994).

3Among other papers, in Glazer, Kremer, and Perry (2015), the action includes an unobserved decision
to acquire information. They also provide a good discussion of the tangential relation of our models to
those in Ely (2017), Ely, Frankel, and Kamenica (2015), Hörner and Skrzypacz (2016), Kamenica and
Gentzkow (2011), Kremer, Mansour, and Perry (2014) and Rayo and Segal (2010).

4The experimental evidence of March and Ziegelmeyer (2016) confirms contrarian behaviour among
altruistic agents. Ali and Kartik (2012) explore herding in a sequential action model with a different
form of payoff externalities. Anderlini, Gerardi, and Lagunoff (2012) assume that team members can
communicate costlessly, but do not have perfectly aligned interests.

5In a related setting, Medrano and Vives (2001) describe behaviour that reveals less private information
as ‘contrarianism.’ We find it more natural that contrarian behaviour leans against the public belief.

6Vives always employs the normal learning model, ruling out results like ours on the distributional
shape’s importance. On the other hand, that model allows the long-run properties of learning to be
characterized by the speed with which the precision approaches infinity. Our analysis offers no analogy.
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is a classic example: An impatient monopolist optimally experiments with two possible

prices each period, with fixed uncertain purchase chances for each price. Rothschild showed

that (i) the monopolist eventually settles down on one price, and (ii) with positive prob-

ability, that eventual price is not the most profitable. This is analogous to (i) an action

herd occurs, and (ii) with positive chance is ex-post incorrect. Yet, the analogy is subtle.

Easley and Kiefer (1988) prove that complete learning generically arises in experimentation

problems with finite state and action spaces. This is puzzling, since the herding outcome

arises in a model with finite actions and states.

The formulation of our social planner’s problem offers a resolution of this puzzle. Even

though each agent chooses from a finite action set, our social planner has no access to

private signals, and so cannot dictate the choice among any two actions. Rather, for each

history, he chooses a continuously defined rule that maps agents’ signals into actions. In

the myopic planner case with a zero discount factor, we obtain the original herding model.

Hence, we can conclude that the herding outcome is formally equivalent to incomplete

learning in an experimentation model with a continuous choice space.7

We have found an original economic reason for the efficiency of contrarian behaviour.

To be sure, contrarianism is a widely used term in economics and finance. For instance,

investment advisors often recommend contrarian investment as a privately optimal best

response to the overreaction of stock markets to information (e.g. Jegadeesh (1990)). Like-

wise, prudential macroeconomic policy recommends leaning against excesses in financial

markets (Dewatripont and Tirole, 1994). But in our model, there is no such underlying

fundamental drift: Rather, public beliefs follow a martingale, and at any point in time,

they provide the best estimate of the state given the observed action history. Instead,

contrarianism is socially efficient for us as it facilitates revelation of private information.8

The paper is organized as follows. We formulate the constrained efficient discounted

herding model in §2, and give our convex duality characterization of optimal behavior in §3.
We show how cascade sets shrink as patience rises in §4, and §5 gives examples where

the planner’s desire to generate public information strongly overrides natural features

of myopic behaviour. We motivate and explore contrarianism in §6, and §7 gives the

implementation results linked to our novel welfare indexes. Many proofs are appendicized.

7Bose, Orosel, Ottaviani, and Vesterlund (2006) and (2008) study a monopoly seller who affects the
decisions of arriving buyers through the adjustment of price. Gill and Sgroi (2008) and (2012) suppose
the seller can provide information before buyers arrive. The seller does not maximize buyer welfare.

8Pastorino and Kehoe (2011) seek monotonicity of the optimal rule in a dynamic setting similar to
ours. In their paper, the experimenter is constrained to choose from a finite set of interval partitions.
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2 THE FORWARD-LOOKING HERDING MODEL

We start with the standard herding model of Smith and Sørensen (2000) (SS). An infinite

sequence n = 1, 2, . . . of decision-makers (agents) act in that exogenous order, and share

a common 50-50 prior belief over two payoff relevant states ω∈{L,H}.9

The nth agent sees a random private signal σn about the realized state. As is common,

we reduce notation by identifying his signal with his resulting interim belief σn = Pr(H|σn).
The signals are i.i.d. across agents in each state ω = L,H, with cdf F ω, and have common

support, say supp(F ). No signal perfectly reveals the state, so that, as SS then argue,

FH and FL are mutually absolutely continuous, with derivative dFH/dFL = σ/(1 − σ).

Accordingly, they are ranked FH(σ) ≤ FL(σ), with inequality strictly inside supp(F ).

Agents share a common utility function u over actions and states. The action a, taken

from the finite action set {1, . . . , A}, yields payoff u(a, ω) in state ω ∈ {H,L}. We assume

that action 1 is best in state L, and action A in state H, or u(1, L) > u(a, L) for all

a ̸= 1, and u(A,H) > u(a,H) for all a ̸= A. Moreover, payoffs obey increasing differences:

u(1, H)−u(1, L) < u(2, H)−u(2, L) < · · · < u(A,H)−u(A,L). And finally no two actions

yield the same payoffs in either state, so that for no actions a ̸= a′ do payoffs coincide,

u(a, ω) = u(a′, ω) for some state ω. The chosen action an provides to agent n the expected

payoff

ū(a, ρ) = (1− ρ)u(a, L) + ρu(a,H). (1)

We allow dominated actions a, with ū(a, ρ) < supa′ ū(a
′, ρ) for all beliefs ρ ∈ [0, 1] on H.

Before choosing his action an, the n’th agent observes σn and the history of n − 1

predecessors’ actions. He can compute the probability distribution over histories, knowing

his predecessors’ strategies, and end at the public belief πn = Pr(H|a1, . . . , an−1). At

public belief π, the private signal σ has distribution F π = πFH + (1− π)FL. Combining

a conditionally independent private signal σ with public belief π gives the posterior belief

ρ = r(π, σ) ≡ πσ

πσ + (1− π)(1− σ)
. (2)

This paper explores welfare properties of the herding model, maximizing the discounted

sum of future payoffs. We assume that an informationally constrained social planner

observes the history of actions but not private signals. A rule ξ for this planner dictates

9As in SS, a fair public prior belief simplifies exposition, and is without loss of generality — analysis
of the dynamic problem covers the continuation starting from any public belief.
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an action a for each private signal σ ∈ [0, 1]. Let Ξ be the set of all such rules.10 A strategy

sn for the n’th agent assigns a rule to each action history of length n − 1. The planner

chooses the strategy profile s = (s1, s2, . . .) to maximize the expected average present value

of utility stream un:

sup
s
E[(1− δ)

∞∑
n=1

δn−1un]. (3)

The original herding model assumes δ=0. We study the patient case δ∈(0, 1).

3 DYNAMIC PROGRAMMING AND CONVEX DUALITY

The social optimum can be achieved by a Markovian dynamic optimization, whose state

variable is the public belief π. A stationary policy assigns a rule ξ to every public belief π.

With this policy, starting at belief π, the continuation value of (3) is a function vδ(π).

The rule ξ prescribes any action a for signals σ ∈ ξ−1(a), and thus with probability

ψ(a, ω, ξ) =
∫
ξ−1(a)

dF ω in state ω, and unconditional probability ψ(a, π, ξ) =
∫
ξ−1(a)

dF π.11

This leads to the posterior public belief p(a, π, ξ). Given the planner’s policy s, these action

probabilities and continuations fully describe the dynamic evolution of public beliefs.

When action a is taken with positive probability (namely, ψ(a, π, ξ) > 0), we call the

action and its continuation belief p(a, π, ξ) active, and Bayes updating then yields contin-

uation belief p(a, π, ξ) = πψ(a,H, ξ)/ψ(a, π, ξ). The martingale property of beliefs implies

p(a, π, ξ) =
∫
ξ−1(a)

r(π, σ)dF π, namely, the expected posterior (2). When ψ(a, π, ξ) = 0,

Bayes rule does not identify the belief p(a, π, ξ). In this case, we impose a weak refinement

that p(a, π, ξ) = r(π, σ) for some possible signal σ ∈ supp(F ).

By dynamic programming, the planner’s value function vδ solves the Bellman equation:

v(π) = sup
ξ∈Ξ

(Tξv)(π), (4)

where the policy operator Tξ maps any continuation value v into the current value, namely:

(Tξv)(π) =
A∑

a=1

ψ(a, π, ξ)[(1− δ)ū(a, p(a, π, ξ)) + δv(p(a, π, ξ))]. (5)

10With the possibility of “atoms”, or private signals σ with positive probability under F , we should also
allow for mixed rules that map private signals σ into a probability distribution over actions. To simplify
exposition, our text refers only to pure rules. But all results remain valid for mixed rules.

11If say rule ξ mandates action 1 for private signals σ ∈ [0, 1/2], then ψ(1, ω, ξ) =
∫ 1/2

0
dFω = Fω(1/2)

and ψ(a, π, ξ) = πFH(1/2) + (1− π)FL(1/2). The mixed rule extension is straightforward.
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The value function vδ solving optimization (4) is convex in beliefs, since the upper envelope

of linear functions is convex, as is standard in expected utility maximization. Intuitively,

it equals the payoffs of state-optimal actions 1 and A at beliefs 0 and 1, and therefore

its extreme slopes cannot exceed u(1, H)− u(1, L) and u(A,H)− u(A,L) — see Figure 1

for intuition. Finally, since the planner’s information grows over time in this otherwise

stationary problem, a more patient planner enjoys a higher discounted payoff.

Lemma 1. The value function vδ is a bounded and continuous convex function of public

beliefs π, with subtangent12 slopes at least u(1, H)−u(1, L) and at most u(A,H)−u(A,L).
The value is weakly increasing in the discount factor δ.

From a dual perspective, as is well-known, the convex function v is the upper envelope

of its supporting subtangent lines. We denote this subtangent space as Tv ⊂ R2, which is

compact, since subtangents are parameterized by their slope and intercepts. Since ū and

τa are affine functions, and since p(a, π, ξ) =
∫
ξ−1(a)

r(π, σ)dF π, we can exchange the order

of the sum and maximization to rewrite operator (5) as

(Tξv)(π) = max
(τ1,...,τA)∈T A

v

A∑
a=1

∫
ξ−1(a)

[(1− δ)ū(a, r(π, σ)) + δτa(r(π, σ))]dF
π. (6)

Exchange the order of the sup in (3) with the max in (6) to get the planner’s dual problem:13

v(π) = max
(τ1,...,τA)∈T A

v

sup
ξ∈Ξ

A∑
a=1

∫
ξ−1(a)

[(1− δ)ū(a, r(π, σ)) + δτa(r(π, σ))]dF
π. (7)

In the multi-armed bandit (§6.5 of Bertsekas, 1987), an experimenter each period

chooses among a finite action set, with random independent rewards. Gittins (1979) solved

for the optimal behaviour: Replace each action by a sure thing reward that subsumes its

optionality; each period, one chooses the action with the highest such Gittins index.

We now argue that the planner’s optimal policy admits an analogous index rule, even

though the actions obviously do not have independent reward distributions: At public

belief π and private posterior ρ, the agent chooses the action a with the largest welfare

index w — equal to the social payoff as privately gauged by the agent.

12When v is differentiable, this is a tangent; otherwise, this is a supporting tangent line.
13As an aside, convex duality offers a computational strategy for solving the dynamic programming

problem. In the iterative process, given a value vn, the next value vn+1 is obtained in principle by
searching across all the possible rules. But the convex duality suggests an alternative faster way to
compute vn+1: The required tangent space is merely the set of all the left and right derivative lines to vn.
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Proposition 1. For any public belief π, an agent with posterior ρ takes the action a with

maximal welfare index

w(a, π, ρ) = (1− δ)ū(a, ρ) + δτa(ρ), (8)

where τa is a supporting tangent to v at continuation belief p(a, π, ξ).

Proof. First, (7) implies the index expression (8): the supremum over rules ξ is attained by

allocating private signal σ to action a where (1− δ)ū(a, r(π, σ))+ δτa(r(π, σ)) is maximal,

and ρ = r(π, σ). For a fixed rule ξ, (6) implies that τa is subtangent to v at p(a, π, ξ).

The subtangent to the value function τa(ρ) embeds some important economics, allowing

the planner to evaluate his payoff for any agent’s hypothetical realized private posterior ρ

(Figure 2). In particular, whether a higher posterior helps or hurts the payoffs of later

individuals depends solely on the slope of the value function at the public belief. For the

privately informed agent with belief ρ assigns value τa(ρ) to the continuation game after

action a where followers act optimally on the public belief p(a, π, ξ).

An interval rule partitions private posterior beliefs in [0, 1] into possibly empty intervals

I = {Ia}, with action a optimal iff ρ ∈ Ia. The affine welfare indices coincide at the

boundary between neighboring intervals: w(a, π, ρ) = w(ã, π, ρ) on the boundary ρ between

Ia and Iã. These boundary posterior beliefs, or thresholds, play a critical role in our paper.14

Corollary 1. For each public belief π, an optimal interval rule I exists.15

Proof. From (8), each action’s welfare index is affine in the posterior belief. Action a thus

has maximal index value on a convex set, i.e., an interval.

When it helps, we can also re-interpret this as an interval rule in signal space too, since

the posterior belief ρ = r(π, σ) continuously increases in the private signal σ.

4 SHRINKING CASCADE SETS VIA PATIENCE

As in the herding model, we focus on public beliefs where active learning stops. The public

belief π lies inside the cascade set Ca(δ) — namely, public beliefs where a is optimal for all

private signals σ. Thus, it is optimal to choose action a with probability one (ψ(a, π, ξ) = 1)

14We allow for the possibility that the rule uses mixing at the threshold.
15This result corresponds to the interval partition deduction Proposition 1 in Dow (1991), albeit with

a Bayesian binary state structure not present in Dow. Meanwhile, when δ = 1, our Proposition 1 more
roughly corresponds to the FOC of Dow’s Proposition 2.
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exactly when v(π) = ū(a, π); this is uniquely optimal strictly inside Ca(δ) (see Figure 1).

As the myopic payoff frontier ū(a, π) is affine in π, and the value v is convex, this equality

holds on a closed interval Ca(δ). When the discount factor δ increases, v weakly increases

by Lemma 1, and therefore Ca(δ) weakly shrinks. Since ū(a, ·) is a tangent to the value v

on Ca(δ), we have w(a, π, ρ) = ū(a, ρ). The union C(δ) = ∪A
a=1Ca(δ) is the cascade set.

Private signals are called unbounded if the (compact) signal support supp(F ) contains

0 and 1, and are called bounded if supp(F ) ⊆ (0, 1). Smith and Sørensen (2000) show that

interval cascade sets exist iff private signals are bounded. We next argue that this useful

characterization result also describes the social optimum of our herding model.

Lemma 2. (a) For discount factors δ ∈ [0, 1), 0 ∈ C1(δ) and 1 ∈ CA(δ), and C(δ) ̸= [0, 1].

(b) With bounded signals, C1(δ)=[0, π(δ)], CA(δ)=[π̄(δ), 1], for 0<π(δ)<π̄(δ)<1.

(c) With unbounded signals, C1(δ) = {0}, CA(δ) = {1}, and Ca(δ) = ∅ for a ̸= 1, A.

So cascade sets weakly shrink in the discount factor δ. But with bounded private

signals, the two extreme cascade sets for actions 1 and A are nonempty for all δ < 1: For

near extreme public beliefs 0 and 1, Bayesian updating requires too many rounds of myopic

sacrifice to change the myopically best action, and active experimentation is suboptimal.

As in Smith and Sørensen (2000), we prove in §B.1-B that beliefs converge almost

surely to the cascade sets, and that learning is incomplete iff private signals are bounded.

We now argue that, with bounded signals, cascade sets strictly shrink in δ (see Figure 1).

As δ ↑ 1, the limit cascade sets are {0, 1}, and the chance of an incorrect herd vanishes.

Proposition 2. Assume bounded private signals.

(a) Non-empty cascade sets strictly shrink when δ < 1 rises: For all actions a, if δ2 > δ1

and Ca(δ1) ̸= ∅, then Ca(δ2) ⊂ Ca(δ1). For large enough δ < 1, all cascade sets disappear

except for C1(δ) and CA(δ), while limδ→1C1(δ) = {0} and limδ→1CA(δ) = {1}.
(b) A herd almost surely starts, and the chance it is incorrect vanishes as δ ↑ 1.

This result formalizes many economists’ gut feeling that cascades are inefficient — that

the more weight that is placed on future individuals, the smaller is the cascade set. The

proof exploits the planner’s indifference towards experimentation at the edge of a cascade

set. He strictly prefers to experiment if he grows slightly more patient, and so the cascade

set shrinks. Intuitively, the more patient planner enjoys a higher value of information

(expected gain in the continuation value). The proof requires that we strengthen Lemma 1.

Lemma 3. The value function increases strictly in δ on [0, 1) outside the cascade sets: If

δ2 > δ1, then vδ2(π) > vδ1(π) for all public beliefs π ̸∈ C(δ2).
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Figure 1: Myopic Payoffs, the Bellman Value, and Cascade Sets. By Proposition 2,
each cascade set Cδ(π) shrinks as the discount factor δ rises. Inside the cascade set, the
planner’s value coincides with the myopic value.

Since cascade sets shrink in the discount factor, we can explain why an equilibrium

need not be a social optimum (recall the discussion in §7). For there exists a suboptimal

team equilibrium when δ > 0 in which everyone acts myopically, since herding on action a

is a team equilibrium for public beliefs π ∈ Ca(0) \ Ca(δ). If every successor considers

agent n’s action uninformative, as π is in a cascade set for δ = 0, the best that agent n

can do is to maximize his current payoff. But since π /∈ Ca(δ), this rule is suboptimal.

We illustrate our main result here with an example similar in spirit to the original

inspirational example in Bikhchandani, Hirshleifer, and Welch (1992). Assume two actions

with symmetric payoffs u(2, H) = u(1, L) = 1, u(1, H) = u(2, L) = −1, and a symmetric

binary private signal on the two-point support {σ0, σ1}, with FH(σ0) = 1−FL(σ0) = σ0 =

1− σ1 < 1/2. In the myopic case δ = 0, for public beliefs π ∈ (σ0, σ1), the optimal action

depends on the private signal: take action 2 iff the signal outcome is σ1. But for extreme

public beliefs, the private signal should be ignored, and one should take action 2 if π > σ1

and action 1 if π < σ0. We argue that the cascade set is smaller with δ > 0.

By symmetry, the cascade sets are (0, π̄(δ)) and (1 − π̄(δ), 1). The optimal strategy

is simple. Active experimentation occurs for public beliefs π ∈ (1 − π̄(δ), π̄(δ)). Starting

at any such π, we need only count the number of high signal realizations σ1 necessary to

surpass the public belief π̄(δ), or the number of low realizations σ0 needed to depress the

public belief below 1−π̄(δ). Then (1−π̄(δ), π̄(δ)) can then be partitioned into sub-intervals,

overlapping at end-points only, where this pair of numbers is constant.

Fix π3 ≡ π̄(δ). Since indifference between actions prevails at π = 1/2, and π3 is in a

11



cascade, the same action is best at both signals. So π3 exceeds one Bayes updating step16

above 1/2. For simplicity, assume a small enough discount factor δ > 0 that π3 and 1−π3

differ by at most three steps. Choose π1 one step below π3, and π2 two steps above 1−π3.

Then π2 > π1 > 1/2. By symmetry, 1 − π2 is two steps below π3 and one step below π1,

and 1− π1 is one step above 1− π3 and one step below π2.

Altogether, [0, 1] is divided into seven adjacent subintervals [0, 1− π3], [1− π3, 1− π2],

[1− π2, 1− π1], [1− π1, π1], [π1, π2], [π2, π3], [π3, 1]. Within an interval, current and future

reactions to signal strings are fixed; the public belief π only describes the chance of either

state, and therefore the value v(π) is linear in π over each sub-interval. In Appendix E.1, we

derive and illustrate in Figure 3 the piecewise linear value function. We find in particular

that:

π3 = π̄(δ) = σ1 +
2δ(2σ1 − 1)2σ0σ1

(2− δ)(1− 2δ2σ0σ1) + δ(2σ1 − 1)2
. (9)

This solution is increasing and continuous in the discount factor δ, and equal to σ1 at

δ = 0. Thus, the cascade set [π3, 1] shrinks in the discount factor δ. The analysis is valid

when π3 is less than two steps over 1/2, and thus for small enough δ > 0.17

That π3 > σ1 in this example captures the public good aspect of experimentation. For

indeed, when the public belief lies in [σ1, π3), agents take the myopically dominated low

action for a low signal outcome, leaning against their myopic interests.

5 COMMUNICATION VIA ACTION CHOICES

In the socially planned herding model, the communication value of actions can overwhelm

myopic payoff considerations. Inspired by the search model of Dow (1991), we make two

observations about the planner’s actions choices reflecting this insight.18

Lesson 1: Dominated actions may be socially valuable.

Learning is filtered through a finite mesh action screen in a herding model. Welfare

would intuitively rise if agents could more finely convey their private information via more

actions. More available actions creates a larger alphabet to communicate. This suggests

that using slightly myopically dominated actions might be efficient.

16Since the signal is symmetric and binary, we can use the word “steps” to be upward or downward
Bayesian updates via (2) that cancel when applied together.

17Our method extends to larger δ < 1. But the simplicity is deceptive. With an asymmetric signal,
Bayesian updating does not produce equal up and down steps, and the value function is not piecewise affine.

18We generalize Dow’s 1991 Proposition 2, which assumes perfect patience and a simple second-period
value function. His Example 3 shows that a multiplicity of optimal solutions can arise in these problems.
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To see this, suppose that action A dominates A− 1, with u(A,ω) = u(A− 1, ω) + ε.19

Suppose that private signals are bounded, supp(F ) ⊂ (0, 1). Then, by Lemma 2 (b),

there is an interval cascade set CA = [π̄, 1], where π̄ < 1. We claim that action A − 1 is

optimal with positive probability for some public beliefs for small ε > 0 and/or a large

enough discount factor δ < 1. For if not, the planner never uses action A − 1. Since

v(π) = ū(A, π) iff π ∈ CA, the value function v is not locally linear near π̄. At the public

belief π̄, action A is optimal for all private signals. Now, consider an alternative rule that

maps smaller private signals σ ≤ 1/2 into action A− 1, and larger private signals σ > 1/2

into action A. This induces continuation public beliefs p(A−1, π̄, ξ) < π̄ < p(A, π̄, ξ). Since

the convex value function is not linear near π̄, the expected continuation value exceeds

v(π̄) by some η > 0. This policy change produces a myopic loss less than ε, beating the

optimal policy when the discount factor δ is so large that δη > (1− δ)ε.

Lesson 2: The action order might not be myopically optimal.

The natural order requires that the interval Ia′(δ) lie above Ia(δ) if the actions a
′ > a are

both active. By our increasing differences assumption, a myopic agent uses this order. But

for a high enough discount factor δ < 1, short-run payoff considerations do not dominate,

and the optimal intervals can differ somewhat from the myopically optimal ones. Once

this happens, the optimal map between actions and intervals need no longer be natural,

as we illustrate by example in Appendix E.2. But such non-natural orders require a

high enough discount factor δ. To underscore the essential role of patient agents, let us

bound the discount factor away from one. By supermodularity, the payoff slope differences

∆a ≡ (u(a,H)−u(a, L))− (u(a− 1, H)−u(a− 1, L)) > 0 for actions a = 2, . . . , A. Define

the sum ∆ ≡ (u(A,H)−u(A,L))− (u(1, H)−u(1, L)) and minimum ∆ = min{2,...,A} ∆a.

Corollary 2. If δ < ∆/(∆ + ∆), then for any public belief π not in a cascade set, the

optimal rule uses the natural action ordering. With two actions, this holds for δ < 1/2.

The impatience premise of Corollary 2 is essential. In the example in Appendix E.2,

the unnatural action order is optimal for all large enough discount factors δ < 1.

19 Strictly speaking, these actions do not have increasing differences. The illustration is simpler this
way, but it would also suffice to let u(A− 1, L) = u(A,L)− ε/2.
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6 CONTRARIANISM

6.1 An Illustrative Example: The Professor and his Student

We illustrate contrarian behavior and its optimality in a fully-solved two period example.

This is a pure information transmission problem like Dow (1991), with δ = 1 (full altruism).

A professor and his student share a common prior π on state H, and observe private

signals σ, with cdf’s FH(σ) = σ2 and FL(σ) = 2σ− σ2. The professor sees the signal, and

either takes action 1 or 2; his student observes the professor’s action, but not his signal.

Subject to this restriction, the professor selflessly acts to maximize his student’s expected

payoff, where his state payoffs are u(2, H) = u(1, L) = 1, u(1, H) = u(2, L) = −1.

If the student starts with a continuation public belief p, then she takes action 2 exactly

when her signal σ ≥ 1 − p. Now, σ ≥ 1 − p with chance 1 − FH(p) = 1 − (1 − p)2 in

state H and with chance FL(1− p) = p2 in state L. Hence, the student’s value function is

VS(p) = p(1− (1− p)2 − (1− p)2) + (1− p)(1− p2 − p2) = 1− 2p+ 2p2.

The professor uses an interval partition rule, equivalent to choosing action 1 for low signals

σ < σ̄, and action 2 if σ ≥ σ̄.20 He seeks to maximize V (π) = E[VS(P )|π], where P is his

student’s random public belief, and the expectation is taken before the private signal σ is

realized. Since π = E[P |π] by the martingale property of beliefs, we have

V (π) = E[VS(P )|π] = E(1− 2P + 2P 2|π) = 1− 2π + 2π2 + 2E[(P − π)2|π].

Then the professor’s optimal value V (π) exceeds the student value VS(π) = 1− 2π + 2π2

by twice the variance of beliefs. This variance encapsulates the option value of learning in

this two period setting. We now compute this term. Given the threshold rule, a different

continuation public belief P = p1 or P = p2 arises after each of the two professorial

actions 2 and 1. Bayes rule reveals the formulas p1(σ̄) = [πσ̄2]/[πσ̄2 + (1 − π)(2σ̄ − σ̄2)]

and p2(σ̄) = [π(1− σ̄2)]/[π(1− σ̄2) + (1− π)(1− 2σ̄ + σ̄2)]. We can explicitly compute:

E[(P − π)2|π] = π − p1
p2 − p1

(p2 − π)2 +
p2 − π

p2 − p1
(π − p1)

2 = (p2 − π)(π − p1). (10)

Only this term in V (π) depends on σ̄. Maximizing (10) over σ̄ yields private signal threshold

20With no weight on current payoffs (δ = 1), swapping actions 1 and 2 is also optimal. WLOG, we
assume the natural ordering.
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σ̄(π) = (π− 1+
√
π − π2)/(2π− 1) if π ̸= 1/2, with limit σ̄(1/2) = 1/2 by l’Hopital’s rule.

Corresponding to this private signal threshold, the professor’s optimal posterior belief

threshold is

θ(π) = r(π, σ̄(π)) =
π −

√
π − π2

2π − 1

Illustrating our later short-run contrarianism result, θ(π) increases in π. So the professor

optimally communicates the state of the world by acting in a “contrarian” fashion. He

leans against the public belief, choosing action 2 less often when stateH is more probable.21

6.2 Monotone Posterior Beliefs: Cascades Cannot Start Late

Before deriving contrarianism in our infinite horizon problem with δ < 1, we first address a

basic monotonicity property of Bayesian updating in the finite-action model. We derive a

robust condition on the private signal distribution yielding posterior monotonicity : holding

fixed an interval partition I for posterior beliefs, the continuation public belief22 p(a, π, I)
strictly increases in the current public belief π, for all active actions a.

Given the equi-likely states, the unconditional signal distribution is described by the

function F = (FH + FL)/2. When the density f = F ′ exists, Bayesian updating implies

a simple “no introspection condition” (Smith and Sørensen, 2000) for densities: fH(σ) =

2σf(σ) and fL(σ) = 2(1 − σ)f(σ). Associate to private signal σ the log-likelihood ratio

ℓ = Λ(σ)≡ log(σ/(1−σ)), with inverse S(ℓ) = eℓ/(1 + eℓ). In the rest of the paper, we

maintain the following (novel) regularity condition:23,24

(LC): The log-likelihood ratio density ϕ(ℓ) ≡ f(S(ℓ))S ′(ℓ) exists, and is log-concave.

Assumption (LC) is violated by atomic distributions, but common continuous distri-

butions are log-concave (see Marshall and Olkin (1979), §18.B.2.d), including that in §6.1.
That the Bayes rule map from π and σ into ρ is linear in log-likelihood ratios, namely

Λ(ρ) = Λ(π) + Λ(σ), underlies our next result. Let g(ρ|π) be the posterior belief density.

Lemma 4. Posterior monotonicity obtains for any active action, because the posterior

belief density g(ρ|π) is strictly log-supermodular, given (LC).

21It is easy to verify that the posterior threshold θ(π) exceeds the constant, myopic posterior belief
threshold θ(π) = 1/2 exactly when π > 1/2.

22Abusing notation, we let p(a, π, I) denote the continuation belief when the rule I is fixed as π varies.
23Smith and Tian (2016) develop more general conditions for posterior monotonicity.
24Recent work by Morris and Yildiz (2016) derives a related nonmonotone map from priors to posteriors,

for which they venture a sufficient fat tails assumption (that precludes log-concavity).
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Proof: Action a is taken for posteriors ρ ∈ Ia, and with chance
∫
Ia
g(ρ|π)dρ>0, since

a is active. The continuation public belief is thus p(a, π, I) =
∫
Ia
ρg(ρ|π)dρ/

∫
Ia
g(ρ|π)dρ.

We next show that g obeys the MLRP (log-supermodular), and so p(a, π, I) increases in π.
Let ϕω(ℓ) be the density over the private log likelihood ratio ℓ in state ω. Observe

that ϕ(ℓ) = (ϕL(ℓ)+ϕH(ℓ))/2 = (1+ eℓ)ϕL(ℓ)/2, as the no introspection condition implies

ϕH(ℓ) = eℓϕL(ℓ). Hence, log ϕL(ℓ) = log ϕ(ℓ)− log(1 + eℓ) + log 2 is strictly concave, since

ϕ is log-concave by condition (LC). As a result, the unconditional density h(ℓ|π) over the
posterior log likelihood ratios ℓ given prior belief π is strictly log-supermodular, given:

h(ℓ|π) = (1− π)ϕL(ℓ− Λ(π)) + πϕH(ℓ− Λ(π)) = (1− π)(1 + eℓ)ϕL(ℓ− Λ(π))

Then g(ρ|π) is strictly log-supermodular, as the map ℓ 7→ ρ strictly increases. □
To see the role played in Lemma 4 by the log-concavity assumption (LC), we now give

an example in which posterior monotonicity fails when (LC) fails. We slightly modify our

signal family example in §6.1, punching a hole in its support. Choose b ∈ (1/2, 1), and

define the density f(σ) = 1/(2−2b), for σ ≤ 1− b and σ ≥ b, and f(σ) = 0 otherwise. Let

fH(σ) = 2σf(σ) and fL(σ) = 2(1 − σ)f(σ). Suppose action 2 is optimal if the posterior

belief exceeds 1/2. Given a public prior belief π > b, the posterior likelihood ratio after

seeing action 2 is

LR(π) ≡ π

1− π

1+b
2

+
∫ 1−b

1−π
σ

1−b
dσ

1−b
2

+
∫ 1−b

1−π
1−σ
1−b

dσ
.

Provided b > (1 + 2
√
2)/7, we see that LR(π) is decreasing on (b, b+ ϵ) for some ϵ > 0.

When δ = 0, every action a is taken for posterior beliefs in a fixed interval [θ1, θ2]. In

their “bounded beliefs example”, Smith and Sørensen (2000) found that public beliefs can

transition into a cascade set if and only if the posterior public belief after an action is not

monotone in the prior belief. That is, landing in a cascade set requires that (LC) fail:

Corollary 3. Given assumption (LC), a cascade cannot start after period one if δ = 0.

It is instructive to observe that the multinomial signal examples with cascades in the

seminal paper by Bikhchandani, Hirshleifer, and Welch (1992) violate assumption (LC).25

25Herrera and Hörner (2012) note for the binary action model that posterior monotonicity is equivalent to
two properties being true: the increasing hazard ratio property and the increasing failure ratio property.
They copy arguments from Smith and Sørensen (2000) to note that posterior monotonicity precludes
cascades. They incorrectly claim that the property is necessary.
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6.3 Contrarian Behavior

We now consider short run contrarian behavior, that individuals increasingly lean against

actions increasingly favoured by popular beliefs. We generalize the logic of the professor-

student example, and show that under the log-concavity assumption (LC), the posterior

belief threshold separating pairs of actions satisfies θ(π) < θ(π′) for any non-cascade public

belief realizations π < π′. The generalization allows more than two actions, an infinite-

horizon with discounted future payoffs, and the possibility of multiple optimal rules.

We have observed that the optimal action ordering generally depends on the public

belief. But the threshold comparison θ(π) < θ(π′) is meaningful only when the same

action ordering is optimal at both π and π′, and that the set of active actions is identical.

Fixing one such action order, re-label the active actions so that higher actions are taken

at higher signals (we simply call the number of such actions A). Let θa denote the threshold

between private posterior beliefs leading to actions a and a + 1, and define the threshold

vector θ = (θ1, . . . , θA−1). The threshold space Θ(π) ⊂ RA−1 is the set of vectors θ where

r(min supp(F ), π) < θ1 < · · · < θA−1 < r(max supp(F ), π). For an interval rule defined by

the vector θ, the probability of action a is ψ(a, π, θ), and the continuation belief p(a, π, θ).

Let Θ∗(π) ⊂ Θ(π) be the set of optimal threshold vectors. We formally call behaviour

contrarian if, for any pair π < π′ with this identical optimal action ordering, the set Θ∗(π′)

is higher than Θ∗(π) in the strong set order.26 This coincides with an intuitive notion of

first order stochastic dominance: at the higher belief π′, any set of lower actions {1, . . . , a}
is taken for a higher set of posterior beliefs [0, θ′a]. Behaviour is strictly contrarian if, for

all θ ∈ Θ∗(π) and θ′∈Θ∗(π′), we have θ′≫θ, so that all coordinates of θ′ are higher than θ.

Proposition 3. Given (LC), behaviour is contrarian for any discount factor δ ∈ [0, 1).

Figure 2 depicts an instructive key step of the proof of Proposition 3. The threshold

between actions a and a+1 equates the welfare indexes w(a, π, θa) = w(a+1, π, θa); also,

w(a, π, ρ) down-crosses w(a + 1, π, ρ) at the posterior belief ρ = θa. In other words, the

net gain to taking the higher action grows in the posterior belief ρ.

Next, by the formula (8), the public belief π affects the welfare index w only through

the value function tangent τa(ρ). And at the higher public belief π′ > π, the tangents shift

along the convex value function as shown in Figure 2, forcing w(a, π′, θa) > w(a+1, π′, θa).
27

The posterior threshold where w(a, π, θa) = w(a+ 1, π, θa) then rises, as desired: θ′a > θa.

26Recall that Y ′ dominates Y in the strong set order if y ∈ Y and y′ ∈ Y ′ ⇒ y ∨ y′ ∈ Y ′ and y ∧ y′ ∈ Y.
27The proof works for any convex continuation value function — it does not require our infinite horizon

dynamic optimization. So Proposition 3 applies to the two-period professor-student problem in §6.1.
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Figure 2: How Tangents Comove. The tangent to the convex value function at any
public belief π measures the present value to all later individuals starting at any posterior
belief (Proposition 1), and thus higher beliefs raise this value iff the value function slopes
up. Given the continuation posterior threshold θa, we draw the tangents at posteriors
pa(π) < pa+1(π). By Lemma 7, as π rises, so do pa(π) and pa+1(π), while the tangent
τa+1(θa) falls and the tangent τa(θa) rises.

Assumption (LC) guarantees updating monotonicity of public beliefs (Lemma 4), and

thereby the noted monotone tangent difference, by the above logic. Contrarianism can fail

without monotone public beliefs, as we show in Appendix E.3.

We now strengthen Proposition 3, and secure strictly contrarian behavior. By the

above logic, this holds if δ > 0 and the value function is strictly convex. For then the

tangents in (8) have positive weight, and they strictly shift in π.

Corollary 4. If δ ∈ (0, 1), signals obey assumption (LC), and all actions are taken in the

natural order, then behavior is strictly contrarian outside the cascade sets.

The result holds if the value function is strictly convex in a neighborhood of any

continuation belief. But it is affine on an interval [z, z̄] whenever there exists a constant

optimal strategy on [z, z̄] — in particular, the value function is affine on cascade sets.28 We

next claim that the cascade sets are in fact the only affine portions of the value function.29

Lemma 5. If the signal support supp(F ) is convex and all actions are taken in the natural

order, then the value function v is strictly convex outside the cascade sets.

28A strategy, started at π ∈ [z, z̄], yields some state-contingent expected values vH and vL. The expected
value of following the same strategy, starting at belief ρ, is then τ(ρ) = (1−ρ)vL+ρvH . Since the strategy
is optimal at π and feasible at ρ, the affine τ is tangent to v at π. If v is affine, then v(ρ) = τ(ρ), and the
strategy is optimal for all ρ ∈ [z, z̄]. Conversely, if the strategy is optimal, v(ρ) = τ(ρ) for all ρ ∈ [z, z̄].

29Note that Assumption (LC) implies a convex belief support.
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6.4 The Detailed Proof of Contrarianism with Two Actions

We now explain the local argument of Proposition 3 with A = 2, because it is instructive.

By assumption, at public beliefs π < π′, there exist optima with the same action order.

The optimal rules at π and π′ therefore also solve the Bellman problem (4) with (5) when

we restrict the choice set to this action order. In this restricted problem, we explore the

comparative statics properties of the constrained Bellman equation for any belief outside

the cascade set C(δ). Define the constrained Bellman function as the right side of (5):

B(θ|π) =
2∑

a=1

ψ(a, π, θ)[(1− δ)ū(a, p(a, π, θ)) + δv(p(a, π, θ))]. (11)

Solutions to the constrained problem maxθ∈Θ(π)B(θ|π) define an optimizer set Θ∗(π). To

prove Proposition 3, it suffices that Θ∗(π) increase in the strong set order.

We wish to apply a clever comparative statics result in Quah and Strulovici (2009).

Their Theorem 1 delivers our conclusion provided B(·|π′) exceeds B(·|π) in their interval

dominance order. A sufficient condition for this order is their Proposition 2, that there exist

an increasing and strictly positive function α(θ) with Bθ(θ|π′) ≥ α(θ)Bθ(θ|π). Inspired

by (8) and (11), we derive an expression for Bθ(θ|π) in terms of the welfare index.

Lemma 6. The Bellman function B is differentiable almost everywhere with derivative

Bθ(θ|π) = g(θ, π) (w(1, π, θ)− w(2, π, θ)) . (12)

Also, B is absolutely continuous, with B(θ′|π)−B(θ|π) =
∫ θ′

θ
Bθ(θ̃|π) dθ̃ for θ, θ′ ∈ Θ(π).

The next result is a useful property of tangents to a convex function (refer to Figure 2).30

Lemma 7. Fix z1 < z2 < z3 and a convex function v. Let τi be a tangent function to

the value function v at zi. Then τ2(z1) ≥ τ3(z1) (respectively, τ1(z3) ≤ τ2(z3)), with strict

inequality unless v is affine on [z2, z3] (respectively, on [z1, z2]).

Returning to our proof of Proposition 3, suppose that the thresholds θ ∈ Θ∗(π) and

θ′ ∈ Θ∗(π′) are inversely ordered as θ′ < θ — otherwise, we’re done. Since r(σ, π) is an

increasing function of π, the open interval Θ(π) rises in π. So [θ′, θ] ⊂ Θ(π) ∩ Θ(π′).

We first argue that the index difference ∆(θ̃, π) ≡ w(1, π, θ̃) − w(2, π, θ̃) in (12) weakly

30Recalling Proposition 1, τi would correspond to the value function at continuation belief zi.
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increases in the public belief π, when θ̃ ∈ [θ′, θ]. By Lemma 4, continuation beliefs rise

in public beliefs: p(a, π′, θ̃) > p(a, π, θ̃) for a = 1, 2. The two cases in Lemma 7 yield, as

desired,

∆(θ̃, π′)−∆(θ̃, π) = δ{[τ ′1(θ̃)− τ1(θ̃)] + [τ2(θ̃)− τ ′2(θ̃)]} ≥ 0. (13)

Next, α(θ̃) ≡ g(θ̃|π′)/g(θ̃|π) is a positive and nondecreasing function over [θ′, θ], since g is

log-supermodular, by Lemma 4. Then Lemma 6 and inequality (13) imply:

Bθ(θ̃|π′) = g(θ̃|π′)∆(θ̃, π′) ≥ g(θ̃|π′)∆(θ̃, π) = α(θ̃)Bθ(θ̃|π), (14)

This implies that B obeys the interval dominance order, by Proposition 2 in Quah and

Strulovici (2009). By their Theorem 1, Θ(π) rises in the strong set order — contrarianism.

Now consider the stronger claim in Corollary 4 that the optimizer set strictly rises.

Suppose first that thresholds θ ≥ θ′ are respectively optimal at public beliefs π < π′ .

By the already proven strong set order, θ ∈ Θ∗(π′). By our Proposition 1, w(1, π, θ) −
w(2, π, θ) = w(1, π′, θ) − w(2, π′, θ) = w(1, π′, θ′) − w(2, π′, θ′) = 0. The first difference

vanishes since θ is optimal at π, the second since θ is optimal at π′, and the third since θ′

is optimal at π′. If θ > θ′, we contradict the fact that w(2, π′, ρ)−w(1, π′, ρ) increases in ρ,

as follows from (8). For the natural action order implies that ū(2, ρ) − ū(1, ρ) is strictly

increasing, and convexity of v implies that its tangent difference τ ′2(ρ)− τ ′1(ρ) is monotone.

Consider the other possibility with θ = θ′. Now π < π′ implies p(a, π, θ) < p(a, π′, θ),

and at least one of p(1, π′, θ), p(2, π, θ) is outside the cascade set, by Claim 5. Lemma 7

gives the contradiction w(1, π, θ) − w(2, π, θ) > w(1, π′, θ) − w(2, π′, θ). The inequality is

strict because v is strictly convex outside the cascade set, by Lemma 5. □

7 IMPLEMENTATION

Can the planner implement the optimal solution using a feasible transfer scheme for the

selfish agents? Since he cannot observe the private signals, transfers would have to depend

on the observed action history alone. Otherwise, given the index formula (8), the socially

optimal behavior can be decentralized by awarding individuals transfers δτa(ρ)/(1 − δ)

depending on the posterior belief ρ.

When the planner’s policy prescribes an interval rule that does not swap the myopic

interval order, it suffices to reward an agent just on the basis of his own action. For the

planner can move the selfish agent’s threshold between any two actions up (or down) by
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taxing (or subsidizing) the higher action. But transfers based on the agent’s own action

can never reverse the myopic ordering of actions, and thus are not sufficient if the selfish

optimal action ordering is not socially optimal.31 We solve this using richer transfers.

A pivot mechanism that rewards agents for their marginal contribution to social welfare,

i.e. from changing the public belief, would align the agents’ and planner’s incentives. So we

would need to pay agents the incremental discounted value M(a, π, ω) of successors from

observing the current action a in each state ω.32 Now, even though the planner does not

know the state ω, future agents’ choices rely on their information, and so indirectly on ω.

We use this linkage to implement the social outcome with transfers t(a, b) that depend just

on the current and next agent’s actions a and b. Thus, an agent with posterior belief ρ

expects to receive a premium ρM(a, π,H) + (1− ρ)M(a, π, L) from taking action a.

Proposition 4. The social optimum (3) can be implemented for selfish agents by a mech-

anism whose transfers only depend on the public belief, and actions of the agent and his

successor. A unique such mechanism exists if no continuation belief is in a cascade set.

We next argue that with the myopic action order and two actions, the pivot mechanism

transfers in Proposition 4 reward individuals who are mimicked by successors. Intuitively,

an action is more likely smart if the successor’s signal leads him to emulate it.

Corollary 5. Assume the myopic action ordering in the binary action world. The transfers

are ranked t(a, a) ≥ t(a, b) whenever b ̸= a and neither belief π nor p(a, π, ξ) are in C(δ).

Related to the implementation results for selfish agents, consider the problem where

everyone altruistically aims to maximize a welfare measure. Adapting Radner (1962), we

call a perfect Bayesian equilibrium of this game a team equilibrium. We claim that a social

optimum is a team equilibrium for any discount factor δ < 1. To see why, suppose that all

but one agent uses a sequentially rational optimal strategy s, but that some agent n has a

strictly better reply ξ̃ at a history. Then the planner can improve his value at that history

by fully mimicking this deviation, i.e. (i) using rule ξ̃ in the first period and then (ii)

continuing with s as if sn had been applied at stage n with this history (as the team would

not have detected the deviation). This profitable deviation contradicts optimality of s.

This decentralization result squares well with our observation after Proposition 1 that

the welfare index w is the altruistic player’s value at posterior belief ρ. Note however, that

other team equilibria also exist, as we will explain after Lemma 3 in §4.
31We could restrict the planner to such rules that cannot implement our planner’s solution. Bru and

Vives (2002) likewise consider IC mechanisms that cannot implement the optimum of Vives (1997).
32The formal definition of M(a, π, ω) is given in §D.1 with the proof of Proposition 4.
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A VALUE FUNCTIONS: PROOF OF LEMMA 1

We use the Bellman operator T = supξ∈Ξ Tξ from the RHS of (4). From (4) and (5), if

v ≥ v′ then Tv ≥ Tv′. As is standard in discounted programs, T is a contraction, and so has

a unique fixed point vδ. This fixed point lies in the space of bounded, continuous, convex

functions. We simply show convexity. Since T is a contraction operator, it suffices that v

convex implies Tv convex. Let πλ = λπ1+(1−λ)π2, where λ ∈ (0, 1). Fix an optimal rule

ξ mapping signals to actions at πλ. Using Bayes’ rule, p(a, π, ξ) = πψ(a,H, ξ)/ψ(a, π, ξ),

we get:

p(a, πλ, ξ) =
λψ(a, π1, ξ)

ψ(a, πλ, ξ)
p(a, π1, ξ) +

(1− λ)ψ(a, π2, ξ)

ψ(a, πλ, ξ)
p(a, π2, ξ). (15)

The first (myopic) term in (5) at πλ is the convex combination of the terms with π1 and

π2, as ū is linear in beliefs. As v is convex and (15) holds, the second (future) term obeys:

ψ(a, πλ, ξ)v(p(a, πλ, ξ)) ≤ λψ(a, π1, ξ)v(p(a, π1, ξ)) + (1− λ)ψ(a, π2, ξ)v(p(a, π2, ξ)). (16)

Then Tv(πλ) = Tξv(πλ) ≤ λTξv(π1) + (1 − λ)Tξv(π2) ≤ λTv(π1) + (1 − λ)Tv(π2), by

summing (16) over actions a = 1, . . . , A.

Let ũ(π) = maxa ū(a, π) denote the payoff frontier. The bound on tangent slopes

follows from the observations that v(0) = u(1, L) and v(1) = u(A,H), that the convex

function v exceeds the payoff frontier ũ, and that ū(1, ρ) and ū(A, ρ) define the most

extreme slopes of ũ, by supermodularity.

Claim 1. The function sequence {T nũ} pointwise increases and converges to vδ. The value

vδ weakly exceeds ũ, and strictly so outside the cascade sets.

Proof. To maximize
∑A

a=1 ψ(a, π, ξ) [(1− δ)ū(a, p(a, π, ξ)) + δũ(p(a, π, ξ))] over rules ξ ∈
Ξ for the given belief π, one rule ξ̃ a.s. chooses the myopically optimal action. Then

p(ξ̃(σ), π, ξ̃) = π a.s., resulting in value ũ(π). Optimizing over all ξ ∈ Ξ, we get T ũ(π) ≥
ũ(π) for all π. By induction, T nũ ≥ T n−1ũ, yielding a pointwise increasing sequence

converging to the fixed point vδ ≥ ũ. Finally, when π is outside the cascade sets, by

definition it is not optimal to induce one action a.s., whence vδ(π) > ũ(π) if δ ∈ [0, 1).

Claim 2. When δ2 ≥ δ1, vδ2(π) ≥ vδ1(π) for all π.

Proof. Clearly,
∑A

a=1 ψ(a, π, ξ)ū(a, p(a, π, ξ)) ≤
∑A

a=1 ψ(a, π, ξ)v(p(a, π, ξ)) for any rule ξ

and any function v ≥ ũ. If δ increases, then Tξũ pointwise increases too, since more weight
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is placed on the larger component of the RHS of (5). By (4), T ũ is pointwise higher.

Iterating this argument, T nũ is higher. Let n→ ∞ and apply Claim 1.

B INCREASING PATIENCE PROOFS

B.1 Cascade Sets: Proof of Lemma 2 and More

A. Proof of Lemma 2. For (a), note that action 1 is myopically strictly optimal when

π = 0. Since it updates to continuation belief π = 0 for any rule, it is also dynamically

optimal for any discount factor δ ∈ [0, 1). A similar proof holds for π = 1. Since the

private signal is valuable in the selfish problem, ∪A
a=1Ca(0) ̸= [0, 1].

(b) For low public beliefs, it is optimal to let the rule ξ induce 1; the argument for high

beliefs is similar. Action 1 is optimal at belief π = 0, and there is no tie, so 1 is the optimal

selfish choice for beliefs π ≤ π′, for some π′ > 0. In particular, ū(1, π) > ū(a, π) + η for

all a ̸= 1 for some η > 0, and for all beliefs π in the interval [0, π′/2]. No action can

reveal a stronger private signal than any σ ∈ supp(F ) ⊆ [σ1, σ0] ⊂ (0, 1). So any initial

belief π is updated to at most p̄(π) = πσ1/[πσ1 + (1 − π)(1 − σ1)]. For π small enough,

p̄(π) ∈ [0, π′/2] and p̄(π) − π is arbitrarily small. By continuity of vδ, vδ(p̄(π)) − vδ(π) is

less than η(1− δ)/δ for small enough π. By the Bellman equation (4), any action a ̸= 1 is

strictly suboptimal for such small beliefs.

(c) Assume unbounded signals. Smith and Sørensen (2000) prove that Ca(0) = ∅ for

all a ̸= 0, 1, and that C1(0) = {0} and CA(0) = {1}. □

B. Cascade Sets as Limit Beliefs. As in Smith and Sørensen (2000), public

beliefs converge by the martingale convergence theorem, and the limit is not fully wrong:

Claim 3. The belief process ⟨πn⟩ is a martingale unconditional on the state, converging a.s.

to some limiting random variable π∞. The limit π∞ is concentrated on (0, 1] in state H.

Smith and Sørensen (2000) find for δ = 0 that the public belief process converges upon

the cascade set. The result extends to the case δ > 0:

Theorem 1. Consider a solution of the planner’s problem. The limit belief π∞ has support

in C1(δ)∪· · ·∪CA(δ). In particular, π∞ is concentrated on the truth for unbounded signals.

Proof: At least two actions occur with positive chance for any belief π not in any cascade

set. By the interval structure of Corollary 1, the highest such action is more likely in
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state H, and the lowest in state L. So the continuation belief differs from π with positive

probability. Intuitively, or by the characterization result for Markov-martingale processes

in Appendix B of Smith and Sørensen (2000), π cannot lie in the support of π∞.

B.2 Strict Value Monotonicity: Proof of Lemma 3

Fix δ2 > δ1. Fix π /∈ C(δ2). If π ∈ C(δ1), we’re done, since vδ1(π) = ũ(π) < vδ2(π). If π /∈
C(δ1), the δ1-optimal rule ξ induces with positive chance some action â with continuation

belief p(â, π, ξ) /∈ C(δ1). To see why, recall that π is the average of the continuation beliefs,

and that Ca(δ1) is an interval. Moreover, at most one cascade set is hit (Claim 5 below).

Then (1−δ1)ū(a, p(a, π, ξ))+δ1vδ1(p(a, π, ξ)) ≤ (1−δ2)ū(a, p(a, π, ξ))+δ2vδ2(p(a, π, ξ)) for
every action a, with strict inequality for â, since δ2 > δ1. By (4) and (5), the δ1-optimal

rule ξ provides a strictly higher value than vδ1(π), for the discount factor δ2. Optimizing

over rules for δ2, we conclude that vδ2(π) > vδ1(π). □

Claim 4. For any δ > 0 and any action a ∈ {1, . . . , A}, if π̌ ∈ (0, 1) is an endpoint of

cascade set Ca(0) then π̌ ̸∈ Ca(δ).

Proof : Let π̌ = minCa(0) where a ̸= 1. Denote the minimal posterior belief by ρ̌ =

r(π̌,min supp(F )). Then ū(a− 1, ρ̌) = ū(a, ρ̌). Define

wa−1(ρ) = (1− δ)ū(a− 1, ρ) + δτ(ρ) and wa(ρ) = (1− δ)ū(a, ρ) + δū(a, ρ) (17)

where τ is a tangent of vδ at ρ̌. Since ρ̌ < π̌, we have ρ̌ ̸∈ Ca(0). As noted before,

Lemma 1 implies Ca(δ) ⊆ Ca(0), so ρ̌ ̸∈ Ca(δ). Thus, ū(ρ̌, a) < vδ(ρ̌) = τ(ρ̌). Plugging

this inequality into (17) gives wa(ρ̌) < wa−1(ρ̌). If π̌ ∈ Ca(δ), then wa(ρ̌) is the welfare

index at posterior belief ρ̌, but our inequality then contradicts Proposition 1. □
This yields a general new property of cascade sets:

Claim 5. Let δ > 0. For any belief π, continuation beliefs lie in at most one cascade set.

Proof : Given unbounded signals, continuation beliefs never lie in a cascade set. Assume

bounded signals. Let σ = min supp(F ) and σ̄ = max supp(F ). Suppose that for some

π, two continuation beliefs π1 < π2 lie in distinct cascade sets, namely, Ca′(δ) below

Ca′′(δ). Then π1 ∈ Ca′(0) and π2 ∈ Ca′′(0) since, again, Ca(δ) ⊆ Ca(0) for any a. Let π
′ =

maxCa′(0) ≤ π′′ = minCa′′(0). Then π1 ≤ π′. There exist x1, x2 in [σ, σ̄] with r(π, x1) = π1
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and r(π, x2) = π2. Since (a) Bayes-updating commutes, (b) r(π, σ̄) ≥ r(π, x2) = π2 and

x1 ≥ σ, (c) π2 ≥ π′′, and (d) π′′ ∈ Ca′′(0) while π
′ ∈ Ca′(0):

r(π1, σ̄) = r(r(π, x1), σ̄) = r(r(π, σ̄), x1) ≥ r(π2, σ) ≥ r(π′′, σ) ≥ r(π′, σ̄)

and so π1 ≥ π′. Thus π1 = π′, which contradicts Claim 4. □

B.3 Cascade Sets and Impatience: Proof of Proposition 2(a)

We now show strict inclusion of the cascade sets. Fix any action â. Since Câ(δ) =

{π|vδ(π) − ū(â, π) = 0} is closed by continuity, we prove that if π̂ ≡ minCâ(δ1) (i.e. the

left end of a cascade set) then π̂ /∈ Câ(δ2) when â ̸= 1. (The case maxCâ(δ1) is similar.)

Case 1: Multiple Optimizers. Assume that at π̂ and δ1, some optimal rule involves

actions other than â with positive chance. Then some continuation beliefs fall outside

C(δ1), with positive chance. For otherwise, by Claim 5, all continuation beliefs lie in the

same cascade set — and this rule incurs a myopic cost (not playing â) with no informational

gain. As in the proof of Claim 4, vδ2(π̂) > vδ1(π̂) = ū(â, π̂). We conclude that π̂ ̸∈ C(δ2).

Case 2: Unique Optimizer. Assume that the unique optimal rule with δ = δ1 at

belief π̂ is to play â at probability 1. Let πn ↑ π̂. For each n, let Tn = (τna , a = 1, . . . , A)

be optimal tangents in (7). Since π̂ = minCâ(δ1), we must have πn ̸∈ Câ(δ1). Therefore,

we can find some action a′n ̸= â and private signal σn ∈ supp(F ) with higher index:

(1− δ1)ū(a
′
n, r(πn, σn))+ δ1τ

n
a′n
(r(πn, σn)) ≥ (1− δ1)ū(â, r(πn, σn))+ δ1τ

n
â (r(πn, σn)). Since

T |A|
v and supp(F ) are compact and A is finite, there is a subsequence where Tn has limit

T ∗ = (τ ∗a ), an has limit a′ ̸= â, and σn has limit σ̂. Write ρ̂ = r(π̂, σ̂). By the Theorem of

the Maximum, T ∗ is an optimal subtangent vector for π̂, so

(1− δ1)ū(a
′, ρ̂) + δ1τ

∗
a′(ρ̂) ≥ (1− δ1)ū(â, ρ̂) + δ1τ

∗
â (ρ̂). (18)

First, since choosing â with chance 1 is the unique optimal rule at π̂ for δ1, τ
∗
â must

be a subtangent line of vδ1 at π̌, i.e., τ ∗â (π̌) = vδ1(π̌) = ū(â, ρ̂). Next, since π̂ ∈ Câ(δ1),

by Claim 4, π̂ is strictly inside Câ(0). So action â is myopically strictly dominant, i.e.

ū(â, ρ̂) > ū(a′, ρ̂). Then (18) implies that τ ∗a′(ρ̂) > τ ∗â (ρ̂). Since δ2 > δ1, (18) further

implies that (1 − δ2)ū(a
′, ρ̂) + δ2τ

∗
a′(ρ̂) > (1 − δ2)ū(â, ρ̂) + δ2τ

∗
â (ρ̂). Then optimizing over

tangents for δ2, conclude that vδ2(π̂) > ū(â, π̂), and thus π̂ /∈ Câ(δ2). For both τ ∗a′(ρ) and

τ ∗â (ρ) are weakly below vδ2 by δ1 < δ2 and weak monotonicity of value.
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The Perfect Patience Limit. We finally prove that for actions a ̸= 1, A, cas-

cade sets disappear when δ tends to 1, and limδ→1C1(δ) = {0} and limδ→1CA(δ) = {1}.
Consider first any action a /∈ {1, A}, and suppose δ is such that the cascade set Ca(δ)

is non-empty. Let the rule ξ take a − 1 and a for signals σ in the respective intervals

Ia−1 = [0, θ] and Ia = (θ, 1], where 0 < F (θ) < 1. Updating with the optimistic news

that σ ∈ Ia leads to an upward revision of the public belief: There exists ε > 0 such that

p(a, π, ξ)−π ≥ ε for all π ∈ Ca(δ) ⊂ (0, 1). Denoting by π′′ the upper bound of Ca(δ), write

[π′, π′′] = [π′′ − ε/2, π′′] ∩ Ca(δ). Since the convex function vδ strictly exceeds the affine

ū(a, ·) outside Ca(δ), and since vδ(π) = ū(a, π) inside Ca(δ), there exists η > 0 so small

that ψ(a, π, ξ)vδ(p(a, π, ξ)) + ψ(a− 1, π, ξ)vδ(p(a− 1, π, ξ)) > vδ(π) + η for all π ∈ [π′, π′′].

We prove that the interval [π′, π′′] is excised from Ca(δ
′) once δ′ > δ is sufficiently large.

If this were not true, then vδ′(π
′) = ū(a, π′), and there is an expected gain of at least η in

the continuation value of the the Bellman equation (4) by switching from the cascade rule

to rule ξ. For δ′ sufficiently large, this continuation gain dominates any first-period loss,

proving sub-optimality of the cascade rule at π′, and hence in [π′, π′′]. By iterating this

procedure a finite number of times, each time excising length ε/2 from interval Ca(δ), we

see that Ca(δ) vanishes for large enough δ. If a = 1 or A, apply this procedure repeatedly:

for all ε > 0, Ca(δ) ∩ [ε, 1− ε] vanishes for δ near 1. □

B.4 Increased Patience and Herding: Proof of Proposition 2(b)

A herd obtains on action a at stage N if n = N,N +1, N +2, . . . choose action a. While a

cascade implies a herd, the converse is false. To show that herds arise, we extend the logic

of Smith and Sørensen (2000), by extending the Overturning Principle. Claim 6 proves

that for beliefs π near Ca(δ), actions other than a push the updated public belief far from

its current value. The reason is that actions other than a yield a first order myopic loss

against a second order learning gain if the continuation public belief is close to its current

value. So belief convergence implies convergence of actions: a limit cascade implies a herd.

Theorem 2. Consider any planner’s solution:

(i) A herd eventually starts.

(ii) With unbounded signals, the herd is on the ex post optimal action.

(iii) The chance of an incorrect herd with bounded signals vanishes as δ ↑ 1.

The proof uses a claim that extends the Overturning Principle in Smith and Sørensen

(2000) to this forward-looking model. When π is near Ca(δ), action a should occur with
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high chance. More precisely, any other actions distinctly shift beliefs, or there was a non-

negligible probability of observing some other action which would distinctly shift beliefs.

Claim 6. For δ ∈ [0, 1), assume Ca(δ) ̸= ∅. Then there exists ε > 0 and an ε-

neighbourhood K ⊃ Ca(δ), such that ∀π ∈ K ∩ (0, 1), either:

(i) ψ(a, π,Υ(π)) ≥ 1− ε, and |p(a′, π,Υ(π))− π|>ε for all a′ ̸= a that occur; or

(ii) ψ(a, π,Υ(π)) < 1− ε, and ψ(a′, π,Υ(π))≥ε/A, |p(a′, π,Υ(π))−π|>ε for some a′.

Proof of Theorem 2: We cite the extended (conditional) Second Borel-Cantelli Lemma in

Corollary 5.29 of Breiman (1968): Let Y1, Y2, . . . be any stochastic process, and events An

be measurable with respect to (Y1, . . . , Yn). Then almost surely

{An infinitely often (i.o.)} = {
∞∑
n=1

P (An+1|Yn, . . . , Y1) = ∞}.

Now, fix an optimal policy, and let Υ denote this map from public beliefs to rules,

ξ = Υ(π). Choose ε > 0 to satisfy Claim 6 for all actions 1, 2, . . . , A. For fixed a,

define events Bn = {πn is ε-close to Ca(δ)}, Cn = {ψ(a, πn,Υ(πn)) < 1 − ε}, and Dn+1 =

{|πn+1 − πn| > ε}. If Bn ∩ Cn is true, then scenario (ii) in Claim 6 obtains, and so

P (Dn+1|πn) ≥ ε/A. Then
∑∞

n=1 P (Dn+1|π1, . . . , πn) = ∞ conditional on Bn ∩ Cn i.o. By

the above Borel-Cantelli Lemma, a.s. Dn obtains i.o. conditional on Bn ∩Cn i.o. But since

⟨πn⟩ a.s. converges by Claim 3, Dn i.o. is a zero chance event, and thus so is Bn ∩ Cn i.o.

Consider the event E that ⟨πn⟩ has a limit in Ca(δ) and Bn ∩ Cn occurs only finitely

often. By definition, E implies that eventually Bn \ (Cn ∪Dn+1). But Bn \ Cn implies that

every a′ ̸= a leads to Dn+1, by Claim 6 (i). Action a is then eventually taken on E . Sum
over all a to get a chance one event, by Claim 3, Theorem 1, and Proposition 2 (a). □

Proof of Claim 6: Choose η > 0 small enough such that for any π sufficiently close to Ca(δ),

we have ψ(a′, π,Υ(π)) < 1− η for any a′ ̸= a. If such η does not exist, since the optimal

rule correspondence is u.h.c., almost surely taking action a′ is optimal at some π̃ ∈ Ca(δ).

This is impossible, as a′ incurs a strict myopic loss, and captures no information gain.

First, assume bounded signals. By (b) of Lemma 2, for π close enough to 0 or 1,

the only optimal rule is to stop learning. Thus, we need only consider π in some closed

subinterval I of (0, 1). Let σ0 = min supp(F ) and σ1 = max supp(F ). By the existence of

informative signals, σ0 < 1/2 < σ1. Let ε > 0 be the minimum of η, FH((2σ0 +1)/4), and

1− FL((2σ1 + 1)/4) (notice that (2σ + 1)/4 is the midpoint between σ and 1/2).

Assume ψ(a, π,Υ(π)) ≥ 1 − ε for some π ∈ I. By Corollary 1, any action a′ ̸= a is

a.s. only taken for signals within either [σ0, (2σ0 + 1)/4] or [(2σ1 + 1)/4, σ1]. Any such a′
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implies case (i) of the Claim (selecting, if necessary, ε even smaller).

If instead ψ(a, π,Υ(π)) < 1− ε, then each action is taken with chance less than 1− ε.

By construction of ε, different actions are taken at the two extreme signals (by the interval

structure of the optimal rule). At least one of the A actions occurs with chance at least

ε/A, does not include signals near 1/2, and therefore moves public beliefs by at least ε

(selecting, if necessary, ε even smaller), as claimed in case (ii) of the Claim.

Next consider unbounded signals. Let the absolute slope of the value function v have

upper bound κ. Since no two payoffs are tied at 0, there exists a small ζ > 0 such that

the myopic action payoffs ū(a, ρ) maintain the same ranking, and the difference |ū(ã, ρ)−
ū(ǎ, ρ)| exceeds κζ for all ã ̸= ǎ, for all ρ ∈ [0, ζ].

Assume that π is near the cascade set {0} — the other case, {1}, is similar. Then only

one a′′ can have low continuation belief p(a′′, π,Υ(π)) ∈ [0, ζ]. If not, consider the altered

policy that redirects signals from two such actions into the myopically higher of the two.

This yields a first-period payoff gain of more than κζ, and a future value loss of at most

κζ (for p remains in [0, ζ]). So the altered policy is a strict improvement.

Assume ψ(1, π,Υ(π)) ≥ 1− ε. Then p(1, π,Υ(π)) ≤ π/(1− ε) ≤ ζ, for small enough π

and ε. As only action a′′ = 1 has continuation belief in [0, ζ], case (i) is satisfied.

Finally, assume ψ(1, π,Υ(π)) < 1 − ε. Then ψ(a′′, π,Υ(π)) < 1 − ε. Otherwise,

a′′ ̸= 1 and a myopic gain of at least (1 − ε)ζ − εU obtains from swapping the signals

for 1 and a′′, without any change in future value (here U denotes the maximal possible

myopic payoff difference). Thus there is a gain if ε is small enough: contradiction. Since

ψ(a′′, π,Υ(π)) < 1− ε there must exist some other action taken with chance at least ε/A

yielding continuation belief outside [0, ζ]. Thus, case (ii) holds. □

B.5 Strict Convexity of Value Function: Proof of Lemma 5

Let π̂ ̸∈ C(δ), and suppose to the contrary that v is affine around π̂. Let ξ̂ be an optimal

rule mapping private signals to actions. Define H(π) =
∑

a ψ(a, π, ξ̂)w(a, π̂, p(a, π, ξ̂)).

First, v(π̂) = H(π̂), by (4) and Proposition 1. Second, H is affine because indices are

affine, and by the martingale property of posteriors, (15). Third, H(π) ≤ v(π) from (7),

since H employs both the particular rule ξ̂ and the particular tangents to v at p(a, π̂, ξ̂).

Since v is affine, H(π) = v(π) around π̂. Again, (7) implies that ξ̂ is optimal for π

close to π̂ and that w(a, π̂, ρ) are optimal index functions at π. To see the contradiction

to this, consider two active actions. Since the actions are naturally ordered, we have
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p(1, π̂, ξ̂) < p(2, π̂, ξ̂), and that ū(2, ρ)− ū(1, ρ) is strictly increasing. The indices w(1, π̂, ρ)

and w(2, π̂, ρ) then intersect at a unique point, θ. The signal support is convex and both

actions are active, so posterior threshold θ uniquely characterizes the optimal rule ξ̂ at π̂.

However, for π ̸= π̂ but close to π̂, the fixed-private-signal-threshold rule ξ̂ selects different

actions for ρ near θ depending on π, because (2) strictly increases in π. □

B.6 Natural Action Order: Proof of Corollary 2

By Proposition 1, it is optimal to choose the action with highest welfare index w(a, π, ρ).

Since w(a, π, ρ) is linear in ρ, it suffices that ∂w(a, π, ρ)/(∂ρ) strictly increase in a. With v

convex, the slope of any subtangent line τ of v is sandwiched as follows:

u(1, H)− u(1, L) ≤ v′(0+) ≤ ∂τ

∂ρ
≤ v′(1−) ≤ u(A,H)− u(A,L).

This inequality allows us to bound the difference of welfare indices (8) from below:

∂w(a+ 1, π, ρ)

∂ρ
− ∂w(a, π, ρ)

∂ρ
≥ (1− δ)∆a+1 − δ∆.

This is strictly positive when δ < ∆a+1/(∆ +∆a+1). Finally, ∆ = ∆2 for A = 2. □

C CONTRARIANISM PROOFS

C.1 Bellman Derivative Formula: Proof of Lemma 6

From (11), the Bellman function is a.e. differentiable in θ. For by assumption (LC),

p(a, π, θ) is strictly monotone and differentiable, and the convex function v is differentiable

a.e. Since ū and τa are affine functions, and since p(a, π, ξ) =
∫
ξ−1(a)

r(π, σ)dF π, we can

use Proposition 1 to rewrite (5) as follows, proving Lemma 6:

B(θ|π) =
∫ θ

0

w(1, π, ρ)g(ρ|π)dρ+
∫ 1

θ

w(2, π, ρ)g(ρ|π)dρ. (19)

Claim 7. Let θ ∈ Θ(π). Assume θa = · · · = θa+j = x for some a ≥ 1 and j ≥ 0 with

a+j ≤ A−1, and suppose that θa−1 < x < θa+j+1.
33 Then the Bellman function B in (21)

33We use the notation θ0 = r(min supp(F ), π) and θA = r(max supp(F ), π).
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is absolutely continuous with respect to x, and its derivative in x almost everywhere equals:

Bx(θ|π) ≡ g(x|π) (w(a, π, x)− w(a+ j + 1, π, x)) . (20)

Also, for all π′′ > π′, there exists a positive and increasing function α(x) such that the

Bellman function B(θ|π) a.e. obeys Bx(θ|π′′) ≥ α(x)Bx(θ|π′) when θ ∈ Θ(π′) ∩Θ(π′′).

The omitted proof of this many action generalization follows closely on Lemma 6, since

we take action a for ρ ∈ [θa−1, x], and action a+ j+1 for ρ ∈ [x, θa+j+1]. So the derivative

of the Bellman function B in x is similar to (12) which had payoffs and tangents for actions

a = 1 and a+ j +1 = 2. Thus, (20) follows. The inequality follows similarly from (14). □

C.2 Subtangents to a Convex Function: Proof of Lemma 7

When v is affine on [z1, z2], subtangents τ1 and τ2 can coincide, with τ1(z3) = τ2(z3).

Otherwise, the subtangent τ2 is steeper than τ1. Thus, τ2(z3) − τ2(z2) > τ1(z3) − τ1(z2),

whence τ2(z3)− τ1(z3) > τ2(z2)− τ1(z2). Since v is convex, the subtangent τ1 lies below v

at z2, so that τ2(z2)=v(z2)≥τ1(z2). Hence, τ2(z3)>τ1(z3). The z1 analysis is similar. □

C.3 Contrarianism: Proof of Proposition 3 for Multiple Actions

Claim 8. The threshold space Θ(π) is a lattice, and B is supermodular for θ ∈ Θ(π).

Proof. Assume θ, θ′ ∈ Θ(π). Then θ ∧ θ′ ∈ Θ(π) since (θ ∧ θ′)a = θa ∧ θ′a ≤ θa+1 ∧ θ′a+1 =

(θ ∧ θ′)a+1 for every a. Similarly, θ ∨ θ′ ∈ Θ(π). Next, to show that B is supermodular

in θ, let θ′a > θa. If θ−a increases, both continuation beliefs p(a, π, θ) and p(a + 1, π, θ)

increase. Since p(a, π, θ) < θa < p(a + 1, π, θ), Lemma 7 implies that w(a, π, θa) increases

while w(a + 1, π, θa) decreases. So the difference (w(a, π, θa)− w(a+ 1, π, θa)) increases

in θ−a. Then by (20), the Bellman difference B(θ′a, θ−a) − B(θa, θ−a) increases in θ−a.

Supermodularity can now be decomposed into a summation of differences of this form.

Fixing the action ordering, the Bellman function (5) for a convex continuation value v

is:

B(θ|π) =
A∑

a=1

ψ(a, π, θ)[(1− δ)ū(a, p(a, π, θ)) + δv(p(a, π, θ)). (21)

We now prove Proposition 3 for finitely many actions. Pick beliefs π < π′ and assume

that θ ∈ Θ∗(π) and θ′ ∈ Θ∗(π′). If θ ≤ θ′, we are done. Assume next that they are
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inversely ordered θ′ < θ. We verify θ ∈ Θ∗(π′) and θ′ ∈ Θ∗(π). First, both [θ1, θA−1] and

[θ′1, θ
′
A−1] are subsets of Θ(π) ∩ Θ(π′), since [θ1, θA−1] ⊂ Θ(π) and [θ′1, θ

′
A−1] ⊂ Θ(π′) and

[θ1, θA−1] lies above [θ′1, θ
′
A−1] in the strong set order, and yet Θ(π) lies below Θ(π′) in

the strong set order. Second, let X be the set of all cut-off rules with cut-off points in

Θ(π) ∩ Θ(π′). By Tian (2014), B(·|π′) dominates B(·|π) in the interval dominance order

over X since, by Claim 7, the condition for Proposition 2 in Tian (2014) is satisfied.

Finally, suppose that θ and θ′ are not ordered. We now need a stronger proof ingredient

— specifically, we exploit the supermodularity of B (Claim 8). Our result follows if:

B(θ|π)−B(θ ∧ θ′|π) ≥ 0 (> 0) =⇒ B(θ ∨ θ′|π′)−B(θ′|π′) ≥ 0 (> 0). (22)

Let’s see why this suffices. Since θ is optimal at π, the left side is non-negative, and thus

θ ∨ θ′ is optimal at π′ by the weak inequality in (22). Conversely, if θ ∧ θ′ is not optimal

at π, then θ′ is not optimal at π′, by the strict inequality in (22).

We split the proof of (22) into two parts, since the choice domain Θ(·) depends on

the public belief. Let (θa, ..., θA−1) be the components of θ inside Θ(π′), for some a < A.

Choose z ∈ Θ(π′) with z < min{θa, θ′1}. Let θ̂ = (z, ..., z, θa, ..., θA−1), where the first a− 1

components are z. Then θ̂ ∈ Θ(π) ∩Θ(π′), since θa−1 < z follows from θa−1 /∈ Θ(π′).

By supermodularity of B(·|π′), and because θ̂ ∨ θ′ = θ ∨ θ′, we have:

B(θ̂|π′)−B(θ̂ ∧ θ′|π′) ≥ (> 0) =⇒ B(θ ∨ θ′|π′)−B(θ′|π′) ≥ (> 0). (23)

Then (22) follows if we also argue:

B(θ|π)−B(θ ∧ θ′|π) ≥ (> 0) =⇒ B(θ̂|π′)−B(θ̂ ∧ θ′|π′) ≥ (> 0). (24)

We now prove (24). First, for all θ′′ ∈ [θ̂ ∧ θ′, θ̂], we have θ̂ = θ ∨ θ′′ and so:

B(θ̂|π)−B(θ′′|π) ≥ B(θ|π)−B(θ ∧ θ′′|π) ≥ 0, (25)

by supermodularity of B(·|π) and optimality of θ at π, respectively. When θ′′ = θ̂ ∧ θ′

in (25), we have B(θ̂|π) − B(θ̂ ∧ θ′|π) ≥ B(θ|π) − B(θ ∧ θ′|π), since θ ≤ θ̂. Hence, if

B(θ|π)− B(θ ∧ θ′|π) > 0, then B(θ̂|π)− B(θ̂ ∧ θ′|π) > 0. Finally, the interval dominance

ordering of B(·|π′) over B(·|π′) lets us conclude (24). □

31



C.4 Strict Contrarianism: Proof of Corollary 4

Pick π′ > π. Let θ ∈ Θ∗(π) and θ′ ∈ Θ∗(π′). By Proposition 3, behavior is contrarian.

Suppose for a contradiction that it is not strictly so, and thus θ′k ≤ θk for some k. By

Proposition 3, θ ∨ θ′ is optimal under π′. Since θ′k ≤ θk, we have (θ ∨ θ′)k = θk. Suppose

that aj is the highest active action below ak, and am the least active action above ak. Then

(θ ∨ θ′)j−1 < (θ ∨ θ′)j = · · · = (θ ∨ θ′)k = · · · = (θ ∨ θ′)m−1 < (θ ∨ θ′)m, since θ and θ′ have

the same active actions in natural order. Our proof for two actions then carries over to

this case, by considering a neighboring pair of active actions. □

D IMPLEMENTATION PROOFS

D.1 Implementation: Proof of Proposition 4

For all π, let v(π, ω) denote the ω-contingent continuation value of the subgame starting

at public belief π. (From Proposition 1, there is a tangent τ to the value function at π

such that v(π, L) = τ(0) and v(π,H) = τ(1).) At given π, the additional ω-contingent

present value of current action a to later agents equals

M(a, π, ω) = [δ/(1− δ)](v(p(a, π, ξ), ω)− v(π, ω)). (26)

In a cascade, π ∈ Ca(δ), no transfer is needed. Since Ca(δ) ⊆ Ca(0), the selfish agent

takes a. We thus continue under the assumption π ̸∈ C(δ).

Suppose first that no active action reaches the cascade set. Consider active action a.

The successor takes some action b for the lowest private signals, with chance denoted

ψ(b, ω). Give the agent transfer t(a, b) when the successor chooses b, and t(a,¬b) otherwise.
The ω-conditional expected transfer for a is ψ(b, ω)t(a, b) + (1 − ψ(b, ω))t(a,¬b). Lower

signals are more likely in the low state: ψ(b,H) < ψ(b, L); therefore, there exist a unique

pair t(a, b), t(a,¬b) solving the two equations (for ω = H,L):

ψ(b, ω)t(a, b) + (1− ψ(b, ω))t(a,¬b) =M(a, π, ω). (27)

Simple algebra confirms that ū(a, ρ) + ρM(a, π,H) + (1− ρ)M(a, π, L) is an affine trans-

formation of the index w(a, π, ρ), where the transformation only depends on π and δ. The

transfer thus provides the right incentive and implements social optimum, and constitutes
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a pivot mechanism,34 since each agent is paid the marginal contribution.

We deter agents from taking inactive actions with large negative transfers.

Suppose next that the continuation belief after action a lands in a cascade set. Then

ψ(b,H) = ψ(b, L), so system (27) might not be solvable. But by Claim 5, at most one

cascade set, say Cb(δ), is reached across all actions. We can in this case construct a valid

non-pivot mechanism as follows. Let the transfer for all active actions leading to Cb(δ)

be 0. For all other active actions a, give the agent n a modified state contingent marginal

contribution: M ′(a, π, ω) = [δ/(1− δ)](v(p(a, π, ξ), ω)− u(b, ω)). □

D.2 Mimicry with Two Actions: Proof of Corollary 5

For the sake of argument, consider action a = 1, with p(1, π, ξ) ̸∈ C(δ) by assumption.

First consider the case where also p(2, π, ξ) ̸∈ C(δ). By equation (27),

t(1, 1)− t(1, 2) =
M(1, π, L)−M(1, π,H)

ψ(1, L)− ψ(1, H)
. (28)

Now, ψ(1, L) > ψ(1, H), as explained before (27). Thus, the fraction shares the sign of the

numerator. In the definition ofM in Proposition 4, v(π, ρ) is a subtangent line of the value

function at π. Then M(1, π, L)−M(1, π,H) = ∂v(π, ρ)/∂ρ− ∂v(p(1, π, ξ), ρ)/∂ρ. By the

myopic action ordering, we have p(1, π, ξ) < π and thus ∂v(π, ρ)/∂ρ − ∂v(p(1, π), ρ) ≥ 0,

since the value function is convex. Then t(1, 1)− t(1, 2) ≥ 0.

Finally, when p(2, π, ξ) ∈ C(δ) the logic is the same, substituting M in (28) by M ′. □

E THREE EXAMPLES

E.1 Calculations for the Binomial Signal Example in §4

We compute the value of the strategy in §4. For public beliefs π ≥ π3, the planner takes

action 2 forever, and so v(π) = 2π − 1. Symmetrically, v(π) = 1 − 2π for all π ≤ 1 − π3.

By symmetry around π = 1/2, the value function is constant at v(1/2) on [1− π1, π1].

Starting at any public belief π ∈ [π2, π3), a high signal results in a continuation π > π3

34The intuitive pivot mechanism has an interesting implication we pursue below. Bergemann and
Välimäki (2010) focus on flow marginal contribution. But in our case, each agent enters just once.
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Figure 3: Cascade Set Shrinks in δ. This plots the value function v(π) in the binomial
signal example, for discount factor δ = 1/2 and signals σ0 = 1/3 < 2/3 = σ1. The cascade
set [π3, 1] is smaller than with discount factor δ = 0, since π3 = 18/25 > 2/3 = σ1.

while a low signal leads to public beliefs in [1− π1, π1], where v(π) ≡ 1/2. By recursion,

v(π) = [πσ1+(1−π)σ0](2r(π, σ1)− 1)+ [πσ0+(1−π)σ1][(1− δ)(1− 2r(π, σ0))+ δv(1/2)].

Since π2 < σ1 < π3, this formula for v obtains at π = σ1. But by symmetry, v(1/2) =

(1−δ)(2σ1−1)+δv(σ1), namely, the myopic payoff plus the discounted continuation value.

Solving these two equations, v(1/2) = (2σ1 − 1)/(1− 2δ2σ0σ1).

The display formula for v at π = π3 and v(π3) = 2π3 − 1 yield (9). Figure 3 plots v.

E.2 An Example of Actions in Non-Natural Order

To illustrate a non-natural action order asserted in §5, consider signal densities fH(σ) =

σf(σ) and fL(σ) = (1 − σ)f(σ) on (0, 4/7), where f(σ) = 78σ6/47. Let action a = 1, 2

have payoff 2a− 3 in state H and 3− 2a in state L, reflecting payoffs ±1 when the action

matches/mismatches the state. Choose a high discount factor δ = 0.95.

Figure 4 depicts the numerically calculated private posterior belief threshold θ(π). For

public beliefs π ∈ (.3, .4) ⊂ (0, 3/7), the optimal action order is reversed: action 1 is taken

at high signals σ, and action 2 at low signals σ.

To understand this reversion, consider the alternative of switching the two actions,

holding fixed the threshold. This switch yields the same information, as it maintains the

same chances for the two continuation beliefs. From (4), it gives no planner gain when

ψ(2, π, ξ)(2p(2, π, ξ)− 1) + ψ(1, π, ξ)(1− 2p(1, π, ξ))

> ψ(1, π, ξ)(2p(1, π, ξ)− 1) + ψ(2, π, ξ)(1− 2p(2, π, ξ))
(29)
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Figure 4: Inverted Action Ordering. The optimal posterior belief threshold θ(π).

Using Bayes’ rule, p(a, π, ξ) = πψ(a,H, ξ)/ψ(a, π, ξ), this inequality holds when ψ(1, π, ξ)−
ψ(2, π, ξ) > 2π(ψ(1, H, ξ) − ψ(2, H, ξ)). Inequality (29) holds at low π, as the example

shows, when the reversed order takes action 1 for a relatively large set of high signals. □
Note that in this example, the last agent using his own information may take action 2

and push the public belief into the cascade set for action 1. Agents optimally herding on

action 1 thus need not follow the lead of the last agent who used private information.

E.3 The Role of Posterior Monotonicity in Contrarianism

We show by an example that the posterior monotonicity property (Lemma 4) is necessary

for contrarianism in Proposition 3 when the convex value function v can be chosen freely

(see footnote 27). We use a version of the two-period professor-student example with

δ = 1 in §6.1 to show the principle. The student has three actions available, while the

professor has two actions taken in the natural order. The student gets no private signal.

The professor’s signal is described by the conditional density g(ρ|π). This signal structure
violates posterior monotonicity for some interval, say [θ̂, 1]. Thus,

p′ ≡
∫ 1

θ̂
ρg(ρ|π′)dρ∫ 1

θ̂
g(ρ|π′)dρ

>

∫ 1

θ̂
ρg(ρ|π′′)dρ∫ 1

θ̂
g(ρ|π′′)dρ

≡ p′′

By this reversal, θ̂ must lie strictly inside the posterior belief supports at π′, π′′, so p′′ > θ̂.

Figure 5 illustrates the convex value function that we construct for the example. First
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Figure 5: Necessity Principle. The student’s value function for §E.3.

choose an arbitrary θ23 ∈ (p′′, p′). For any ε > 0, the convex function v̂(p|ε) consists of

three linear segments ℓ1, ℓ2, ℓ3(ε). Segments ℓ1, ℓ2 intersect at θ̂, while ℓ2, ℓ3(ε) intersect at

θ23. ℓ2 is steeper than ℓ1, and the slope of ℓ3 is ε > 0 higher than ℓ2. The intersection of

the extended line segments ℓ1, ℓ3(ε) is denoted θ13(ε).

We will show that when ε > 0 is small enough, θ̂ is the unique optimal threshold at

belief π′′, while only the strictly higher θ13(ε) and θ23 are candidates for optimal thresholds

at the lower belief π′. In either case, contrarianism fails.

Observe that the three kink points θ̂, θ12, θ23(ε) describe the only candidates for optimal

policies. By construction, they are the only ones that solve for index indifference — given

discount factor δ = 1, only the tangents to the value function matter. It remains to check

suboptimality of a cascade policy, whereby the posterior is the prior. But the interior

threshold θ̂ gives strictly more than v̂(π|0) at π = π′, π′′, due to the kink at θ̂.

Consider belief π′. The first order condition fails at θ̂ for any ε > 0, as the tangent at

the upper posterior p′ is ℓ3. So the optimal posterior cut-offs are among θ13(ε) and θ23.

Consider π′′. First, suppose we use the cutoff θ13(ε). As ε ↓ 0, the crossing point θ13

converges to θ̂, and the upper continuation belief converges to p′′. In other words, it is

eventually below θ23, since p
′′ < θ23. At that point, the tangents at the continuation beliefs

after π′′ are ℓ1 and ℓ2. These tangents intersect at θ̂, and therefore the first order condition

fails at θ13(ε). Second, suppose we use the cutoff θ23. Since θ23 ∈ (p′′, p′), it is strictly

inside the posterior belief support. Thus, the upper continuation lies in (θ23, 1], and the

lower one either lies in [0, θ̂) or [θ̂, θ23). If in [0, θ̂), the tangents at the continuation beliefs

are ℓ1 and ℓ3(ε). These cross at θ13(ε), and so the first order condition fails at θ23. If in

[θ̂, θ23), the first order condition holds. But as ε ↓ 0, the continuation value approaches

v̂(π′′|0). But as noted before, θ̂ yields a strictly higher continuation value than v̂(π′′|0). □
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