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RUSHES IN LARGE TIMING GAMES

BY AXEL ANDERSON, LONES SMITH, AND ANDREAS PARK1

We develop a continuum player timing game that subsumes standard wars of at-
trition and pre-emption games, and introduces a new rushes phenomenon. Payoffs are
continuous and single-peaked functions of the stopping time and stopping quantile. We
show that if payoffs are hump-shaped in the quantile, then a sudden “rush” of players
stops in any Nash or subgame perfect equilibrium.

Fear relaxes the first mover advantage in pre-emption games, asking that the least
quantile beat the average; greed relaxes the last mover advantage in wars of attrition,
asking just that the last quantile payoff exceed the average. With greed, play is ineffi-
ciently late: an accelerating war of attrition starting at optimal time, followed by a rush.
With fear, play is inefficiently early: a slowing pre-emption game, ending at the opti-
mal time, preceded by a rush. The theory predicts the length, duration, and intensity
of stopping, and the size and timing of rushes, and offers insights for many common
timing games.

KEYWORDS: Timing games, war of attrition, pre-emption game, tipping, bubbles,
sorority rushes, bank runs, population games.

1. INTRODUCTION

“Natura non facit saltus.”—Leibniz, Linnaeus, Darwin, and Marshall

MASS RUSHES PERIODICALLY GRIP MANY ECONOMIC LANDSCAPES—such as fraternity
rush week; the “unraveling” rushes of young doctors seeking hospital internships; the
bubble-bursting sales rushes ending asset price run-ups; land rushes for newly-opening
territory; bank runs by fearful depositors; and flight from an at-risk neighborhood. These
important topics are so far removed from one another that they are studied in wholly
disparate fields of economics. Yet by stepping back from their specific details, we capture
them in a simple unified model of timing games.

We venture a continuum of players, whose payoffs solely reflect the stopping time and
the fraction (quantile) of players who have already stopped. The fundamental nonstrate-
gic portion of the payoff is a deterministic function of time—when to cut the metaphor-
ical tree. A strategy is a stopping time distribution function on the positive reals. We
show that rushes arise in equilibrium—that is, positive measures of agents simultane-
ously stopping—whenever preferences over the stopping quantile are hump-shaped. We
explain the players’ rate of stopping, and the size and timing of rushes. Our theory also
agrees with many known results for these games.

Timing games have usually assumed a small number of identified players, as befits set-
tings like industrial organization. This paper introduces a tractable class of population
timing games (so-called “large games”) for anonymous environments like the motiva-
tional examples. We thus assume a continuum of homogeneous players, ensuring that
no single individual has any impact, and dispensing with strategic uncertainty. A large

1This follows on the manuscript “Greed, Fear, and Rushes” (2010) by Andreas and Lones, growing out of
joint work in Andreas’ 2004 Ph.D. thesis. It was presented at the 2008 Econometric Society Summer Meetings
at Northwestern and the 2009 ASSA meetings. While including some preliminary analysis from this earlier
work, the current paper reflects the joint work of Axel and Lones since 2012. We have profited from sem-
inar comments at Wisconsin, Western Ontario, Melbourne, Columbia, UCLA, Penn State, Boston College,
Simon Fraser University, the 2016 Miami Theory Conference, and Brown. We thank Faruk Gul for a helpful
observation about subgame perfection. This version reflects suggestions of the co-editor and three referees.
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population of players facilitates equilibrium coordination, since everyone can honestly
communicate intentions to surveys, etc. and learn from them—for the actions of no finite
set of individuals matters. We characterize the subgame perfect equilibria of the timing
game—thereby also ignoring any learning about exogenous uncertainty.

When the stopping c.d.f. is continuous in time, there is gradual play, as players slowly
stop; a rush occurs when a positive mass suddenly stops, and the c.d.f. jumps. We assume
no discontinuities, with payoffs smooth and hump-shaped in time, and smooth and single-
peaked in quantile. This simultaneously ensures a unique optimal harvest time for any
quantile, when fundamentals peak, and a unique optimal peak quantile for any time, when
stopping is strategically optimal.

Two opposing flavors of timing games have long been studied. A war of attrition en-
tails gradual play in which the passage of time is fundamentally harmful and strategically
beneficial. The reverse holds in a pre-emption game—the strategic and exogenous delay
incentives oppose, balancing the marginal costs and benefits of the passage of time. Con-
sequently, standard timing games assume a monotone increasing or decreasing quantile
response, so that the first or last mover is advantaged over all other quantiles. But in our
class of games, the peak quantile may be interior. The game exhibits greed if the very last
mover’s payoff exceeds that of the average quantile, and fear if the very first mover’s does.
So the standard war of attrition is the extreme case of greed, with later quantiles more
attractive than earlier ones. Likewise, the standard pre-emption game captures extreme
fear. Since payoffs are single-peaked in quantile, greed and fear are mutually exclusive—
in other words, a game either exhibits greed or fear or neither.

Gradual play requires constant equilibrium payoffs, balancing the fundamental and
quantile considerations. Nash equilibrium usually entails gradual play for all quantiles
in the well-studied case with a monotone quantile response (Proposition 1); however,
an initial rush happens here when the immediate stopping gains dominate fundamental
payoff growth. But when preferences are hump-shaped in quantile, a rush always occurs
(Proposition 2A). For if no mass of players ever stopped in a Nash equilibrium, then
the players’ indifference in gradual play would require that quantiles below the quantile
peak stop after the harvest time, and quantiles above the quantile peak stop before the
harvest time—an impossibility. Apropos our lead quotation, despite a continuously evolv-
ing model with an interior optimal stopping time and quantile, aggregate behavior must
jump. Notably, this jump is not driven by higher order belief subtleties, nor even Bayesian
updating. Rather, it simply reflects elementary best response forces in Nash equilibrium.

Ruling out faster than exponential growth, we assume that payoffs are log-concave
in time. This affords a sharp characterization of gradual play: Any gradual pre-emption
game ebbs to zero after the early rush, whereas any gradual war of attrition accelerates
from zero towards its rush crescendo (Proposition 3). This means that even inclusive of
the stopping rush, stopping rates wax after the harvest time, and wane before the harvest
time. To wit, wars of attrition intensify and pre-emption games taper off. We can thus
identify timing games from the stopping rate data.

Not only do rushes occur, but there are two cases: Absent fear, a war of attrition starts
at the harvest time, and is followed by a rush. Meanwhile, absent greed, a rush is followed
by a gradual pre-emption game that ends at the harvest time. So rushes occur inefficiently
early with fear, and inefficiently late with greed. Both types of equilibria arise with neither
greed nor fear. This yields a useful big picture insight for our examples: the rush occurs
before fundamentals peak in a pre-emption equilibrium, and after fundamentals peak in
a war of attrition equilibrium.

Rushes create timing coordination problems, and thereby a multiplicity of equilibria.
We focus on safe equilibria, a Nash refinement robust to slight timing mistakes. When
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the stopping payoff is monotone in the quantile, there exists a unique Nash equilibrium
(Proposition 1). But with hump-shaped quantile preferences, safety strictly refines Nash
equilibrium. Using a graphical apparatus, we depict all safe equilibria simply by intersect-
ing two curves: one locus equates the rush payoff and the adjacent quantile payoff, and
another locus imposes constant payoffs in gradual play. Proposition 4 then implies that
exactly one or two safe equilibria exist: absent fear, a war of attrition starting at the har-
vest time, immediately followed by a rush; and absent greed, a rush immediately followed
by a gradual pre-emption game ending at the harvest time.

We deduce in Section 7 comparative statics for safe equilibria using our graphical
framework. Any changes in fundamentals affect the timing, duration, and stopping rates
in gradual play, and rush size and timing. Proposition 5 considers a monotone ratio shift
in fundamentals postponing the harvest time, like a faster growing stock market bubble.
With payoff stakes so magnified, stopping rates in any war of attrition phase monoton-
ically attenuate before the swelling terminal rush. Less intuitively, stopping rates in any
pre-emption game intensify monotonically, but the initial rush shrinks. All told, an inverse
relation between stopping rates in gradual play and the rush size emerges—stopping rates
intensify as the rush size shrinks, despite the heightened payoff stakes.

Proposition 6 likewise considers an increase in greed. With log-supermodular payoff
shifts towards later quantiles, extreme fear eventually transitions into extreme greed. As
greed rises in the war of attrition equilibrium, or oppositely, as fear rises in the pre-
emption equilibrium, the gradual play phase lengthens; stopping rates fall and the rush
shrinks. So perhaps surprisingly, the rush is smaller and farther from the harvest time the
greater is the greed or the fear (Figure 7).

To prove how robust our results are, we revisit the equilibrium concept in Section 8.
Proposition 7 asserts that any Nash equilibrium can only differ from a safe equilibrium by
the size of the rush, and the length of the inaction phase that separates it from gradual
play. We depict this finding graphically, by adding a third locus to our earlier appara-
tus. Reversing gears in Appendix A, we refine equilibrium instead. For Nash equilibrium
often cannot capture dynamics; however, Proposition A.1 argues that any Nash equi-
librium is automatically subgame perfect if we suitably specify off-path play. The proof
that a Nash equilibrium obtains in each subgame exploits the players’ indifference over
stopping times. To address a different aspect of economic realism, we next dispense with
the assumption of homogeneous players. We argue in Proposition A.2 that with slightly
heterogeneous players, the resulting pure strategy subgame perfect equilibria closely ap-
proximate our equilibria. When players are ranked by a single crossing condition, we can
exploit the revelation principle to construct equilibria in strictly monotone pure strategies.

The paper concludes in Section 9 with our motivational applications, showing that our
model is easily specialized to capture the essentials of each context. In each case, we argue
that our comparative statics findings agree with established ones in richer models, but also
supply many new insights.

First consider the popular “tipping point” rushes. In Schelling’s 1969 Nobel-cited
model, one population group “A” responds myopically to thresholds on the number of
neighbors from group “B”. Our timing game avoids spatial thresholds. Rather, a tipping
rush occurs even though all A’s enjoy smooth single-peaked preferences over the mass
of type B’s in the neighborhood. Moreover, we predict that this rush occurs early, before
fundamentals dictate, due to the fear.2

2Meanwhile, tipping models owing to the “threshold” preferences of Granovette (1978) penalize early quan-
tiles, and so exhibit greed. Their rushes are late, as our theory predicts.
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We next turn to a famous and well-documented timing game that arises in matching
contexts. We create a reduced form model incorporating economic considerations found
in Roth and Xing (1994), who assumed a stigma of early matching. All told, fear rises
when hiring firms face a thinner market, while greed rises in stigma. Firms also value
learning about the caliber of the applicants. We find that matching rushes occur ineffi-
ciently early if the early matching stigma is not too great. By assuming that stigma reflects
recent matching outcomes, our model delivers the matching unraveling without appeal to
any tatonnement process (Niederle and Roth (2004)).

Next, consider two common market forces behind the sales rushes ending asset bubbles:
a desire for liquidity fosters fear, whereas a demand for superior relative performance
engenders greed. Since Abreu and Brunnermeier (2003)—also a large timing game—
ignores relative performance, a rush does not precede their pre-emption game. Their
bubble bursts when rational sales surpass a threshold. Like them, we, too, deduce a larger
and later bubble burst with lower interest rates. Our model also speaks to a different
puzzle: By conventional wisdom, the NASDAQ bubble burst in March 2000 after fun-
damentals peaked. For because our game no longer exhibits fear with enough relative
compensation, a sales rush after the harvest time is an equilibrium.

Our last application is bank runs. As in Diamond and Dybvig’s two-period model in
1983, a run occurs in our simple continuous time setting when too many depositors ineffi-
ciently withdraw before the harvest time. Here, payoffs monotonically fall in the quantile,
and the threat of a bank run is an example of alarm or panic. By Proposition 1, either a
slow pre-emption game arises or a rush occurs immediately. We predict that while a re-
serve ratio increase shrinks the bank run and delays the withdrawals, it surprisingly raises
the withdrawal rate during any pre-emption phase.

Literature Review

Applications aside, there is a large theory literature on timing games. Maynard Smith
(1974) formulated the war of attrition as a model of animal conflicts. Its biggest impact in
economics may be the all-pay auction literature (e.g., Krishna and Morgan (1997)). We
think the economic study of pre-emption games dates to Fudenberg, Gilbert, Stiglitz, and
Tirole (1983) and Fudenberg and Tirole (1985). Brunnermeier and Morgan (2010) and
Anderson, Friedman, and Oprea (2010) have experimentally tested it. Park and Smith
(2008) explored a finite player game with rushes and wars of attrition; however, slow pre-
emption games were impossible. Ours may be the first timing game with all three flavors
of timing game equilibria.

2. MODEL

There is a continuum of identical risk-neutral players i indexed on the unit interval
[0�1]. The measure Q(t) of players stopping at time τ ≤ t is the quantile function. At
time zero, each player decides independently on when to stop. To ensure pure strategies,
we assume that each player i ∈ [0�1] stops at time T(i) = inf{t ∈ R+|Q(t) ≥ i} ∈ [0�∞),
the generalized inverse distribution function of Q. It suffices to refer to players by their
quantile.

Payoffs are a function of stopping time t, called the fundamental, and the stopping
quantile q—capturing the anonymous strategic interaction. By Lebesgue’s decomposition
theorem, the c.d.f. Q is the sum of continuous portions, called gradual play, and atoms,
where Q jumps. The common stopping payoff is u(t�Q(t)) given gradual play at t, and is
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the average quantile payoff
∫ p

q
u(t�x)dx/(p− q) given a rush at t by quantiles [q�p], for

the quantiles p =Q(t) >Q(t−)= q.
A Nash equilibrium is a c.d.f. Q whose support contains only times that maximize stop-

ping payoffs. Two salient deviations address the vagueness of the phrases “immediately
before” or “immediately after” in the continuum: A player gains from pre-empting a time-
t > 0 rush of quantiles [q�p] if u(t�q) >

∫ p

q
u(t�x)dx/(p−q) and gains from post-empting

a time-t rush of quantiles [q�p] if u(t�p) >
∫ p

q
u(t�x)dx/(p− q). A time-0 rush cannot

be pre-empted.
While we explore Nash equilibria played by homogeneous players, we argue in Sec-

tion A that any such equilibrium is also subgame perfect; therefore, we need not assume
that stopping choices are irrevocably made at time 0. We show, a fortiori, in Section A.2
that each Nash equilibrium arises as a limit of purified strict subgame perfect equilibria
with slightly heterogeneous players. In other words, our analysis of “silent” timing games
fully captures the essence of dynamic games.

We assume that u(t�q) is C2, and for fixed q, is quasi-concave in t with a unique argmax,
the harvest time t∗(q). The payoff u(t�q) is either strictly monotone or log-concave in q,
with unique peak quantile q∗(t). We embed strategic interactions by assuming that u(t�q)
is log-submodular—for example, u(t�q) = π(t)v(q).3 Given log-submodular payoffs, the
proportionate gains u(t�q2)/u(t�q1) to postponing until a later quantile q2 > q1 are
weakly larger at earlier stopping times t. Relatedly, by Theorem 2.8.1 in Topkis (1998),
the harvest time t∗(q) is weakly decreasing in the quantile q, while the peak quantile q∗(t) is
weakly decreasing in t. To ensure a finite harvest time, waiting forever for the peak quantile
payoff is dominated by stopping in finite time:4

lim
s→∞

u
(
s� q∗(s)

)
< u(t�q) ∀(t� q)� (1)

3. MONOTONE PAYOFFS IN QUANTILE

In this section, we focus on standard timing games whose payoffs are monotone in the
quantile. Since players earn the same Nash payoff, indifference u(t�Q(t)) = w̄ prevails
for times t in any gradual play interval. Because the stopping quantile function is increas-
ing in time, the slope signs uq and ut are mismatched during any gradual play phase. So
two such phases are possible:

(a) Pre-emption phase: a connected open time interval of gradual play on which ut >
0 > uq, so that the passage of time is fundamentally beneficial but strategically costly.

(b) War of attrition phase: a connected open time interval of gradual play on which ut <
0 < uq, so that the passage of time is fundamentally harmful but strategically beneficial.

When uq > 0 always, each quantile has an absolute advantage over all earlier ones:
u(t�q′) > u(t�q) for all q′ > q and t ≥ 0. In this case, rushes cannot occur, since players
gain from post-empting any rush. So the only possibility is a pure war of attrition, namely,
gradual play for all quantiles of the form (b). In fact, gradual play must begin at the
harvest time t∗(0) for quantile 0. For if gradual play starts later, then quantile 0 could
profitably deviate to t∗(0), while if it starts earlier, payoff indifference is impossible, since

3Almost all of our results only require the weaker complementary condition that u(t�q) be quasi-
submodular, so that u(tL�qL)≥ (>)u(tH�qL) implies u(tL�qH)≥ (>)u(tH�qH), for all tH ≥ tL and qH ≥ qL.

4Indeed, t∗(0) is finite since lims→∞ u(s�0) ≤ lims→∞ u(s�q∗(s)) < u(t∗(0)�0), where the strict inequality
is (1) evaluated at (t� q) = (t∗(0)�0). But then, t∗(q) is finite for all q, since t∗(q) is weakly decreasing.
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FIGURE 1.—Monotone Timing Games. At left, uq > 0 and so gradual play follows the war of attrition locus
ΓW . When uq < 0, there are types of two pre-emption games. If u(0�0) ≤ u(t∗(1)�1), then play is wholly
gradual, as stopping entirely follows ΓP (middle). If u(0�0) > u(t∗(1)�1), as with alarm and panic, then entirely
gradual play cannot arise as the indifference curve ΓP crosses the q-axis at q > 0. Given alarm, a time-0 rush
of size q0 solves V0(q0�0) = u(1� t∗(1)), followed by an inaction period along the horizontal line, until time t0
where u(q0� t0) = u(1� t∗(1)), and then gradual play along ΓP (right). Proposition 3 proves that ΓW is convex
and ΓP is concave, as drawn.

both ut > 0 and uq > 0. Since the Nash payoff is u(t∗(0)�0), equilibrium play follows a
war of attrition gradual play locus ΓW that must obey the implicit equation:

u
(
t� ΓW (t)

) = u
(
t∗(0)�0

)
� (2)

Similarly, when uq < 0 always, each quantile has an absolute advantage over later quan-
tiles: u(t�q′) > u(t�q) for all q′ < q and t ≥ 0. This is a pure pre-emption game. In this case,
any gradual play interval ends at harvest time t∗(1). By parallel logic to the war of attri-
tion case, the equilibrium value is u(t∗(1)�1). Thus, during gradual play, Q must satisfy
the pre-emption gradual play locus ΓP :

u
(
t� ΓP(t)

) = u
(
t∗(1)�1

)
� (3)

In Section C.1, we prove the following characterization of the gradual play loci ΓW and
ΓP for the case of monotone payoffs u, and the later case with non-monotone payoffs u
(seen in Figure 1).

LEMMA 1—Gradual Play Loci: If q∗(·) > 0, there is a finite tW > t∗(0) with ΓW :
[t∗(0)� tW ] 
→ [0� q∗(tW )] well-defined, continuous, and increasing. If q∗(·) < 1, there ex-
ists tP ∈ [0� t∗(1)) with ΓP well-defined, continuous and increasing on [tP� t∗(1)], where
ΓP([tP� t∗(1)]) = [q∗(tP)�1] when u(0� q∗(0)) ≤ u(t∗(1)�1), and otherwise ΓP([0� t∗(1)]) =
[q̄�1], for some q̄ ∈ (q∗(0)�1].

When uq < 0, we can no longer a priori rule out rushes. A rush at time t > 0 is im-
possible, since players would gain by pre-empting it. But since a time-zero rush cannot be
pre-empted, and any gradual play phase ends at the harvest time t∗(1), equilibrium entails
either a unit mass rush (i.e., of all quantiles) at t = 0 or gradual play at t∗(1). In the first
case, quantile q = 1 would secure payoff u(t∗(1)�1) by deviating, while u(t∗(1)�1) is the
Nash payoff in the second case. So no rush can ever occur if stopping as quantile q = 1
at time t∗(1) dominates stopping in any time-zero rush. In terms of the running average
payoff function, V0(t� q) ≡ q−1

∫ q

0 u(t�x)dx, no rush can ever occur when:

u
(
t∗(1)�1

) ≥ max
q

V0(0� q)� (4)
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Inequality (4) may fail a little—there is alarm if V0(0�1) < u(t∗(1)�1) < maxq V0(0� q).
Or it may fail a lot: panic arises for lower harvest time payoffs: u(t∗(1)�1) ≤ V0(0�1).
Since uq < 0, panic implies V0(0� q) > u(t∗(1)�1) for all q < 1, ruling out all but a unit
mass rush at time zero; any equilibrium with gradual play has Nash payoff u(t∗(1)�1).
Given alarm, equilibrium includes a size q0 < 1 alarm rush at t = 0 obeying V0(0� q0) =
u(t∗(1)�1). For wholly gradual play is impossible, as stopping at time 0 yields payoff
u(0�0) = maxq V0(0� q), exceeding the Nash payoff u(t∗(1)�1). Also, a unit mass rush is
not an equilibrium, since a rush must occur at time 0, but V0(0�1) < u(t∗(1)�1) with alarm.
Last, as claimed, q0 obeys V0(0� q0)= u(t∗(1)�1) in any time 0 rush of size q0 < 1, for play-
ers must be indifferent between the rush and later gradual play. Since V0(0� q0) > u(0� q0)
when uq < 0, post-empting the time-zero rush is strictly dominated. This forces an inaction
phase—a time interval [t1� t2] with no stopping: 0 <Q(t1)=Q(t2) < 1.

We now offer a complete characterization of equilibria, as illustrated in Figure 1. Using
Lemma 1, we construct the unique quantile function in Appendices C.2 and C.3.

PROPOSITION 1: Assume the stopping payoff is strictly monotone in quantile. There is a
unique Nash equilibrium. If uq > 0, a war of attrition for all quantiles starts at t∗(0). If
uq < 0:

(a) with neither alarm nor panic, there is a pre-emption game for all quantiles ending at
t∗(1);

(b) with alarm, there is a time-0 rush of size q0 obeying V0(q0�0)= u(1� t∗(1)), followed by
an inaction phase, and then a pre-emption game ending at t∗(1);

(c) with panic, there is a unit mass rush at time t = 0.

4. GREED, FEAR, AND NON-MONOTONE PAYOFFS IN QUANTILE

This section characterizes Nash equilibria when the stopping payoff has an interior peak
quantile, which is our key novelty. In Section 3, an equilibrium rush was only possible at
time t = 0. With an interior peak quantile, we can have either an initial rush at time t ≥ 0
of size q0 = Q(t), or a terminal rush at time t > 0 of size q1 = 1 − Q(t−). We introduce
two types of Nash equilibria:

• A pre-emption equilibrium includes exactly one pre-emption phase, necessarily
ending at harvest time t∗(1), preceded by at most one rush, necessarily an initial rush.

• A war of attrition equilibrium involves at most one rush, necessarily a terminal rush,
preceded by exactly one war of attrition starting at harvest time t∗(0).
We next formalize our core insight that purely gradual play is impossible when preferences
are hump-shaped in time and quantile, for that requires that early quantiles stop after
later quantiles.

PROPOSITION 2A—Necessity: If the peak quantile q∗ is inside (0�1), then any Nash equi-
librium includes exactly one rush, and is either: (a) a pre-emption equilibrium; (b) a war of
attrition equilibrium; or (c) a unit mass rush.

PROOF:
Step 1: Gradual Play Boundary Conditions. We claim that whenever stopping begins

with a gradual play phase, it begins at t∗(0), and whenever stopping ends with a grad-
ual play phase, it ends at t∗(1). To see this, assume stopping begins with gradual play
at t0 > t∗(0). Then quantile 0 can strictly gain by deviating to t∗(0). Next, if t0 < t∗(0),
then ut(t0�0) > 0, and local indifference requires uq(t0�0) < 0. But this violates our as-
sumption of an interior peak quantile q∗(t0) > 0, and the quasi-concavity of u. Likewise,
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FIGURE 2.—Fear and Greed. Payoffs at any time t cannot exhibit both greed and fear, with first and last
quantile factors better than average, but might exhibit neither (middle panel).

gradual play cannot end at time t1 �= t∗(1). For if t1 < t∗(1), then quantile q = 1 profits
from deviating to t∗(1). But if t1 > t∗(1), then ut(t1�1) < 0, and local indifference requires
uq(t1�1) > 0, violating q∗(t1) < 1.

Step 2: Exactly One Rush. For a contradiction, assume no rush, that is, all quantiles stop
in gradual play. By Step 0, stopping begins with gradual play at t∗(0) and ends with gradual
play at t∗(1). That is, Q(t∗(0))= 0 < 1 =Q(t∗(1)). But this violates t∗(q) weakly decreas-
ing.

Next, assume a Nash equilibrium Q with rushes at times t1 and t2 > t1. Then Q(t2−) <
q∗(t2), or else players can strictly gain from pre-empting the rush, since u falls in q after
the peak quantile. Likewise, Q(t1) > q∗(t1), or there is a strict gain from post-empting
the rush at t1. Altogether, q∗(t1) < Q(t1) ≤ Q(t2−) < q∗(t2), contradicting q∗(t) weakly
decreasing.

Step 3: No Interior Quantile Rush. A rush at a quantile q ∈ (0�1) cannot occur at time 0.
For a contradiction, assume a rush at time t > 0 at an interior quantile q = Q(t) with
0 <Q(t−) < Q(t) < 1. Since it is the unique rush, all other quantiles must stop in gradual
play. And the last logic in Step 1 implies that gradual play begins at time t∗(0) and ends
at t∗(1), so that Q(t∗(0)) = 0 < Q(t∗(1)) = 1. This violates Q weakly increasing and t∗

weakly decreasing.
Step 4: At Most One Gradual Play Phase. Assume instead gradual play on two intervals

[t1� t2] and [t3� t4], with t2 < t3. Then Q(t2) = Q(t3) by Step 2. By Steps 1–3, either stop-
ping begins with gradual play at t∗(0) and ends in a rush, or gradual play ending at t∗(1)
follows a rush. In the first case, t1 ≥ t∗(0), and since t∗ is non-increasing, ut(t�Q(t)) < 0
for all t > t1 ≥ t∗(0) ≥ t∗(Q(t)). But then u(t2�Q(t2)) > u(t3�Q(t3)), contradicting indif-
ference between t2 and t3. In the second case, t4 ≤ t∗(1), and since t∗ is non-increasing,
ut(t�Q(t)) > 0 for all t < t4. So u(t2�Q(t2)) < u(t3�Q(t3)), contradicting indifference be-
tween t2 and t3. Q.E.D.

To best understand equilibria, we now generalize the first and last mover advantage
notions (see Figure 2).

DEFINITION 1: There is fear at time t if u(t�0)≥ ∫ 1
0 u(t�x)dx and greed at t if u(t�1)≥∫ 1

0 u(t�x)dx.

Fear relaxes the first mover advantage (uq < 0), asking that the least quantile beat the
average; greed relaxes the last mover advantage (uq > 0), asking just that the last quantile
payoff exceed the average. Naturally, strict fear and strict greed entail strict inequalities.
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FIGURE 3.—Rushes Include the Quantile Peak. The time-t peak rush maximizes the average rush payoff
Vi(t� q), and so equates the average and adjacent marginal payoffs Vi(t� q) and u(t�q).

Since u is single-peaked in the quantile q, greed and fear are mutually exclusive at the same
time t.

We define the early and late peak rush loci Πi(t)≡ arg maxq Vi(t� q) for i = 0�1, as seen
in Figure 3.5 Whenever the peak quantile is inside (0�1), the running average integral Vi

coincides with its marginal u at the peak of the average. So

u
(
t�Πi(t)

) = Vi

(
t�Πi(t)

)
� (5)

In addition to the gradual play loci in Lemma 1, we now describe the associated peak rush
loci.

LEMMA 2: The loci Πi(t) are unique, continuous, and non-increasing.6 Absent greed at
time t∗(1), Π0(t) ∈ (q∗(t)�1) for t ≤ t∗(1). Absent fear at time t∗(0), Π1(t) ∈ (0� q∗(t)) for
t ≥ t∗(0).

The proof is in Section C.1. Proposition 2A rules out all but a small set of quantile func-
tions as possible equilibria. We now provide sufficient conditions for when the remaining
quantile functions are indeed equilibria. So together, Propositions 2A and 2B completely
characterize the equilibrium set.

PROPOSITION 2B: A Nash equilibrium exists if the stopping payoff has an interior peak
quantile:

(a) A pre-emption equilibrium exists if and only if there is no greed at time t∗(1) and no
panic.

(b) A war of attrition equilibrium exists if and only if there is no fear at time t∗(0).
(c) A unit mass rush at time t = 0 is an equilibrium if and only if there is panic.
(d) A unit mass rush at time t > 0 is an equilibrium if and only if there is no fear and

no greed at time t and provided: (i) V0(t�1) ≥ u(t∗(0)�0) if t ≥ t∗(0); or (ii) V0(t�1) ≥
u(t∗(1)�1) if t ≤ t∗(1).

5The argmax in q of Vi is unique for i = 0�1 because each Vi is a running average integral of a single-peaked
and log-concave, and therefore strictly quasi-concave, function u(t� ·) of q.

6Each locus Πi(t) is decreasing when u(t�q) is strictly log-submodular. But in the log-modular (or multi-
plicative) case that we assume in the example in Section 9.2, the locus Πi(t) is constant in time t.
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PROOF:
Step 1: Parts (a) and (b). Appendix C.4 proves part (a); we prove part (b) here. We

show that fear at time t∗(0) precludes a war of attrition equilibrium. By Proposition 2A,
stopping in such an equilibrium would begin at t∗(0) and have payoff w̄ = u(t∗(0)�0).
Since t∗(q) is non-increasing, ut(t� q) < 0 if t > t∗(0). Thus, the Nash payoff falls short of
the average payoff w̄ <

∫ 1
0 u(t∗(0)�x)dx. So u(t∗(0)�0) = w̄ <

∫ 1
0 u(t∗(0)�x)dx, contra-

dicting fear at t∗(0).
Assume no fear at time t∗(0). We construct a war of attrition equilibrium. Since the

peak quantile q∗ ∈ (0�1), for some time tW > t∗(0), the war of attrition gradual play lo-
cus ΓW (t) is a continuously increasing map of [t∗(0)� tW ] onto [0� q∗(tW )], by Lemma 1.
By Lemma 2, the late peak rush locus Π1(t) is continuous and non-increasing from
Π1(t

∗(0)) > 0 = ΓW (t
∗(0)) to Π1(tW ) < q∗(tW ) = ΓW (tW ). So Π1(t1) = ΓW (t1) ∈ (0� q∗(t1))

for a unique time t1 ∈ (t∗(0)� tW ).
Finishing the proof of part (b), we now prove that the following quantile function is a

Nash equilibrium: Q(t) = 0 for t < t∗(0), Q(t) = ΓW (t) on [t∗(0)� t1), and Q(t) = 1 for
t ≥ t1. By construction, payoffs are constant along the gradual play locus ΓW (t), while (5)
holds at the terminal rush time t1 since Π1(t1) ∈ (0�1), that is, the terminal rush payoff
equals the gradual play payoff. This is an equilibrium, since no one can gain from stopping
before t∗(0). For Q(t) = 0 at such times, and t∗(0) is the harvest time for quantile 0. And
no one can gain from stopping after the rush at t1, since t1 > t∗(0) ≥ t∗(1), yielding a
falling payoff ut(t�1) < 0 for all t ≥ t1.

Step 2: Parts (c) and (d). The payoff in a time-t unit mass rush is V0(t�1). The most
profitable deviation from a unit mass rush at time t = 0 is to the harvest time t∗(1)
with payoff u(t∗(1)�1). So a unit mass rush at time t = 0 is an equilibrium iff V0(0�1) ≥
u(t∗(1)�1), that is, panic. Consider a unit mass rush at time t > 0, as in part (d). With
greed at time t, players gain from post-empting a unit mass rush at time t, while pre-
empting the rush is a profitable deviation given fear at time t. Conditions (i) and (ii)
ensure that the best deviation is unprofitable.

Step 3: A Nash Equilibrium Exists. Assume no premise for (a)–(d) holds. Define

f (t)=
∫ 1

0

[
u(t�x)/u(t�0)

]
dx and g(t) =

∫ 1

0

[
u(t�x)/u(t�1)

]
dx� (6)

By (c), there is no panic, and so greed obtains at time t∗(1) by (a) and (b), and fear at t∗(0),
that is, g(t∗(1)) ≤ 1 and f (t∗(0)) ≤ 1. As greed and fear are mutually exclusive, there is
no fear at t∗(1) and no greed at t∗(0), that is, f (t∗(1)) > 1 and g(t∗(0)) > 1. We conclude
t∗(1) �= t∗(0). Then t∗(1) < t∗(0), as t∗(q) is non-increasing. So f (t∗(1)) > 1 ≥ f (t∗(0))
and g(t∗(1))≤ 1 < g(t∗(0)). By continuity of f�g, there exists t̄ ∈ [t∗(1)� t∗(0)] with f (t̄) =
g(t̄). As greed and fear are mutually exclusive, f (t̄)� g(t̄) > 1. So there is neither greed
nor fear at t̄, and conditions (i) and (ii) of (d) vacuously hold as t∗(1) < t̄ < t∗(0), a unit
mass rush at t̄ is an equilibrium. Q.E.D.

We now deduce a lower bound on the size of equilibrium rushes using Propositions 2A
and 2B. Since players only stop in a rush if gradual play is not more profitable, we have
Vi(t� q) ≥ u(t�q), for i = 0�1. Given how marginals u and the averages V0� V1 interact (see
Figure 3), we have the following:

COROLLARY 1: The early rush has size at least Π0, and the late rush has size at least 1−Π1.
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5. STOPPING RATES IN GRADUAL PLAY

In this section, we characterize stopping rates during any equilibrium gradual play
phase. Let Q be a Nash equilibrium with payoff w̄. By Propositions 1 and 2A, Q includes
either a war of attrition phase or a pre-emption phase, but not both. Hence, uq(t� q) has
a constant nonzero sign on the gradual play time interval, and so u(t�q) can be inverted,
yielding Q(t) = u−1(w̄|t) in this interval.7 As the inverse of a C2 function, the quantile
function Q must be C2 on the gradual play interval. Easily, differentiating the indifference
condition w̄ = u(t�Q(t)) yields the fundamental differential equation:

uq

(
t�Q(t)

)
Q′(t)+ ut

(
t�Q(t)

) = 0� (7)

PROPOSITION 3—Stopping During Gradual Play: Assume the payoff function is log-
concave in t. In any Nash equilibrium, the stopping rate Q′(t) is strictly increasing in time
from zero during a war of attrition phase, and decreasing down to zero during a pre-emption
game phase.

PROOF: Wars of attrition begin at t∗(0) and pre-emption games end at t∗(1), by Propo-
sitions 1 and 2A. Since ut(t

∗(q)�q) = 0 at the harvest time, the first term of (7) vanishes at
the start of a war of attrition and end of a pre-emption game. Consequently, Q′(t∗(0))= 0
and Q′(t∗(1))= 0 in these two cases, since uq �= 0 at the two quantile extremes q = 0�1.

Since Q′′ exists, and u(t�q) is log-concave in t and log-submodular, as ut ≷ 0 ≷ uq, we
have

[
logQ′(t)

]′ = [
log(−ut/uq)

]′ = [
log(±ut/u)

]
t
− [

log(∓uq/u)
]
t
≥ 0 − 0� Q.E.D.

We see that stopping waxes in war of attrition equilibria, climaxing in a rush when pay-
offs are not monotone in quantile, whereas pre-emption equilibria begin with a rush in
this hump-shaped case, and continue into a waning gradual play phase. So wars of attri-
tion intensify towards a rush, whereas pre-emption games taper off from a rush. Figure 4
reflects these facts, since the stopping indifference curve is (i) concave after the initial rush
during any pre-emption equilibrium, and (ii) convex prior to the terminal rush during any
war of attrition equilibrium.

6. SAFE EQUILIBRIA

Proposition 1 asserts a unique equilibrium when the stopping payoff is monotone in
quantiles. With a non-monotone stopping payoff, equilibrium need not be unique. This
section refines the set of Nash equilibria with a trembling argument, finding that at most
one pre-emption equilibrium and at most one war of attrition equilibrium survives this
refinement. The surviving equilibrium is natural, and lends itself most naturally to com-
parative statics. But in Section 8, we argue that these comparative statics findings apply
to the whole Nash equilibrium set. So this refinement serves a dual pedagogical purpose,
and our theory is ultimately robust to all Nash equilibria.

Now, our base model assumes perfectly timed actions. But one might venture that even
the best timing technology is imperfect. If so, agents may be wary of equilibria in which
tiny timing mistakes incur significant payoff losses—as happens when there are rushes.

7A proof by the analytic implicit function theorem is also possible, but requires attention to different details.
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FIGURE 4.—Safe Equilibria With Hump-shaped Payoffs. In the safe war of attrition equilibrium (left), grad-
ual play begins at t∗(0), following the upward sloping gradual play locus (2), and ends in a terminal rush of
quantiles [q1�1] at time t1 where the loci cross. In the pre-emption equilibrium without alarm (middle), an ini-
tial rush q0 at time t0 occurs where the upward sloping gradual play locus (3) intersects the downward sloping
peak rush locus (5). Gradual play in the pre-emption phase then follows the gradual play locus ΓP . With alarm
(right), the alarm rush q0 at t = 0 is followed by an inaction phase (0� t0), and then a pre-emption game follows
ΓP . With monotone payoffs, the peak rush loci are fixed at Π1 ≡ 1 at left, and Π0 ≡ 0 in the middle/right.

Let w(t;Q)≡ u(t�Q(t)) be the payoff to stopping at time t ≥ 0 given c.d.f. Q. The ε-safe
payoff at t is therefore

wε(t;Q)= max
〈

inf
max(t−ε�0)≤s<t

w(s;Q)� inf
s∈[t�t+ε)

w(s;Q)
〉
�

This can be understood as the minmax payoff in the richer model when individuals
have access to two different ε-accurate timing technologies: One clock never runs late,
and one never runs early. A Nash equilibrium Q is safe if there exists ε̄ > 0 so that
wε(t;Q) = w(t;Q) for all t in the support of Q, for all ε ∈ (0� ε̄). We prove the following
characterization result in Appendix C.5.

LEMMA 3: A Nash equilibrium Q is safe if and only if its support is either a single non-
empty interval of time or the union of time t = 0 and such a later time interval.

In light of Propositions 1, 2A, and 2B, we see that safety rules out unit mass rushes at
strictly positive times. More subtly, it precludes wars of attrition with a period of inac-
tion preceding the terminal rush, or pre-emption equilibria with an initial rush at t > 0
followed by a period of inaction. In the case of fear at the harvest time t∗(0), the war of
attrition equilibrium in Step 2 of the proof of Proposition 2B is safe, since it involves no
period of inaction. Because we proved that the peak rush locus Π1 intersects the gradual
play locus ΓW at a unique time t1, it is the unique safe war of attrition equilibrium. Like-
wise, the proof for the pre-emption case in Section C.4 separately constructs the unique
safe pre-emption equilibrium given no greed at t∗(1) for the cases of alarm, and neither
alarm nor panic. In addition, unit mass rushes at time t = 0 are safe. Summarizing, we
have the following:

PROPOSITION 4: Absent fear at the harvest time t∗(0), a unique safe war of attrition equi-
librium exists. Absent greed at time t∗(1), a unique safe equilibrium with an initial rush exists:

(a) with neither alarm nor panic, a pre-emption equilibrium with a rush at time t > 0;
(b) with alarm, a rush at t = 0 followed by an inaction phase and then a pre-emption

phase;
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(c) with panic, a unit mass rush at time t = 0.
With fear at t∗(0) and greed at t∗(1), Nash equilibria are unit mass rushes in [t∗(1)� t∗(0)].

Now, t∗(1)≤ t∗(0) since t∗(q) is weakly decreasing. Since we cannot have greed and fear
at the same time t, safe equilibria always exist when t∗(1) = t∗(0) by Proposition 4—as
with multiplicative payoffs u(t�q) = π(t)v(q). But assume strictly log-submodular pref-
erences. Then t∗(1) < t∗(0). Recalling (6), fear at time t is f (t) ≤ 1 and greed at time t
is g(t) ≤ 1. Both inequalities cannot hold at any t. But since g is increasing, and f de-
creasing, we can have g(t∗(1))≤ 1 < f(t∗(1)), that is, greed at t∗(1) and not fear at t∗(1),
and also f (t∗(0))≤ 1 < g(t∗(0)), that is, fear at t∗(0) and not greed at t∗(0). This scenario
is not ruled out by our assumptions,8 whereupon no safe equilibrium exists by Proposi-
tion 4, since fear at t∗(0) rules out a safe war of attrition, and greed at t∗(1) rules out a
safe equilibrium with an initial rush. In this case, absent safe equilibria, by Proposition 2A
and Step 3 in the proof of Proposition 2B, the only Nash equilibria entail a unit mass rush
at any time t ∈ [t∗(1)� t∗(0)]. Safe equilibria always exist when there is not greed for all times,
or not fear for all times, as holds in our examples in Section 9.

With this result, we see that panic and alarm have the same implications as in the mono-
tone decreasing case, uq < 0, analyzed by Proposition 1. In contrast, when neither panic
nor alarm obtains, safe equilibria must include both a rush and a gradual play phase and
no inaction: either an initial rush at 0 < t0 < t∗(1), followed by a pre-emption phase on
[t0� t∗(1)], or a war of attrition phase on [t∗(0)� t1] ending in a terminal rush at t1. In each
case, the safe equilibrium is fully determined by the gradual play locus and peak rush
locus (Figure 4).

7. PREDICTIONS ABOUT CHANGES IN GRADUAL PLAY AND RUSHES

This section explores how the equilibria evolve as: (a) fundamentals adjust that post-
pone the harvest time, or (b) the strategic interaction alters to change quantile rewards,
increasing fear or greed. Index stopping payoffs as u(t�q|ϕ) in C2, where ϕ ∈ R. To iso-
late the effect of time on payoffs, let u(t�q|ϕ) be strictly log-supermodular in (t�ϕ) and
log-modular in (q�ϕ). Then greater ϕ raises the marginal of payoffs in time, but leaves
unaffected the marginal in quantile. An increase in ϕ is a harvest time delay, since t∗(q|ϕ)
rises in ϕ, by log-supermodularity in (t�ϕ).

We next argue that a harvest time delay postpones stopping, but it intensifies stopping
rates once gradual play starts in a pre-emption game. We also find an inverse relation
between stopping rates and rush size, with higher stopping rates during gradual play as-
sociated to smaller rushes.

PROPOSITION 5—Harvest Time Delay: Let QH and QL be safe equilibria for ϕH > ϕL.
(a) If QH�QL are wars of attrition, then QH(t) ≤ QL(t); the rush for QH is later and no

smaller; gradual play for QH starts later; and Q′
H(t) < Q′

L(t) in the common gradual play
interval.

(b) If QH�QL are pre-emption equilibria, QH(t) ≤ QL(t); the rush for QH is later and
no larger; gradual play for QH ends later; and Q′

H(t) > Q′
L(t) in the common gradual play

interval.

8A payoff function with greed at t∗(1) = 1/4 and fear at t∗(0) = 1 is u(t�q) = (1 + q)(1 + 4t)e−(1+2q)t .
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FIGURE 5.—Harvest Time Delay. The gradual play locus shifts down in ϕ. In the safe war of attrition (left):
A larger terminal rush occurs later, while stopping rates fall during gradual play. In the safe pre-emption
game without alarm (middle): A smaller initial rush occurs later and stopping rates rise during gradual play.
With alarm (right), the rush occurs at t = 0, but shrinks, gradual play ends later, and stopping rates rise. With
monotone payoffs, the peak rush loci are fixed at Π1 ≡ 1 at left, and Π0 ≡ 0 in the middle/right; the graphs are
otherwise unchanged.

PROOF: We focus on the safe pre-emption equilibrium with an interior peak quantile,
proving that the pre-emption gradual play locus ΓP(t) shifts down and steepens with a
harvest time delay, but the peak rush locus Π0(t) is unchanged, as in Figure 5. The logic
for the war of attrition case is symmetric. The initial rush q0 falls for the safe pre-emption
equilibrium with alarm (Lemma C.2).

Since the marginal payoff u is log-modular in (t�ϕ), so, too, is the average. The peak
rush locus Π0(t) ∈ arg maxq V0(t� q|ϕ) is then constant in ϕ. Now, rewrite the pre-emption
gradual play locus (3) as

u
(
t� ΓP(t)|ϕ

)
u(t�1|ϕ) = u

(
t∗(1|ϕ)�1|ϕ)
u(t�1|ϕ) � (8)

The LHS of (8) falls in ΓP , since uq < 0 during a pre-emption game, and is constant
in ϕ, by log-modularity of u in (q�ϕ). Log-differentiating the RHS in ϕ, and using the
Envelope theorem:

uϕ

(
t∗(1|ϕ)�1|ϕ)

u
(
t∗(1|ϕ)�1|ϕ) − uϕ(t�1|ϕ)

u(t�1|ϕ) > 0�

since u is log-supermodular in (t�ϕ) and t < t∗(1|ϕ) during a pre-emption game. Since
the RHS of (8) increases in ϕ and the LHS decreases in ΓP , the gradual play locus ΓP(t)
obeys ∂ΓP/∂ϕ < 0. Next, differentiate the gradual play locus in (3) in t and ϕ, to get

∂Γ ′
P(t)

∂ϕ
= −

[(
∂[ut/u]
∂ϕ

+ ∂[ut/u]
∂ΓP

∂ΓP

∂ϕ

)
u

uq

+ ut

u

(
∂[u/uq]
∂ΓP

∂ΓP

∂ϕ
+ ∂[u/uq]

∂ϕ

)]
> 0� (9)

The first parenthesized term is negative. Indeed, ∂[ut/u]/∂ϕ > 0 since u is log-super-
modular in (t�ϕ), and ∂[ut/u]/∂ΓP < 0 since u is log-submodular in (t� q), and ∂ΓP/∂ϕ <
0 (as shown above), and finally uq < 0 during a pre-emption game. The second term is
also negative because ut > 0 during a pre-emption game, and ∂[u/uq]/∂ΓP ≥ 0 by log-
concavity of u(t�q) in q. Q.E.D.

Next consider pure changes in quantile preferences, by assuming the stopping payoff
u(t�q|ϕ) is log-supermodular in (q�ϕ) and log-modular in (t�ϕ). So greater ϕ inflates
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FIGURE 6.—Monotone Quantile Payoff Changes. An increase in greed (or a decrease in fear) shifts the grad-
ual play locus down and the peak rush locus up. In the safe war of attrition (left): Smaller rushes occur later
and stopping rates fall during longer wars of attrition. In the safe pre-emption game without alarm (middle):
Larger rushes occur later and stopping rates rise on shorter pre-emption games. With alarm (right), the initial
rush at t = 0 is smaller and stopping rates also rise. With monotone payoffs, the peak rush loci are fixed at
Π1 ≡ 1 at left, and Π0 ≡ 0 in the middle/right, but the graphs are otherwise unchanged.

the relative return to a quantile delay, but leaves unchanged the relative return to a time
delay. Hence, the peak quantile q∗(t|ϕ) rises in ϕ. We say that greed increases when ϕ rises,
since payoffs shift towards later ranks as ϕ rises; this relatively diminishes the potential
losses of pre-emption, and relatively inflates the potential gains from later ranks. Also, if
there is greed at time t, then this remains true if greed increases. Likewise, we say fear
increases when ϕ falls.

PROPOSITION 6—Quantile Changes: Let QH and QL be safe equilibria for ϕH > ϕL.
(a) If QH�QL are war of attrition equilibria, then QH ≤ QL; the rush for QH is later and

smaller; and Q′
H(t) < Q′

L(t) in the common gradual play interval.
(b) If QH�QL are pre-emption equilibria without alarm, then QH ≤QL; the rush for QH is

later and larger; and Q′
H(t) > Q′

L(t) in the common gradual play interval.
(c) If QH�QL are pre-emption equilibria with alarm, then QH ≤ QL; the rush for QH is

smaller; and Q′
H(t) > Q′

L(t) in the common gradual play interval.

Observe the pivotal role of alarm in the comparative statics of pre-emption equilib-
ria. With alarm, the rush happens at time zero, and to maintain indifference, V0(0� q0) =
u(t∗(1)�1), the initial rush size q0 shrinks. In the no alarm case, the effects on gradual
play time and rush size are opposite (see Figure 6). For example, with multiplicative pay-
offs u(t�q|v)= π(t)v(q|ϕ), the peak rush locus Π0 solely determines the initial rush size,
and Π0 shifts up in ϕ, by log-supermodularity in (q�ϕ). Moreover, the rush occurs later
because the relative payoff to early quantiles falls, forcing early quantiles to stop later to
maintain indifference during gradual play.

PARTIAL PROOF: As with Proposition 5, our proof covers the pre-emption case with
no alarm. Parallel logic establishes the results for the safe war of attrition equilibrium.
Lemma C.2 completes the proof for the safe pre-emption equilibrium with alarm.

Define I(q�x) ≡ q−1 for x ≤ q and 0 otherwise, and thus V0(t� q|ϕ) = ∫ 1
0 I(q�x)u(t�x|

ϕ)dx. Easily, I is log-supermodular in (q�x), and so the product I(·)u(·) is log-
supermodular in (q�x�ϕ). Thus, V0 is log-supermodular in (q�ϕ) since log-super-
modularity is preserved by integration by Karlin and Rinott (1980). So the peak rush
locus Π0(t)= arg maxq V0(t� q|ϕ) rises in ϕ.
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FIGURE 7.—Rush Size and Timing With Increased Greed. Circles at rush times are proportional to rush
sizes. As fear falls, the unique safe pre-emption equilibrium has a larger initial rush, closer to the harvest time
t∗ = 10, and a shorter pre-emption phase. As greed rises, the unique safe war of attrition equilibrium has a
longer war of attrition, and a smaller terminal rush (Proposition 6).

Now consider the gradual play locus (8). Its RHS is constant in ϕ since u(t�q|ϕ) is
log-modular in (t�ϕ), and t∗(q) is constant in ϕ. The LHS falls in ϕ since u is log-
supermodular in (q�ϕ), and falls in ΓP since uq < 0 during a pre-emption game. All
told, the gradual play locus obeys ∂ΓP/∂ϕ < 0. To see how the slope Γ ′

P changes, con-
sider (9). The first term in brackets is negative. For ∂[ut/u]/∂ϕ= 0 since u is log-modular
in (t�ϕ), and ∂[ut/u]/∂ΓP < 0 since u is log-submodular in (t� q), and ∂ΓP/∂ϕ < 0 (as
shown above), and finally uq < 0 in a pre-emption game. The second term is also neg-
ative: ∂[u/uq]/∂ϕ < 0 as u is log-supermodular in (q�ϕ), and ∂[u/uq]/∂ΓP > 0 as u is
log-concave in q, and ∂ΓP/∂ϕ < 0, and ut > 0 in a pre-emption game.

All told, an increase in ϕ: (i) has no effect on the harvest time; (ii) shifts the gradual
play locus (3) down and makes it steeper; and (iii) shifts the peak rush locus (5) up (see
Figure 6). Lemma C.3 proves that the peak rush locus shift determines whether rushes
grow or shrink. Q.E.D.

Figure 7 summarizes an overarching take out message of Propositions 4 and 6. As we
shift from fear to greed, the rushes delay: They grow and shift closer to the harvest time
during the pre-emption phase (with no greed), and shrink during the war of attrition
phase (with no fear), moving away from the harvest time. There is an overlap with neither
greed nor fear in which both safe equilibria exist, rushes are maximal, and these move
oppositely in size.

Finally, consider a general monotone shift, in which the payoff u(t�q|ϕ) is log-
supermodular in both (t�ϕ) and (q�ϕ). We call an increase in ϕ a co-monotone delay
in this case, since the harvest time t∗(q|ϕ) and the peak quantile q∗(t|ϕ) both increase
in ϕ. Intuitively, greater ϕ intensifies the game, by proportionally increasing the payoffs
in time and quantile space. By the logic used to prove Propositions 5 and 6, such a co-
monotone delay shifts the gradual play locus (3) down and makes it steeper, and shifts
the peak rush locus (5) up (see Figure 6).

COROLLARY 2—Covariate Implications: Assume safe equilibria with a co-monotone de-
lay. Then stopping shifts stochastically later, and stopping rates fall in a war of attrition and
rise in a pre-emption game. Given alarm, the time-zero initial rush shrinks.

The effect on the rush size depends on whether the interaction between (t�ϕ) or (q�ϕ)
dominates.
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8. THE SET OF NASH EQUILIBRIA WITH NON-MONOTONE PAYOFFS

In any Nash equilibrium with gradual play and a rush, players must be indifferent be-
tween stopping in the rush and during gradual play. Thus, we introduce the associated
initial rush locus RP and the terminal rush locus RW , which are the largest, respectively
smallest, solutions to

V0

(
t�RP(t)

) = u
(
t∗(1)�1

)
and V1

(
t�RW (t)

) = u
(
t∗(0)�0

)
� (10)

No player can gain by immediately pre-empting the initial peak rush Π0(t) in the safe pre-
emption equilibrium, nor from stopping immediately after the peak rush Π1(t) in the safe
war of attrition. For with an interior peak quantile, the maximum average payoff exceeds
the extreme stopping payoffs (Figure 3). But for larger rushes, this constraint may bind.
An initial time-t rush is undominated if V0(t� q) ≥ u(t�0), and a terminal time-t rush is
undominated if V1(t� q) ≥ u(t�1).

If players can strictly gain from pre-empting any initial rush at t > 0, there is at most
one pre-emption equilibrium. Since u(t∗(1)�1) equals the initial rush payoff by (10) and
ut(0� t) > 0 for t < t∗(1), the following inequality is necessary for multiple pre-emption
equilibria:

u(0�0) < u
(
t∗(1)�1

)
� (11)

We now define the time domain on which each rush locus is defined. Recall that Propo-
sition 4 asserts a unique safe war of attrition equilibrium exactly when there is no fear
at time t∗(0). Let its rush include the terminal quantiles [q̄W �1] and occur at time t̄1.
Likewise, let q

P
and t0 be the initial rush size and time in the unique safe pre-emption

equilibrium, when it exists.

LEMMA 4—Rush Loci: Given no fear at t∗(0), there exist t1 ≤ t, both in (t∗(0)� t̄1), such
that RW is a continuously increasing map from [t1� t̄1] onto [0� q̄W ], with RW (t) < ΓW (t) on
[t1� t̄1), and RW undominated exactly on [t� t̄1] ⊆ [t1� t̄1]. With no greed at t∗(1), no panic,
and (11), there exist t̄ ≤ t̄0 both in (t0� t

∗(1)), such that RP is a continuously increasing map
from [t0� t̄0] onto [q

P
�1], with RP(t) > ΓP(t) on (t0� t̄0], and RP(t) undominated exactly on

[t0� t̄] ⊆ [t0� t̄0].
Figure 8 graphically depicts the message of this result, with rush loci starting at t0 and t̄1.
We now construct two sets of candidate quantile functions: QW and QP . The set QW

is empty given fear at t∗(0). Without fear at t∗(0), QW contains all quantile functions
Q such that (i) Q(t) = 0 for t < t∗(0), and for any t1 ∈ [t� t̄1]: (ii) Q(t) = ΓW (t) ∀t ∈
[t∗(0)� tW ] where tW uniquely solves ΓW (tW ) = RW (t1); (iii) Q(t) = RW (t1) on (tW � t1);
and (iv) Q(t) = 1 for all t ≥ t1. The set QP is empty with greed at t∗(1) or panic. Given
greed at t∗(1), no panic, and not (11), QP contains a single quantile function: the safe
pre-emption equilibrium by Proposition 4. And with no greed at t∗(1), no panic, and
inequality (11), then QP contains all quantile functions Q with (i) Q(t) = 0 for t < t0,
and for some t0 ∈ [t0� t̄]: (ii) Q(t) = RP(t0) ∀t ∈ [t0� tP) where tP solves ΓP(tP) = RP(t0);
(iii) Q(t) = ΓP(t) on [tP� t∗(1)]; and (iv) Q(t) = 1 for all t > t∗(1). By Proposition 2B and
Lemma 4, QW is non-empty iff there is not fear at t∗(0), while QP is non-empty iff there
is not greed at t∗(1) and no panic.

Note that: (a) there is a one-one map from undominated rush times in the domain of
RW (RP) to quantile functions in the sets QW (QP); and (b) all quantile functions in QW

(QP) share the same gradual play locus ΓW (resp. ΓP) on the intersection of their gradual play
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FIGURE 8.—All Nash Equilibria With Gradual Play. Left: All wars of attrition start at time t∗(0), and are
given by Q(t) = ΓW (t): Any terminal rush time t1 ∈ [t� t̄1] determines a rush size q1 = RW (t1), which occurs
after an inaction phase (Γ −1

W (q1)� t1) following the war of attrition. Middle: All pre-emption games start with
an initial rush of size Q(t) = q0 at time t0 ∈ [t0� t̄], followed by inaction on (t0�Γ

−1
P (q0)), and then a slow

pre-emption phase given by Q(t) = ΓP(t), ending at time t∗(1). Right: The set of pre-emption equilibria with
alarm is constructed similarly, but using the interval of allowable rush times [0� t̄].

intervals. Among all pre-emption (war of attrition) equilibria, the safe equilibrium has the
smallest rush.

PROPOSITION 7—Nash Equilibria: The set of war of attrition equilibria is the candidate
set QW . As the rush time postpones, the rush shrinks, and the gradual play phase lengthens.
The set of pre-emption equilibria is the candidate set QP . As the rush time postpones, the
rush shrinks, and the gradual play phase shrinks. Gradual play intensity is unchanged on the
common gradual play support.

Across both pre-emption and war of attrition equilibria: larger rushes are associated
with shorter gradual play phases. The covariate predictions of rush size, timing, and grad-
ual play length coincide with Proposition 6 for all wars of attrition and pre-emption equi-
libria without alarm. The correlation between the length of the phase of inaction and the
size of the rush implies that the safe war of attrition (pre-emption) equilibrium has the
smallest rush and longest gradual play phase among all war of attrition (pre-emption)
equilibria. In the knife-edge case when payoffs are log-modular in (t� q), the inaction
phase is monotone in the time of the rush, as in Figure 8.

We now connect our theory of hump-shaped payoffs, for which there is a continuum
of Nash equilibria each with a rush, to the standard case when payoffs are strictly mono-
tone in quantile, for which there is a unique equilibrium with no rush absent alarm or
panic. The next result joins Proposition 1 with our novel theory with rushes emerging
from Propositions 2A and 2B.

COROLLARY 3: Fix a stopping payoff u that is strictly monotone in quantile and for which
there is no alarm or panic. For any sequence of hump-shaped stopping payoffs uη → u in the
L1 norm as η ↓ 0, the largest rush across all Nash equilibria vanishes as η ↓ 0.

PROOF: Let uq > 0 always (the logic for uq < 0 is symmetric). Fix q > 0. There exists
η∗ > 0 with uη(t�1) > (1 − q)−1

∫ 1
q
uη(t�x)dx >

∫ 1
0 uη(t�x)dx for all η ≤ η∗ and all t.

Since uη(t�1) >
∫ 1

0 uη(t�x)dx, there is greed. By Proposition 2B, only war of attrition
equilibria exist for uη, that is, stopping in all equilibria ends in a terminal rush. By the first
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FIGURE 9.—Harvest Time Delay Revisited. With a harvest delay, from low L to high H , the gradual play loci
Γ

j
i = Γi(·|ϕj) and rush loci Rj

i ≡ Ri(·|ϕj) shift down, where i =W�P and j =L�H .

inequality, post-empting a terminal rush of size q beats stopping in the rush. So no size-q
rush exists for uη. Q.E.D.

Comparative statics prediction with sets of equilibria is problematic: Milgrom and
Roberts (1994) resolved this by focusing on extremal equilibria. Here, safe equilibria are
extremal—the safe pre-emption equilibrium starts the earliest, and the safe war of attri-
tion equilibrium ends the latest. Our comparative statics predictions Propositions 5 and 6
for safe equilibria extend to suitably chosen selections from the Nash correspondences
QW (ϕ) and QP(ϕ) for the indexed payoffs u(t�q|ϕ) in Section 7. Figures 9 and 10 illus-
trate how the key loci characterizing the set of Nash equilibria shift with a harvest time
delay and an increase in greed, respectively. In summary, the following hold:

Fundamentals Change. Assume a harvest time delay with ϕH > ϕL and no panic at ϕL.
For all QL ∈ QW (ϕL), there exists QH ∈ QW (ϕH) such that ordering (a) in Proposition 5
holds, and also gradual play for QH ends later. For all QH ∈ QP(ϕH), there exists QL ∈
QP(ϕL) such that ordering (b) in Proposition 5 holds, and also gradual play for QH starts
later.

FIGURE 10.—More Greed: Quantile Changes Revisited. With an increase in greed or decrease in fear, from
low L to high H , the gradual play loci Γ j

i = Γi(·|ϕj) and rush loci Rj
i ≡ Ri(·|ϕj) shift down, where i = W�P

and j =L�H , while the peak rush loci Π0 and Π1 shift up.
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Quantile Change. Assume an increase in greed with ϕH > ϕL and no panic at ϕL. For all
QL ∈ QW (ϕL), there exists QH ∈ QW (ϕH) such that ordering (a) in Proposition 6 holds,
and also gradual play for QH ends later. For all QH ∈ QP(ϕH), there exists QL ∈ QP(ϕL)
such that ordering (b) in Proposition 6 holds given no alarm at ϕL, and also gradual
play for QH starts later, while ordering (c) holds with alarm at ϕL with the rush for QH

occurring no later.

For the safe wars of attrition explored by Propositions 5 and 6, gradual play ends with
an immediate terminal rush. But since we now allow for inaction phases between the war
of attrition and the terminal rush, the rush no longer occurs when the war of attrition
ends. Nonetheless, our earlier predictions robustly hold in all Nash equilibria: Wars of
attrition end later and terminal rushes occur later with a harvest time delay or increase in
greed. Similarly, for safe pre-emption equilibria with no alarm, the rush no longer occurs
at the outset of gradual play, but still shifts later with a harvest time delay or increase in
greed. Both predictions extend for our equilibrium selections.

9. ECONOMIC APPLICATIONS DISTILLED FROM THE LITERATURE

To illustrate our equilibrium predictions, we devise reduced form models for several
well-studied timing games. Each reflects the subgame perfect equilibrium interpretation
of our model.

9.1. Land Runs, Sales Rushes, and Tipping Models

The Oklahoma Land Rush of 1889 saw the allocation of the Unassigned Lands. High
noon on April 22, 1889 was the clearly defined time zero, with no pre-emption allowed,
just as we assume. Since the earliest settlers naturally claimed the best land, the stopping
payoff was monotonically decreasing in quantile. This early mover advantage was strong
enough to overwhelm any temporal gains from waiting, and so the panic or alarm cases in
Proposition 1 applied.

Next consider the notion of a “tipping point” in sociology—the moment when a mass
of people dramatically changes behavior, such as flight from a neighborhood (Grodzins
(1957)). In his 1969, 1971 papers, Schelling showed that with a small threshold prefer-
ence for neighbors of the same type, myopic adjustment eventually and suddenly tips into
complete segregation. All told, Schelling’s logic is a tatonnement explanation and mostly
assumes a lattice structure. Later on, Granovette (1978) explored social settings explicitly
governed by “threshold behavior,” where individuals differ in the number or proportion
of others who must act before one optimally follow suit. He showed that a small change
in the threshold distribution may lead aggregate behavior to tip—for example, a large
enough number of revolutionaries can eventually tip everyone into a revolution.

Seen through the lens of our model, if players had standard hump-shaped preferences
over their neighborhood composition in Schelling (1969, 1971), our theory would offer an
equilibrium explanation for the tipping—and therefore be robust to rationally forward-
looking players. Our theory would offer predictions for the timing and size of these tipping
rushes, and the speed of non-tipping behavior, too. If players prefer the initial over the
average stopping payoff, then there is fear, and Proposition 2B predicts a tipping rush,
and explains why it occurs early, before preference fundamentals might suggest. Given
greed—for example, the last revolutionary does better than the average—tipping still oc-
curs, but one might expect a revolution later than expected from fundamentals. We omit
the detailed analysis, as it is similar to our matching model in Section 9.2.

http://en.wikipedia.org/wiki/Land_Rush_of_1889
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9.2. The Rush to Match

We now consider assignment rushes. As in the entry-level gastroenterology labor mar-
ket in Niederle and Roth (2004) [NR2004], early matching costs include “loss of planning
flexibility,” whereas the penalty for late matching owes to market thinness. For a cost of
early matching, we simply follow Avery, Jolls, Posner, and Roth (2001), who alluded to the
condemnation of early match agreements. So we posit a negative stigma to early matching
relative to peers.

For a model of this, assume an equal mass of two worker varieties, A and B, each with
a continuum of uniformly distributed abilities α ∈ [0�1]. Firms have an equal chance of
needing a type A or B. For simplicity, we assume that the payoff of hiring the wrong type
is zero, and that each firm learns its need at fixed exponential arrival rate δ > 0. Thus,
the chance that a firm chooses the right type if it waits until time t to hire is e−δt/2 +∫ t

0 δe
−δs ds = 1 − e−δt/2.9 Assume that an ability α worker of the right type yields flow

payoff α, discounted at rate r. Thus, the present value of hiring the right type of ability α
worker at time t is (α/r)e−rt .

Consider the quantile effect. Assume an initial ratio 2θ ∈ (0�2) of firms to workers
(market tightness). If a firm chooses before knowing its type, it naturally selects each type
with equal chance; thus, the best remaining worker after quantile q of firms has already
chosen is 1 − θq. We also assume a stigma σ(q), with payoffs from early matching multi-
plicatively scaled by 1 −σ(q), where 1 >σ(0)≥ σ(1)= 0, and σ ′ < 0. All told, the payoff
is multiplicative in time and quantile concerns:

u(t�q) ≡ r−1
(
1 − σ(q)

)
(1 − θq)

(
1 − e−δt/2

)
e−rt � (12)

This payoff is log-concave in t, and initially increasing provided the learning effect is
strong enough (δ > r). This stopping payoff is concave in quantile q if σ is convex.

The match payoff (12) is log-modular in t and q, and so always exhibits greed, or fear,
or neither. Specifically, there is fear when

∫ 1
0 (1 − σ(x))(1 − θx)dx ≤ 1 − σ(0), that is,

when the stigma σ of early matching is low relative to the firm demand (tightness) θ. In
this case, Proposition 2B predicts a pre-emption equilibrium, with an initial rush followed
by gradual play; Proposition 3 asserts a waning matching rate, as payoffs are log-concave
in time. Likewise, there is greed iff

∫ 1
0 (1 −σ(x))(1 − θx)dx≤ 1 − θ. This holds when the

stigma σ of early matching is high relative to the firm demand θ. Here, Proposition 2B
predicts a war of attrition equilibrium, namely, gradual play culminating in a terminal
rush, and Proposition 3 asserts rising matching rates nearing that rush. When neither
inequality holds, neither fear nor greed obtains, and so both types of gradual play as well
as unit mass rushes are equilibria, by Proposition 3.

For an application, NR2004 chronicled the gastroenterology market. The offer distri-
bution in their reported years (see their Figure 1) is consistent with the pattern we predict
for a pre-emption equilibrium as in the left panel of our Figure 4—that is, a rush and then
gradual play. NR2004 highlighted how the offer distribution advances in time (“unravel-
ing”) between 2003 and 2005, and proposed that an increase in the relative demand for
fellows precipitated this shift. Proposition 6 replicates this offer distribution shift. Specif-
ically, assume the market exhibits fear, owing to early matching stigma. Since the match
payoff (12) is log-submodular in (q�θ), fear rises in market tightness θ. So the rush for

9We assume firms unilaterally choose the start date t . One can model worker preferences over start dates
by simply assuming the actual start date T is stochastic with a distribution F(T |t).
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workers occurs earlier by Proposition 6, and is followed by a longer gradual play phase
(left panel of Figure 6). This predicted shift is consistent with the observed change in
match timing reported in Figure 1 of NR2004.10

Next consider comparative statics in the interest rate r. Since the match payoff is log-
submodular in (t� r), lower interest rates entail a harvest time delay, and a delayed match-
ing distribution, by Proposition 5. In the case of a pre-emption equilibrium, the initial rush
occurs later and matching is more intense, whereas for a war of attrition equilibrium, the
terminal rush occurs later, and stopping rates fall. Since the match payoff is multiplicative
in (t� q), the peak rush loci Πi are constant in t; therefore, rush sizes are unaffected by
the interest rate. The sorority rush environment of Mongell and Roth (1991) is one of
extreme urgency, and so corresponds to a high interest rate. Given a low stigma of early
matching and a tight market (for the best sororities), this matching market exhibits fear,
as noted above; therefore, we have a pre-emption game, for which we predict an early
initial rush, followed by a casual gradual play as stragglers match.

9.3. The Rush to Sell in a Bubble

We parallel Abreu and Brunnermeier (2003) [AB2003], dispensing with asymmetric
information. A continuum of investors each owns a unit of an asset and chooses the time t
to sell. A fraction Q(t) sells by time t. There is common knowledge among these investors
that the asset price is a bubble. As long as the bubble persists, the asset price p(t|ξ) rises
smoothly and deterministically in time t; once the bubble bursts, the price drops to the
fundamental value, normalized to 0.

The bubble explodes once Q(t) exceeds a threshold κ(t + t0), where t0 is a random
variable with log-concave c.d.f. F common across investors: Investors know the length
of the “fuse” κ, but do not know how long the fuse had been lit before they became
aware of the bubble at time 0. We assume that κ is log-concave, with κ′(t + t0) < 0 and
limt→∞ κ(t) = 0.11 So the burst chance is the probability 1 − F(τ(t� q)) that κ(t + t0) ≤ q,
where τ(t� q) uniquely satisfies κ(t + τ(t� q)) ≡ q, and so falls in q. The expected stopping
price F(τ(t� q))p(t|ξ) is decreasing in the quantile q.12

Unlike AB2003, we allow for an interior peak quantile by admitting relative perfor-
mance concerns. Indeed, institutional investors, acting on behalf of others, are often paid
for their performance relative to their peers. This imposes an extra cost to leaving a grow-
ing bubble early relative to other investors. For a simple model of this peer effect, scale
stopping payoffs by 1 +ρq, where ρ≥ 0 measures relative performance concern.13 All told,
the payoff from stopping at time t as quantile q is

u(t�q) ≡ (1 + ρq)F
(
τ(t� q)

)
p(t|ξ)� (13)

10One can reconcile a tatonnement process playing out over several years, by assuming that early matching
in the current year leads to lower stigma in the next year. Specifically, if the ratio (1 − σ(x))/(1 − σ(y)) for
x < y falls in response to earlier matching in the previous year, then a natural feedback mechanism emerges.
The initial increase in θ stochastically advances match timing, further increasing fear; the rush to match occurs
earlier in each year.

11By contrast, AB2003 assumed a constant function κ, but that the bubble eventually bursts exogenously
even with no investor sales. Moreover, absent AB2003’s asymmetric information of t0, with a constant threshold
κ, players could perfectly infer the burst time Q(tκ)= κ, and so strictly gain by stopping before tκ.

12A rising price is tempered by the bursting chance in bubble models (Brunnermeier and Nagel (2004)).
13When a fund does well relative to its peers, it often experiences cash inflows (Berk and Green (2004)).

In particular, Brunnermeier and Nagel (2004) documented that during the tech bubble of 1998–2000, funds
that rode the bubble longer experienced higher net inflow and earned higher profits than funds that sold
significantly earlier.
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In Appendix C.8, we argue that this payoff is log-submodular in (t� q), and log-concave in
t and q.

In AB2003, the bubble bursts for sure once all insiders have sold. While we allow the
bubble to persist after all investors sell, we assume that when q = 1, the burst chance is
large enough so that

(1 + ρ)F
(
τ(t�1)

)
<

∫ 1

0
(1 + ρx)F

(
τ(t�x)

)
dx� (14)

By Definition 1, this assumption rules out greed and so, by Proposition 4, a safe equi-
librium exists. For ρ near zero, the stopping payoff (13) is monotonically decreasing in
the quantile, and Proposition 1 predicts either a pre-emption game for all quantiles,
or a pre-emption game preceded by a time t = 0 rush, or a unit mass rush at time
t = 0. For higher values of ρ, the stopping payoff initially rises in q, the peak quan-
tile q∗ is interior,14 implying that a rush obtains, and that the unique safe initial rush
may occur at a later time t > 0. With ρ high enough, there is no fear at t∗(0), since
F(τ(0� t∗(0))) <

∫ 1
0 (1 + ρx)F(τ(x� t∗(0)))dx. In this case, Proposition 4 implies that a

war of attrition climaxing in a late rush at time t > t∗(0) is also a safe equilibrium.15

Turning to our comparative statics in the fundamentals, recall that as long as the bubble
survives, the price is p(t|ξ). Since it is log-supermodular in (t� ξ), if ξ rises, then so does
the rate pt/p at which the bubble grows, and thus there is a harvest time delay. This
stochastically postpones sales, by Proposition 5, and so not only does the bubble inflate
faster, but it also lasts longer, since the selling pressure diminishes. Both findings are
consistent with the comparative static derived in AB2003 that lower interest rates lead
to stochastically later sales and a higher undiscounted bubble price. To see this, simply
write our present value price as p(t|ξ) = eξtp̂(t), that is, let ξ = −r and let p̂ be their
undiscounted price. Then the discounted price is log-submodular in (t� r): A decrease in
the interest rate corresponds to a harvest delay, which delays sales, leading to a higher
undiscounted price, while selling rates fall in a war of attrition and rise in a pre-emption
game.

For a quantile comparative static, AB2003 assumed the bubble deterministically grows
until the rational trader sales exceed a threshold κ > 0. They showed that if κ increases,
bubbles last stochastically longer, and price crashes are larger. Consider this exercise here.
Assume any two quantiles q2 > q1. We found in Section 9.3 that the bubble survival chance
F(τ(t� q)) is log-submodular in (t� q), so that F(τ(t�q2))/F(τ(t� q1)) falls in t. Since the
threshold κ(t) falls in time, lower t is tantamount to an upward shift in κ. All told, an
upward shift in κ increases the bubble survival odds ratio F(τ(t� q2))/F(τ(t� q1)). So the
stopping payoff (13) is log-supermodular in q and κ—greater κ leading to more greed.
Proposition 6 then finds a stochastic delay in sales when κ rises: The bubble bursts stochas-
tically later, and the price drop stochastically increases, as in AB2003.16 Our model also
predicts intensifying selling during gradual play in a pre-emption phase (low ρ or κ), and

14Since inequality (14) rules out greed, the stopping payoff is not always rising in quantile. But since
uq(t�0) = F ′(τ(t�0))τq(t�0)+ρF(τ(t�0)), the stopping payoff is initially rising for ρ large enough. Altogether,
the peak quantile is interior for sufficiently large ρ.

15Griffin, Harris, and Topaloglu (2011) asserted this.
16Shleifer and Vishny (1997) found a related result in a model with noise traders. Their prices diverge from

true values, and this divergence increases in the level of noise trade. This acts like greater κ in our model, since
prices grow less responsive to rational trades, and in both cases, we predict a larger gap between price and
fundamentals.
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selling slows in a war of attrition phase. Finally, since our payoff (13) is log-supermodular
in q and relative performance concerns ρ, greater ρ is qualitatively similar to greater κ.

9.4. Bank Runs

Bank runs are among the most fabled of rushes in economics. In the benchmark model
of Diamond and Dybvig (1983) [DD1983], these arise because banks make illiquid loans
or investments, but simultaneously offer liquid demandable deposits to individual savers.
So if they try to withdraw their funds at once, a bank might be unable to honor all de-
mands. In their elegant model, savers deposit money into a bank in period 0. Some con-
sumers are unexpectedly struck by liquidity needs in period 1, and withdraw their money
plus an endogenous positive return. In an efficient Nash equilibrium, all other deposi-
tors leave their money untouched until period 2, whereupon the bank finally realizes a
fixed positive net return. But an inefficient equilibrium also exists, in which all depositors
withdraw in period 1 in a bank run that over-exhausts the bank savings, since the bank is
forced to liquidate loans, and forego the positive return.17

We adapt the withdrawal timing game, abstracting from optimal deposit contract de-
sign.18 Given our homogeneous agent model, we ignore private liquidity shocks. A unit
continuum of players [0�1] have deposited their money in a bank. The bank divides de-
posits between a safe and a risky asset, subject to the constraint that at least fraction R
be held in the safe asset as reserves. The safe asset has log-concave discounted expected
value p(t), satisfying p(0) = 1, p′(0) > 0, and limt→∞ p(t) = 0. The present value of the
risky asset is p(t)(1 − ζ), where the shock ζ ≤ 1 has twice differentiable c.d.f. H(ζ|t) that
is log-concave in ζ and t and log-supermodular in (ζ� t). To balance the risk, we assume
this shock has positive expected value: E[−ζ] > 0.

As long as the bank is solvent, depositors can withdraw αp(t), where the payout rate
α < 1, that is, the bank makes profit (1 − α)p(t) on safe reserves. Since the expected
return on the risky asset exceeds the safe return, the profit maximizing bank will hold the
minimum fraction R in the safe asset, while fraction 1 − R will be invested in the risky
project. Altogether, the bank will pay depositors as long as total withdrawals αqp(t) fall
short of total bank assets p(t)(1 − ζ(1 −R)), that is, as long as ζ ≤ (1 −αq)/(1 −R). The
stopping payoff to withdrawal at time t as quantile q is

u(t�q) = H
(
(1 − αq)/(1 −R)|t)αp(t)� (15)

Clearly, u(t�q) is decreasing in q, log-concave in t, and log-submodular (since H(ζ|t) is).
Since the stopping payoff (15) weakly falls in the quantile q, bank runs occur at once or

never, by Proposition 1, in the spirit of Diamond and Dybvig (1983) [DD1983]. But unlike
there, Proposition 1 predicts a unique equilibrium that may or may not entail a bank run.
Specifically, a bank run is avoided iff fundamentals p(t∗(1)) are strong enough, since (4)
is equivalent to

u
(
t∗(1)�1

) = H
(
(1 − α)/(1 −R)|t∗(1))p(

t∗(1)
) ≥ u(0�0)= H

(
1/(1 −R)|0) = 1� (16)

Notice how bank runs do not occur with a sufficiently high reserve ratio or low payout rate.
When (16) is violated, the size of the rush depends on the harvest time payoff u(t∗(1)�1).
When the harvest time payoff is low enough, panic obtains and all depositors run. For

17As DD1983 admitted, with a first-period deposit choice, depositors avoid a rationally anticipated run.
18Thadden (1998) showed that the efficient contract is impossible in a continuous time version of DD1983.
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intermediate harvest time payoffs, there is alarm. In this case, Proposition 1(b) fixes the
size q0 of the initial run via

q−1
0

∫ q0

0
H

(
(1 − αx)/(1 −R)|0)

dx=H
(
(1 − α)/(1 −R)|t∗(1))p(

t∗(1)
)
� (17)

Since the left side of (17) falls in q0, the run shrinks in the peak asset value p(t∗(1)) or
return hazard rate H ′/H.

Appendix C.8 establishes a log-submodular payoff interaction between the payout α
and both time and quantiles. Hence, Corollary 2 predicts three consequences of a higher
payout rate: withdrawals shift stochastically earlier, the bank run grows (with alarm),
and withdrawal rates fall during any pre-emption phase. Next consider changes in the
reserve ratio. The stopping payoff is log-supermodular in (t�R), since H(ζ|t) is log-
supermodular, and log-supermodular in (q�R) provided the elasticity ζH ′(ζ|t)/H(ζ|t)
is weakly falling in ζ (proven in Appendix C.8).19 Corollary 2 then predicts that a re-
serve ratio increase shifts the distribution of withdrawals later, shrinks the bank run, and
increases the withdrawal rate during any pre-emption phase.20

10. CONCLUSION

We have developed a novel and unifying theory of large timing games that subsumes
pre-emption games and wars of attrition. If individuals have hump-shaped preferences
over their stopping quantile, then a rush is inevitable. When the game tilts towards re-
warding early or late ranks compared to the average—fear or greed, respectively—this
rush happens early or late, and is adjacent to a pre-emption game or a war of attrition, re-
spectively. Stopping in this gradual play phase monotonically intensifies approaching this
rush when payoffs are log-concave in time. We derive robust monotone comparative stat-
ics with many realistic and testable implications. Our theory is tractable and identifiable,
and rationalizes predictions in several classic timing games.

APPENDIX A: DYNAMIC EQUILIBRIUM REFINEMENTS

Our Nash equilibria have assumed a single information set. We now argue that this is
purely for simplicity, and that our results are in fact subgame perfect both in a weak and
a strong sense.

A.1. All Nash Equilibria Are Subgame Perfect

Assume a history of play at which an arbitrary fraction x ∈ [0�1) of players stop by an
arbitrary time τ ≥ 0. The induced payoff function for the subgame starting at time τ over
the remaining 1 − x quantiles is thus

u(τ�x)(t� q) ≡ u
(
t + τ�x+ q(1 − x)

)
�

19Equivalently, the stochastic return 1 − ζ has an increasing generalized failure rate, a property satisfied by
most commonly used distributions (see Table 1 in Banciu and Mirchandani (2013)).

20An increase in the reserve ratio increases the probability of being paid at the harvest time, but it also
increases the probability of being paid in any early run. Log-concavity of H is necessary, but not sufficient, for
the former effect to dominate: This requires our stronger monotone elasticity condition.
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Thus, we may define a Nash equilibrium following any such history (τ�x) as in the original
game.

We first check incentives on the equilibrium path. Any equilibrium quantile function
Q(t) induces a continuation quantile function Q(τ�x)(t) ≡ [Q(t + τ) − Q(τ)]/[1 − x] on
the equilibrium path. By indifference, if Q is a Nash equilibrium, then Q(τ�x) is a Nash
equilibrium for u(τ�x) on the equilibrium path, that is, for all (τ�x) with x =Q(τ).

We next define equilibrium strategies after any out of equilibrium history (τ�x) ∈
[0�∞) × [0�1). We claim that u(τ�x) inherits all the model assumptions of u: bounded-
ness, continuity, quasi-concavity in t for fixed q, and monotonicity or log-concavity in q
for fixed t, and log-submodularity in (t� q). Finally, u(τ�x) satisfies inequality (1), since

lim
s→∞

max
q

u(τ�x)(s� q) = lim
s→∞

max
q

u
(
s�x+ q(1 − x)

) ≤ lim
s→∞

max
q

u(s�q)

≡ lim
s→∞

u
(
s� q∗(s)

)
< u(t�q)�

Since u(τ�x) satisfies all the model assumptions for any (τ�x) ∈ [0�∞) × [0�1), the set of
Nash equilibria after any history (τ�x) is as characterized in Section 3 and Section 8,
but for the induced payoff function u(τ�x). In particular, it is non-empty by Propositions 1
and 2B. Since no player from the continuum can unilaterally alter the quantile,21 subgame
payoffs are irrelevant for incentives; and we can therefore choose any continuation from
the set of Nash equilibria given u(τ�x).

PROPOSITION A.1—Subgame Perfection: All Nash equilibria are subgame perfect.

A.2. All Nash Equilibria Are Nearly Strict Subgame Perfect

Taking inspiration from Harsanyi (1973), we show that any Nash equilibrium is arbitrar-
ily closely approximated by a nearby (Bayesian) Nash equilibrium of a slightly perturbed
game. Index the players by types ε having C1 c.d.f. Υδ in δ with density Υ ′

δ on [−δ�δ] of
uniformly bounded variation, so that stopping during slow play at time t as quantile q
yields payoff u(t� q�ε) to a type ε. The stopping payoff u obeys all properties of u in (t� q)
for fixed ε, and is log-supermodular in (q�ε) and strictly so in (t� ε), C1 in (t� q�ε) with
u(t� q�0) = u(t�q)� ut(t� q�0) = ut(t� q), and uq(t� q�0) = uq(t� q). So type ε = 0 enjoys
the payoff function just as in the original model.22 This formulation includes as special
cases both pure differences in time preferences, such as u(t� q�ε) = u((1 − ε)t�q), or
in quantile preferences, like u(t� q�ε) = u(t� (1 − ε)q), so that lower ε will stop weakly
earlier in t and q space.23

21For some context, our assumption that strategic interaction is embodied in the quantile implies the main-
tained assumption in Gul, Sonnenschein, and Wilson (1986) on page 159 that “measure-zero” deviations do
not affect play.

22This is not required, and we could simply assume that payoffs collapse to the original one as δ vanishes.
23 Prompted by a referee, we note that a special case of this payoff structure arises in an asymmetric infor-

mation model. Let the realized stopping payoff be multiplicative in time and quantile, π(t� z)v(q� y), where π
and v are log-supermodular. A player’s type ε is a signal she has observed of the unobserved scalars z and y .
The conditional densities μz(z�ε) and μy(y�ε) are affiliated, and so log-supermodular. The expected stopping
payoff for type ε is log-modular in (t� q), and also log-supermodular in (t� ε) and (q�ε) by Karlin and Rinott
(1980), because

u(t�q�ε) =
∫ ∫

π(t� z)v(q� y)μz(z�ε)μy(y�ε)dz dy =
[∫

π(t� z)μz(z�ε)dz

][∫
v(q� y)μy(y�ε)dy

]
�
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A strategy is now a function s : [−δ�δ] 
→ [0�∞) mapping realized types ε into stopping
times, yielding a quantile function Qδ(t) = Pr[s(ε) ≤ t]. Let wδ(t|ε� s) be the expected
payoff for type ε stopping at time t, given Qδ generated by strategy s. A strategy s is
then a Nash equilibrium if s(ε) ∈ arg maxt wδ(t|ε� s). Since u is log-supermodular, s(ε) is
monotone.

The Lévy–Prohorov metric measures the distance between quantile functions:

�(Q1�Q2)≡ inf
{
d > 0|Q1(x− d)− d ≤Q2(x)≤ Q1(x+ d)+ d ∀x ∈ [0�1]}�

PROPOSITION A.2—Approximation: Fix a Nash equilibrium Q of the original game. For
all Δ > 0, there exists δ∗ > 0 such that, for all δ ≤ δ∗, a Nash equilibrium Qδ exists with
�(Q�Qδ) ≤ Δ.

PROOF OVERVIEW: In Steps 1 and 2, we generalize the gradual play and peak rush
loci in Figure 4 to accommodate payoff heterogeneity (delaying one technical step to
Section C.9), and verify that these generalized loci converge to the homogeneous payoff
loci as payoff heterogeneity vanishes. In Step 3, we show how these generalized loci can be
used to define a quantile function Qδ approximating any safe equilibrium of the original
game involving gradual play. In Step 4, we verify that the quantile function Qδ is a Nash
equilibrium of the heterogeneous payoff game. In Step 5, we generalize the rush loci
of Figure 8 to approximate the full set of Nash equilibria involving gradual play. Step 6
considers approximating a unit mass rush equilibrium.

Step 1: Gradual Play Loci. We define the gradual play type interval as an open interval
(ε1� ε2) on which s′ > 0, so that gradual play happens on the time interval (s(ε1)� s(ε2)).
Since any type ε can secure payoff u(s(ε̂)�Υδ(ε̂)� ε) by mimicking any type ε̂ ∈ (ε1� ε2),
the Relevation Principle gives the equilibrium gradual play differential equation on
(ε1� ε2):

ut

(
s(ε)�Υδ(ε)�ε

)
s′(ε)+ uq

(
s(ε)�Υδ(ε)�ε

)
Υ ′

δ(ε)= 0�

Since s(ε) is invertible on this interval, we have ε ≡ Υ−1
δ (q) and Qδ(s(ε)) = Υδ(ε), where-

upon Q′
δ(s(ε))s

′(ε)= Υ ′
δ(ε). In sum, defining Eδ(q) ≡ Υ−1

δ (q),

ut

(
t�Qδ(t)�Eδ

(
Qδ(t)

)) + uq

(
t�Qδ(t)�Eδ

(
Qδ(t)

))
Q′

δ(t)= 0� (18)

As in the original game, we argue that there is a unique ending time tP for any pre-
emption phase. The largest type ε = δ is the last player to stop. Then ut(tP�1� δ) ≤ 0,
for this player cannot profit from further delay. Since uq ≤ 0 in a pre-emption phase,
(18) implies that the passage of time cannot be strictly harmful to this type, and so
ut(tP(δ)�1� δ) = 0. Then tP(δ) ≡ arg maxt u(t�1� δ) is the unique harvest time for the
type δ who stops last. Similarly, define the harvest time for the type −δ stopping first
tW (−δ) ≡ arg maxt u(t�0�−δ). Since u is continuous, by the theorem of the maximum,
the harvest time functions tP(δ) and tW (−δ) are continuous in δ, and thus obey tP(0) =
arg maxt u(t�1�0)= arg maxt u(t�1)= t∗(1), likewise tW (0)= t∗(0).

We now construct approximations to the gradual play phase for any equilibrium of the
original game, using the gradual play differential equation (18) and harvest time functions
tP(δ) and tW (−δ). First, let us approximate the pre-emption phase for an equilibrium Q
of the original game. By Propositions 1 and 2B, pre-emption equilibria cannot survive
greed at t∗(1). Thus, whenever Q involves a pre-emption phase, we have no greed at
t∗(1). In Section C.9, we show that in this case, for small enough δ > 0, there exists a
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unique solution to (18) with terminal condition Qδ(tP(δ)) = 1—called the perturbed pre-
emption locus ΓP(t|δ)—and that this solution is continuous in δ. Likewise, if Q includes a
war of attrition, then for small enough δ > 0, the perturbed war of attrition locus ΓW (t|δ)
uniquely solves (18) with initial condition Qδ(tW (δ))= 0 and is continuous in δ. Given the
extremal conditions ut(t� q�0) = ut(t� q), uq(t� q�0) = uq(t� q), tP(0) = t∗(1), and tW (0) =
t∗(0), continuity of the loci ΓP(t|δ) and ΓW (t|δ) in δ, and |Eδ(Qδ)| ≤ δ, we have ΓP(t|δ)→
ΓP(t) and ΓW (t|δ)→ ΓW (t) as δ→ 0.

Step 2: Peak Rush Loci. Define the payoff to type ε in an initial/terminal rush:

V0(t� q�ε)≡ q−1

∫ q

0
u(t�x�ε)dx and V1(t� q�ε)≡ (1 − q)−1

∫ 1

q

u(t�x�ε)dx� (19)

Consider an initial rush of quantiles [0� q]. Since the strategy s(ε) is non-decreasing,
all types ε ∈ [−δ�Eδ(q)] participate in such a rush. Likewise, all types on [Eδ(q)�δ]
participate in any terminal rush of quantiles [q�1]. Generalizing the peak rush loci
Πi(t|δ) ≡ arg maxq Vi(t� q�Eδ(q)), when Πi(t|δ) ∈ (0�1), the marginal type is indifferent
between the rush payoff and adjacent gradual play payoff:

u
(
t�Πi(t|δ)�Eδ

(
Πi(t|δ)

)) ≡ Vi

(
t�Πi(t|δ)�Eδ

(
Πi(t|δ)

))
� (20)

Since |Eδ| ≤ δ and u(t� q�0) = u(t�q), our original peak rush loci satisfying (5) also
solve (20) at δ = 0. Since Υδ(q) is continuous in δ, so is Eδ(q) ≡ Υ−1

δ (q). Given u , Vi,
and Eδ continuous in δ, the maximum Πi(t|δ) is well-defined and continuous near δ = 0,
by Berge’s theorem.

Step 3: An Approximate Quantile Function, Qδ. We can use the perturbed gradual play
and peak rush loci to approximate any safe equilibrium with gradual play. In particular,
consider a safe pre-emption equilibrium Q with an initial rush at t > 0 (similar steps apply
to any other type of safe equilibria involving gradual play). By Proposition 4, since Q is
a safe equilibrium with an initial rush at t > 0, the stopping payoff u is hump-shaped in
quantiles and displays no greed at t∗(1), no alarm, and no panic, and the initial safe rush
is of size q0 = Π0(t0) at the unique time t0 ∈ (0� t∗(1)) obeying Π0(t0) = ΓP(t0), followed
at once by a gradual pre-emption game along ΓP(t) ending at time t∗(1) (as in Figure 4).
Likewise, in the heterogeneous type model, construct the quantile function Qδ(t) with an
initial rush of size qδ = Π0(tδ|δ) at the unique rush time tδ ∈ (0� tP(δ)) obeying Π0(tδ|δ) =
ΓP(tδ|δ), followed at once by a gradual pre-emption game along ΓP(t|δ) ending at time
tP(δ). This quantile function Qδ is well-defined and arbitrarily close to Q for δ small
enough, by continuity of ΓP�Π0, and tP in δ.

Step 4: Qδ is a Nash Equilibrium. We sequentially rule out all deviations.
4.A: First, no type can gain from stopping after the harvest time tP(δ). For by construc-

tion, the highest type ε = δ cannot gain by delay to t > tP(δ), since tP(δ) is the harvest
time for this type. But then by complementarity in (t� ε), no type can gain from stopping
after tP(δ).

4.B: Next, we claim that all types in the rush weakly prefer rushing to the adjacent grad-
ual play payoff. This follows because the highest rushing type is indifferent by (20), and
since V0(t� q�ε)/u(t� q�ε) is non-increasing in ε, by log-supermodularity of u in (q�ε).

4.C: Next, we rule out profitable deviations to some time in the gradual pre-emption
phase (tδ� tP(δ)] from the rush or from another time in gradual play. Fix type ε, and con-
sider his optimal stopping time on the gradual play interval arg maxt∈[tδ�tP (δ)] u(t�Qδ(t)� ε).
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Log-differentiating equilibrium payoffs wδ(t|ε� s)= u(t�Qδ(t)� ε) in t yields

w′
δ(t|ε� s)

wδ(t|ε� s) = ut

(
t�Qδ(t)� ε

)
u
(
t�Qδ(t)� ε

) + uq

(
t�Qδ(t)� ε

)
u
(
t�Qδ(t)� ε

) Q′
δ(t)�

Since u is log-supermodular in (t� ε) and (q�ε), the ratio w′
δ(t|ε� s)/wδ(t|ε� s) is non-

decreasing in ε, and is identically zero for ε = Eδ(Qδ(t)), since stopping is locally optimal
during gradual play by construction. Thus, w′

δ(t|ε� s) ≤ 0 whenever Eδ(Qδ(t)) ≥ ε, while
w′

δ(t|ε� s)≥ 0 when Eδ(Qδ(t))≤ ε. Then no type stopping during gradual play can strictly
gain from deviating to another gradual play time. Also, w′

δ(t|ε� s) ≤ 0 throughout the
gradual play time interval for all types [0�Qδ(tδ)] that take part in the initial rush, and
so they weakly prefer stopping at tδ to elsewhere in gradual play, and so weakly prefer to
rush, by step 4.B.

4.D: Pre-empting the rush is strictly dominated. First, this is true in our original game
because payoffs u(t�q) are hump-shaped in the quantile q and ut(t� q) > 0 for all t < t0,
and thus V0(t0� q0) ≡ maxq V0(t0� q) > u(t0�0) > u(t�0). Next, we argue that this payoff
wedge remains for small enough δ > 0. For by assumption, preferences in our game
obey u(t� q�ε) → u(t�q) as ε → 0. Also, (tδ� qδ) → (t0� q0) as δ → 0 by continuity of
Π0(t|δ) and ΓP(t|δ) in δ. Altogether, for small enough δ > 0, the rush payoff V0(tδ� qδ� ε)
strictly exceeds the best possible payoff from stopping before the rush time tδ, namely,
maxt≤tδ u(t�0� ε) for all ε ∈ [−δ�δ].

Step 5: Approximating All Nash Equilibria Involving Gradual Play. We now generalize
the initial/terminal rush loci (10) for preference heterogeneity, which then can be used to
approximate the full set of Nash equilibria by parallel logic to that used for the homoge-
neous payoff case in Section 8. To be concrete, let us approximate an equilibrium Q of the
original game with an initial rush followed by an inaction phase, and then a pre-emption
phase (as in Figure 8, middle panel). What remains is to define the perturbed initial rush
locus RP(t|δ), that is, the type Eδ(RP(t|δ)) indifferent between rushing with quantiles
[0�RP(t|δ)] and stopping in the gradual play phase along the pre-emption locus at time
Γ −1
P (RP(t|δ)|δ) > t. Define the function

Δ(t�q�ε)≡ V0(t� q�ε)− u
(
Γ −1
P (q|δ)�q�ε)

�

We implicitly define RP(t|δ) by Δ(t�RP(t|δ)�Eδ(RP(t|δ))) = 0. Since this equation col-
lapses to (10), RP(t|δ) reduces to the gradual play locus RP(t) at δ = 0. Next, RP(t|δ) is
well-defined and continuous near δ = 0 if the implicit function theorem applies. Now,
Δ is a composition of continuous functions. Next, the derivative of Δ(t�q�Eδ(q)) in
q = RP(t|δ) is positive near δ = 0. For it equals q−1[V0(t� q�Eδ(q)) − u(t� q�Eδ(q))], that
is, the partial derivative of V0 in q by (19), plus

−
[

ut

(
Γ −1
P (q|δ)�q�Eδ(q)

)∂Γ −1
P (q|δ)
∂q

+ uq

(
Γ −1
P (q|δ)�q�Eδ(q)

)] +Δε

(
t� q�Eδ(q)

)
E ′
δ(q)�

The bracketed term is identically zero, by (18). We argue that the last term vanishes.
Since the density Υ ′

δ integrates to one on [−δ�δ], and has uniformly bounded variation,
as δ ↓ 0, the minimum of the density Υ ′

δ(Eδ(q)) explodes, and so E ′
δ(q) = 1/Υ ′

δ(Eδ(q)) van-
ishes. All told, as δ ↓ 0, the q derivative of Δ(t�q�Eδ(q)) converges to q−1[V0(t�RP(t))−
u(t�RP(t))] at q = RP(t|δ). This is strictly positive for any initial rush followed by inac-
tion (as shown in Section 8).
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We can similarly define a perturbed terminal rush locus RW (t|δ) leaving the marginal
type indifferent between the terminal rush payoff and his type’s gradual play payoff along
ΓW (t|δ). This will be continuous near δ= 0, by symmetric reasoning, thereby establishing
robustness.

Step 6: Approximating Unit Mass Rush Equilibria. Assume a unit mass rush equilibrium
for the original game. If this rush occurs at t = 0, then, by Proposition 2B, panic obtains
in the original game. There are two possibilities for the heterogeneous payoff game for
small δ: either u also displays panic, in which case a unit mass rush at t = 0 remains an
equilibrium, or u displays alarm, in which case there exists a pre-emption equilibrium Qδ

involving a t = 0 rush of size RP(0|δ) by Steps 1–5. But since the original game displays
panic, we must have RP(0|δ) → 1 as δ → 0. And thus, Qδ converges to Q in the Lévy–
Prohorov metric.

If, instead, the original equilibrium is a unit mass rush at 0 < tr ≤ t∗(0) (the logic
for tr ≥ t∗(0) is symmetric), then by Proposition 2B, the original game obeys not greed
and not fear at tr . And since both inequalities are strict, there exists δ∗ > 0 such that
V0(tr�1� ε) > max{u(tr�0� ε)� u(tr�1� ε)} for all ε ∈ [−δ∗� δ∗]. Now, consider the case of
tr = t∗(1). Since u and V0 are continuous in t, V0(tr�1� ε) > u(tr�1� ε), and tP(δ) → t∗(1),
no type can gain from post-empting a rush at tr when δ is sufficiently small. And since
ut > 0 for t < t∗(1), we have V0(tr�1) > u(t�0) for all t ≤ tr and no type can gain from pre-
empting a rush at tr . Thus, tr = t∗(1) remains an equilibrium for sufficiently small δ in the
heterogeneous payoff game. If, instead, tr < t∗(1), then there exists δ† > 0 such that for
all δ ≤ δ†: (i) there exists T (δ) > 0, obeying T (δ) → 0 as δ → 0 and (ii) a unit mass rush
at tr + T (δ) is an equilibrium in the heterogeneous payoff game. We already established
above that there exists δ∗ > 0 such that V0(tr�1� ε) > u(tr�0� ε) for all ε ∈ [−δ∗� δ∗], and
thus by continuity in t, there exists T (δ) > 0 obeying T (δ) → 0 as δ → 0 such that for all
δ ≤ δ∗, V0(tr + T (δ)�1� ε) > u(tr + T (δ)�0� ε) for all ε ∈ [−δ�δ]: No type can gain from
pre-empting a rush at tr + T (δ). We claim that no type can gain from post-empting such
a rush. Indeed, V0(t�1) > V0(tr�1) ≥ u(t∗(1)�1) for all t ∈ (tr� t

∗(1)] by Proposition 2B
part (d)(ii) and ut(t�x) > 0 for t < t∗(1). Then by continuity of u(t� q�ε) in (t� ε), for any
t ∈ (tr� t

∗(1)), there exists δ0 such that V0(t�1� ε) > u(t∗(1|ε)�1� ε) for all ε ∈ [−δ0� δ0]:
No type can gain from post-empting any unit mass rush at t ∈ (tr� t

∗(1)] for δ ≤ δ0. Now
set δ† = min{δ∗� δ0} to conclude that for δ ≤ δ†, a unit mass rush at tr + T (δ) is an equi-
librium with heterogeneous preferences for some T (δ) > 0 obeying T (δ)→ 0. Q.E.D.

APPENDIX B: GEOMETRIC PAYOFF TRANSFORMATIONS

We have formulated greed and fear in terms of quantile preference in the strategic
environment. It is tempting to consider their heuristic use as descriptions of individual risk
preference—for example, as a convex or concave transformation of the stopping payoff.
For example, if the stopping payoff is an expected payoff, then concave transformations
of expected payoffs correspond to ambiguity aversion (Klibanoff, Marinacci, and Mukerji
(2005)).

We can show (♣): for the specific case of a geometric transformation of payoffs u(t�q)β,
if β> 0 rises, then rushes shrink, any pre-emption equilibrium advances in time, and any war
of attrition equilibrium postpones, while the quantile function is unchanged during gradual
play. A comparison to Proposition 6 is instructive. One might muse that greater risk (am-
biguity) aversion corresponds to more fear. We see instead that concave geometric trans-
formations mimic decreases in fear for pre-emption equilibria, and decreases in greed for
war of attrition equilibria. Our notions of greed and fear are therefore observationally
distinct from risk preference.
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FIGURE 11.—Geometric Payoff Transformations. Assume a payoff transformation u(t�q)β. The (thick) grad-
ual play locus is constant in β, while the (thin) peak rush locus shifts up in β for a war of attrition equilibrium
(right) and down in β for a pre-emption equilibrium (left).

To prove (♣), consider any C2 transformation v(t� q) ≡ f (u(t� q)) with f ′ > 0. Then
vt = f ′ut and vq = f ′uq and vtq = f ′′utuq + f ′utq. So vtvq −vvtq = [(f ′)2 − ff ′′]utuq − ff ′utq

yields

vtvq − vvtq = [(
f ′)2 − ff ′′ − ff ′/u

]
utuq − ff ′[utq − utuq/u]� (21)

Since the term utuq changes sign, given utuq ≥ uutq, expression (21) is always nonnega-
tive when (f ′)2 − ff ′′ − ff ′/u = 0, which requires our geometric form f (u) = cuβ, with
c�β > 0. So the proposed transformation preserves log-submodularity. Log-concavity is
proven similarly.

Clearly, f ′ > 0 ensures a fixed gradual play locus (3) in a safe pre-emption equilibrium.
Now consider the peak rush locus (5). Given any convex transformation f , Jensen’s in-
equality implies

f
(
u(t�Π0)

) = f
(
V0(Π0� t)

) ≡ f

(
Π−1

0

∫ Π0

0
u(t�x)dx

)
≤ Π−1

0

∫ Π0

0
f
(
u(t�x)

)
dx�

So to restore equality, the peak rush locus Π0(t) must decrease. (Figure 11 summarizes
the equilibrium comparative statics in β.) Finally, any two geometric transformations with
βH > βL are also related by a geometric transformation uβH = (uβL)βH/βL .

APPENDIX C: OMITTED PROOFS

C.1. Gradual Play and Peak Rush Loci: Proofs of Lemmas 1 and 2

PROOF OF LEMMA 1: Step 1: ΓW . First, there exists finite tW > t∗(0) such that
u(tW �q

∗(tW )) = u(t∗(0)�0). For q∗ > 0 implies u(t∗(0)�q∗(t∗(0))) > u(t∗(0)�0), while (1)
asserts the opposite inequality for t sufficiently large: existence of tW then follows from
continuity of u(t�q∗(t)). Next, since ut < 0 for all t > t∗(0), we have u(t�0) < u(t∗(0)�0)
and u(t�q∗(tW )) > u(t∗(0)�0), there exists a unique ΓW (t) ∈ [0� q∗(tW )] satisfying (2) for
all t ∈ [t∗(0)� tW ]. Since uq > 0, ut < 0 on (t∗(0)� tW ] × [0� q∗(tW )], and u is c2, Γ ′

W (t) > 0
by the implicit function theorem.
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Step 2: ΓP . First assume u(0� q∗(0)) ≤ u(t∗(1)�1). Then q∗(t) < 1 ⇒
u(t∗(1)�q∗(t∗(1))) > u(t∗(1)�1), while the continuous function u(t�q∗(t)) is strictly in-
creasing in t ≤ t∗(1). So there exists a unique tP ∈ [0� t∗(1)) such that u(tP�q

∗(tP)) ≡
u(t∗(1)�1), with u(t�q∗(t)) > u(t∗(1)�1) for all t ∈ (tP� t

∗(1)]. Also, u(t�1) < u(t∗(1)�1)
and ut(t� q) > 0 for all t < t∗(1) ≤ t∗(q). In sum, there is a unique ΓP(t) ∈ (q∗(t)�1)
solving (3), for t ∈ (tP� t

∗(1)). If, instead, the reverse inequality u(0� q∗(0)) > u(t∗(1)�1)
holds, then u(t�q∗(t)) ≥ u(0� q∗(0)) > u(t∗(1)�1) > u(t�1), for all t ≤ t∗(1). Again by
ut > 0, there is a unique ΓP(t) ∈ (q∗(t)�1] satisfying (3) for all t ∈ [0� t∗(1)], that is,
tP = 0. All told, ΓP(t) ≥ q∗(t), so that uq(t�ΓP(t)) < 0 < ut(t�ΓP(t)), while u is C2, so
that Γ ′

P(t) > 0 by the implicit function theorem. Q.E.D.

PROOF OF LEMMA 2: Step 1: Greed and Fear Obey Single Crossing. Since u(t�q) is log-
submodular, u(t� y)/u(t�x) is non-increasing in t for all y ≥ x. So without greed at t∗(1),
there is no greed at any t ≤ t∗(1), and without fear at t∗(0), there is no fear at any t ≥ t∗(0).

Step 2: Πi is Continuous. Since u is log-concave with unique peak quantile q∗(t) ∈ (0�1),
the running integral Vi(t) for i ∈ {0�1} is strictly quasi-concave, and thus the maximizer
Πi(t) = arg maxq Vi(t) is unique. Continuity of Πi(t) follows from the theorem of the
maximum.

Step 3: Πi is Non-increasing. Put I(q�x) ≡ q−1 for x ≤ q and 0 otherwise, and �≡ t∗(1)−
t, and thus V0(t

∗(1) − ��q) = ∫ 1
0 I(q�x)u(t∗(1) − ��x)dx. Easily, I is log-supermodular

in (q�x), and so the product I(·)u(·) is log-supermodular in (q�x� �). So V0 is log-
supermodular in (q� �) as integration preserves log-supermodularity (Karlin and Rinott
(1980)). So the peak rush locus Π0(t

∗(1) − �) = arg maxq V0(t
∗(1) − t� q) rises in � (falls

in t). The logic for Π1 is symmetric.
Step 4: No Greed at t Implies Π0(t) ∈ (q∗(t)�1). With an interior peak quantile, Π0(t) >

0. By continuity, the solution Π0(t) < 1 if and only if Π0(t) obeys the marginal equals
the average equality (5), which holds iff u(t�1) < V0(t�1) (i.e., no greed at t). Since u is
single-peaked in q, the solution obeys uq(t�Π0(t)) < 0. Finally, uq(t� q)≷ 0 as q ≶ q∗(t)
implies Π0(t) > q∗(t). Q.E.D.

C.2. A Nash Equilibrium With Alarm

DEFINITION 2: Quantile function Q is secure if it is a Nash equilibrium whose support
is either a single non-empty interval of time or the union of t = 0 and such an interval.

Assuming no greed at t∗(1) and alarm, we construct a secure quantile function with
a rush at t = 0 and a pre-emption phase. To this end, let quantile q0 ∈ (Π(0)�1) be
the largest solution to V0(0� q0) = u(t∗(1)�1). First, Π(0) = arg maxq V0(0� q) < 1 is well-
defined by Lemma 2. Given alarm, V0(0�1) < u(t∗(1)�1) < maxq V0(0� q) ≡ V0(0�Π(0)).
So the unique q0 ∈ (Π(0)�1) follows from V0(0� q) continuously decreasing in q > Π(0)
(Lemma 2). Then, given q0, define ΓP(tA) = q0. To see that such a time tA ∈ (0� t∗(1))
uniquely exists, observe that u(0� q∗(0)) ≥ maxq V0(0� q) > u(t∗(1)�1) (by alarm); so that
the premise of Lemma 1 part (b) is met. Thus, ΓP is continuously increasing on [0� t∗(1)]
with endpoints ΓP(t

∗(1)) = 1 and ΓP(0) < q0, where this latter inequality follows from
q0 >Π(0)⇒ u(0� q0) < V0(0� q0)= u(t∗(1)�1)= u(0� ΓP(0)). Finally, define the candidate
quantile function QA as: (i) QA(t) = q0 for all t ∈ [0� tA); (ii) QA(t) = ΓP(t) on [tA� t∗(1)];
and (iii) QA(t)= 1 for all t > t∗(1).

LEMMA C.1: Assume alarm and no greed at t∗(1). Then QA is a secure equilibrium. It
is the unique equilibrium with a t = 0 rush, one gradual play phase ending at t∗(1), and no
other rush.
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PROOF: By construction, the stopping payoff is u(t∗(1)�1) on the support {0} ∪
[tA� t∗(1)] of quantile function QA. The payoff on the inaction region (0� tA) is strictly
lower, since ut(t� q0) > 0 for t < t∗(1) ≤ t∗(q0). Finally, since ut(t�1) < 0 for t > t∗(1), no
player can gain from stopping after t∗(1). Altogether, QA is a secure Nash equilibrium.

This is the unique Nash equilibrium with the stated characteristics. In any such equilib-
rium, the expected payoff is u(t∗(1)�1), and q0 is the unique t = 0 rush with this stopping
value. Given q0, the time tA at which the pre-emption game begins follows uniquely from
ΓP , which in turn is the unique gradual pre-emption locus given payoff u(t∗(1)�1) by
Lemma 1. Q.E.D.

C.3. Monotone Payoffs in Quantile: Proof of Proposition 1

Case 1: uq > 0. In the text, we proved that any equilibrium must involve gradual play
for all quantiles beginning at t∗(0), satisfying (2), which defines a unique quantile function
by Lemma 1 and q∗(·) = 1. This is an equilibrium. No agent can gain by pre-empting
gradual play, since t∗(0) maximizes u(t�0). Further, since t∗(q) is decreasing, we have
ut(t�1) < 0 for all t ≥ t∗(0); thus, no agent can gain by delaying until after the war of
attrition ends.

Case 2: uq < 0. The text proved that gradual play ends at t∗(1) and rushes occur at
t = 0.

Step 1: A t = 0 Unit Mass Rush iff Panic. Without panic, V0(0�1) < u(t∗(1)�1): Deviat-
ing to t∗(1) offers a strict improvement over stopping in a unit mass rush at t = 0. Now
assume panic, but gradual play, necessarily with expected payoff u(t∗(1)�1). The payoff
for stopping at t = 0 is either u(0�0) (if no rush occurs at t = 0) or V0(0� q), given a rush of
size q < 1. But since uq < 0, we have u(0�0) > V0(0� q) > V0(0�1)≥ u(t∗(1)�1) (by panic),
a contradiction.

Step 2: Equilibrium With Alarm. First, alarm implies a t = 0 rush. Instead, assume
alarm and gradual play for all q, necessarily with expected payoff u(t∗(1)�1). Given
uq < 0, we have u(0�0)= maxq V0(0� q), which strictly exceeds u(t∗(1)�1) by alarm; there-
fore, deviating to t = 0 results in a strictly higher payoff, a contradiction. But by Step 1,
any equilibrium with alarm must also include gradual play, ending at t∗(1). Altogether,
we must have a t = 0 rush, followed by gradual play ending at t∗(1). By Lemma C.1, there
is a unique such equilibrium: QA.

Step 3: Equilibrium With No Alarm or Panic. First, a rush is impossible without alarm or
panic. For by Step 1, we cannot have a unit mass rush; thus, the equilibrium must involve
gradual play ending at t∗(1). Then given uq < 0 and the no alarm or panic inequality (4),
we have u(t∗(1)�1) ≥ maxx V0(0�x) = u(0�0) > V0(0� q) for all q > 0: The payoff in any
t = 0 rush is strictly lower than the equilibrium payoff u(t∗(1)�1), a contradiction. Next,
we construct the unique Nash equilibrium. Absent alarm u(0� q∗(0)) = maxq V0(0� q) ≤
u(t∗(1)�1), Lemma 1 states that ΓP defined by (3) is unique, continuous, and increasing
from [tP� t∗(1)] onto [q∗(tP)�1] = [0�1] (by uq < 0). Thus, the unique candidate equilib-
rium is Q(t) = 0 on [0� tP); Q(t) = ΓP(t) on [tP� t∗(1)]; and Q(t) = 1 for t > t∗(1). Since
ut < 0 for t > t∗(1), no player can gain from delaying until after the gradual play phase,
while ut(t�0) > 0 for t < t∗(1) ≤ t∗(0) implies that stopping before gradual play begins is
not a profitable deviation. Q.E.D.

C.4. Pre-Emption Equilibria: Proof of Proposition 2B, Part (a)

Step 1: No Pre-Emption With Greed at t∗(1) or Panic. Assume a pre-emption equilib-
rium. By Proposition 2A, stopping must end at t∗(1), implying Nash payoff w̄ =
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u(t∗(1)�1). Also, since t∗(q) is non-increasing, ut(t� q) > 0 for all (t� q) < (t∗(1)�1);
and thus, w̄ is strictly below the average payoff at t∗(1)�

∫ 1
0 u(t∗(1)�x)dx. Altogether,

w̄ = u(t∗(1)�1) <
∫ 1

0 u(t∗(1)�x)dx, contradicting greed at t∗(1). Pre-emption equilibria
require no greed at t∗(1).

Next, assume a pre-emption equilibrium with a rush of size q0 at time t0, no greed at
t∗(1), and panic. For this to be an equilibrium, V0(t0� q0) ≥ u(t0� q0), which given u(t0�x)
single-peaked in x implies that q0 exceeds the peak of the average payoff V0(t0�x), that
is, q0 ≥ Π0(t0); and thus, since V0(t0�x) falls in x after the peak, V0(t0� q0) > V0(t0�1). In
addition, since ut(t� q) > 0 for all (t� q) ≤ (t∗(1)�1), we have V0(t0�1) > V0(0�1). Alto-
gether, the rush payoff obeys V0(t0� q0) > V0(0�1), but then since the panic inequality is
V0(0�1)≥ u(t∗(1)�1), the rush payoff strictly exceeds the payoff during gradual play, that
is, V0(t0� q0) > u(t∗(1)�1), a contradiction.

Step 2: Pre-Emption Equilibrium With Alarm. For later use, we prove a stronger result:
Given no greed at t∗(1) and alarm, there exists a unique secure pre-emption equilibrium.
Assume no greed at t∗(1) and alarm. By Proposition 2B part (c), we cannot have a unit
rush at t = 0, while a unit rush at t > 0 is not secure by definition. Then, given Propo-
sition 2A, any equilibrium with an initial rush must end with gradual play at t∗(1). By
Lemma C.1, there exists one such secure equilibrium with an initial rush at t = 0. We
claim that any equilibrium with an initial rush at t > 0 is not secure. First, given an initial
rush at t > 0, security requires that gradual play must immediately follow the rush. Thus,
any initial rush at time t of size q must be on both the gradual play locus (3) and peak rush
locus (5), that is, q = ΓP(t) = Π0(t), which implies u(t∗(1)�1) = maxq V0(t� q). But alarm
states u(t∗(1)�1) < maxq V0(0� q), while maxq V0(0� q) < maxq V0(t� q) for t ∈ (0� t∗(1)];
so that u(t∗(1)�1) < maxq V0(t� q), a contradiction. Altogether, the unique pre-emption
equilibrium with alarm is that characterized by Lemma C.1.

Step 3: Pre-Emption With No Alarm or Panic. By Proposition 2A, pre-emption equilib-
ria begin with an initial rush, followed by gradual play ending at t∗(1). This step proves
that there exists a unique secure pre-emption equilibrium given no greed at t∗(1) and no
alarm or panic.

First, consider the case when (4) holds with equality. Then u(0� q∗(0)) > maxq V0(0�
q) = u(t∗(1)�1), and Lemma 1 yields ΓP(t) well-defined on [0� t∗(1)] with u(0� ΓP(0)) =
u(t∗(1)�1) = V0(0�Π0(0)). That is, ΓP(0) = Π0(0). In fact, t = 0 is the only candidate
for a secure initial rush. For if the rush occurs at any t > 0, security demands that t be
on both the gradual play (3) and peak rush locus (5), that is, ΓP(t) = Π0(t), but ΓP(t)
is increasing and Π0(t) non-increasing on [0� t∗(1)]: tP = 0 and qP = Π0(0) is the only
possible secure initial rush. Now assume (4) is strict, which trivially rules out a t = 0
rush, since the maximum rush payoff falls short of the gradual play payoff u(t∗(1)�1).
Given a rush at t > 0, security requires that ΓP(t) = Π0(t), which we claim uniquely
defines a rush time tP ∈ (0� t∗(1)) and rush size qP ∈ (q∗(0)�1]. We prove this sepa-
rately for two exhaustive cases. First, assume u(0� q∗(0)) ≤ u(t∗(1)�1). In this case, com-
bining Lemma 1(a) and Lemma 2, we find ΓP(tP) = q∗(tP) < Π0(tP), ΓP(t

∗(1)) = 1 >
Π0(t

∗(1)), while ΓP is increasing and Π0 is non-increasing on [tP� t∗(1)): There exists a
unique solution (tP� qP) ∈ (tP� t

∗(1))× (q∗(tP)�1) with qP = ΓP(tP) = Π0(tP). For the sec-
ond case, we assume the opposite u(0� q∗(0)) > u(t∗(1)�1), then combine Lemma 1(b)
and Lemma 2 to see that ΓP is increasing and Π0 non-increasing on [0� t∗(1)], again
with ΓP(t

∗(1)) = 1 > Π0(t
∗(1)). To get the reverse inequality at t = 0, use (4) to get

u(0�Π0(0)) = V0(0�Π0(0)) < u(t∗(1)�1) = u(0� ΓP(0)), and thus Π0(0) > ΓP(0), since
both Π0 and ΓP exceed q∗(0), which implies uq < 0.
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FIGURE 12.—Equilibrium Payoffs. We graph equilibrium payoffs as a function of stopping time. On the left
is the unique safe pre-emption equilibrium with a flat payoff on an interval; in the middle, a pre-emption
equilibrium with inaction; on the right, a unit rush equilibrium.

In all cases, the only possible secure pre-emption equilibrium is: (i) Q(t) = 0 for t <
tP ; (ii) Q(t) = ΓP(t) on [tP� t∗(1)]; and (iii) Q(t) = 1 for all t > t∗(1). Since ut < 0 for
t > t∗(1), no player can gain from delaying until after the gradual play phase. To see that
no player can gain by pre-empting the rush, note that ut > 0 prior to the rush, while
the peak rush payoff V0(tP�Π0(tP)) > u(tP�0). Altogether, Q is the unique secure pre-
emption equilibrium. Q.E.D.

C.5. Safe Equilibria: Proofs for Section 6

PROOF OF LEMMA 3: By Definition 2, we must show: Q is safe if and only if Q is secure.
Step 1: Secure ⇒ Safe. Clearly, wε(0;Q) = w(0;Q) in a Nash equilibrium with a t = 0

rush. Now, assume Q with constant payoff π̂ on gradual play interval [ta� tb]. So for any
ε′ < (tb − ta)/2 and any t ∈ [ta� tb], one of the two intervals [t� t + ε′) or (t − ε′� t] will be
contained in [ta� tb] and thus obtain payoff π̂. Safety is maintained with a rush of payoff π̂
at ta or tb. Figure 12 illustrates how equilibria that are not safe cannot be secure.

Step 2: Safe ⇒ Secure. We show that if an equilibrium is not secure, then it is not safe.
If u is monotone in q, then Proposition 1 states that there is a unique equilibrium, which
involves a single gradual play phase, a rush at t = 0, or both; and is thus secure. Now
consider the hump-shaped case. By Proposition 2A, any equilibrium involves either an
initial rush, perhaps followed by a single pre-emption phase, or a single war of attrition
phase followed by a terminal rush. Assume an equilibrium with an initial rush of q̂ ∈ (0�1]
at time t̂, necessarily with Q(t) = 0 for all t < t̂ (the terminal rush case follows similar
logic). If this equilibrium is not secure, then t̂ ∈ (0� t∗(1)] and Q(t) = q̂ on an interval
following t̂. Since this is an equilibrium, V0(t̂� q̂) ≥ u(t̂�0). Altogether, infs∈(t̂−ε�t̂] w(s;Q)=
infs∈(t̂−ε�t̂] u(s�0) < V0(t̂� q̂) = w(t̂;Q) for all ε ∈ (0� t̂), where the strict inequality follows
from ut(t� q) > 0 for all t < t̂ ≤ t∗(1)≤ t∗(q).

Now consider an interval following the rush [t̂� t̂ + ε). If q̂ < 1, gradual play follows
the rush after delay Δ > 0, and V0(t̂� q̂) = u(t̂ + Δ� q̂). But since t + Δ < t∗(1), we have
ut(t� q̂) > 0 during the delay, and w(t;Q) = u(t� q̂) < V0(t̂� q̂) for all t ∈ (t̂� t̂ + Δ). Thus,
infs∈[t̂�t̂+ε) w(s;Q) < w(t̂;Q) for all ε ∈ (0�Δ). Now assume q̂ = 1 and consider the two
cases t̂ < t∗(1) and t̂ = t∗(1). If t̂ < t∗(1), then V0(t̂�1) > u(t̂�1), else stopping at t∗(1) is
strictly optimal. But then by continuity, there exists δ > 0 such that w(t̂;Q) = V0(t̂�1) >
u(t�1)= w(t;Q) for all t ∈ (t̂� t̂ + δ). If t̂ = t∗, equilibrium requires the weaker condition
V0(t

∗(1)�1) ≥ u(t∗(1)�1), but then we have ut(t�1) < 0 for all t > t̂; and so, w(t̂;Q) =
V0(t̂�1) > u(t�1)=w(t;Q) for all t > t̂. Q.E.D.
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PROOF OF PROPOSITION 4: When the stopping payoff is monotone in quantiles, there
is a unique Nash equilibrium by Proposition 1. Further, in each case, the identified equi-
librium is secure, and thus safe by Lemma 3. Now consider the non-monotone case. The
stopping support for any secure war of attrition equilibrium must be a single interval, since
the rush occurs at t > 0. To satisfy indifference, the rush payoff and adjacent gradual play
payoff must coincide, that is, V0(t� ΓW (t))= u(t�ΓW (t)), or equivalently ΓW (t)=Π1(t). In
the proof of Proposition 2B part (b), we constructed the unique war of attrition equilib-
rium that obeyed this equality. Altogether, our constructed war of attrition is the unique
secure war of attrition equilibrium.

Section C.4 Step 2 establishes the existence of a unique secure pre-emption equilibrium
given no greed at t∗(1) and alarm, while Step 3 establishes a unique secure pre-emption
equilibrium given no greed at t∗(1) and no alarm or panic. Finally, a unit mass rush at t = 0
is secure, and is the unique equilibrium with an initial rush given panic by Proposition 2B
parts (a) and (c). Q.E.D.

C.6. All Nash Equilibria: Proofs for Characterizing the Nash Set

PROOF OF LEMMA 4: We consider RP , and thus assume no greed at t∗(1) and no panic.
Step 1: RP([t0� t̄0]) = [q

P
�1] is Continuous, Increasing, and Exceeds ΓP . By Proposi-

tions 2B and 4, the unique safe initial rush (t0� qP
) satisfies (10). And since any equi-

librium initial rush includes the peak of V0 (Corollary 1) with V0 falling after this peak
(Lemma 2), q

P
must be the largest such solution at t0, that is, RP(t0) = q

P
. Now, for

the upper endpoint t̄0, combine the inequalities for no greed at t∗(1) and no panic:
V0(0�1) < u(t∗(1)�1) < V0(t

∗(1)�1), with V0(t�1) continuously increasing for t < t∗(1)
to get a unique t̄0 < t∗(1) satisfying V0(t̄0�1) = u(t∗(1)�1). That is, RP(t̄0) = 1. Com-
bining RP(t0) = q

P
< 1 = RP(t̄0), with V0(t� q) smoothly increasing in t ≤ t∗(1) and

smoothly decreasing in q ≥ q
P
, we discover: (i) t0 < t̄0; as well as (ii) the two inequalities

V0(t� q
P
) > u(t∗(1)�1) and V0(t�1) < u(t∗(1)�1) for all t ∈ (t0� t̄0). So, by V0(t� q) smoothly

increasing in t ≤ t∗(1)≤ t∗(q) and smoothly decreasing in q ≥ q
P
, the largest solution RP

to (10) uniquely exists for all t, and is continuously increasing from [t0� t̄0] onto [q
P
�1] by

the implicit function theorem.
We claim that RP(t) > ΓP(t) on (t0� t̄0]. First, V0(t0� qP

) ≥ u(t0� qP
), else players would

not stop in the safe rush (t0� qP
). Combining this inequality with V0(t� q) ≥ u(t�q)

for q ≥ Π0(t) by Lemma 2, we find RP(t0) ≥ Π0(t0). But then since RP is increas-
ing and Π0 non-increasing (Lemma 2), we have RP(t) > Π0(t) on (t0� t̄0]; and thus,
u(t�RP(t)) < V0(t�RP(t)) = u(t∗(1)�1) by Lemma 2 and (10). Altogether, given (3), we
have u(t�RP(t)) < u(t�ΓP(t)); and thus, RP(t) > ΓP(t) by uq(t� q) < 0 for q ≥ Π0(t) >
q∗(t).

Step 2: Local Optimality. Formally, the candidate initial rush RP(t) is undominated iff :

V0

(
t�RP(t)

) ≥ max
{
u(t�0)�u

(
t�RP(t)

)}
� (22)

Step 1 established V0(t�RP(t)) ≥ u(t�RP(t)) on [t0� t̄0]. When inequality (11) holds,
we trivially have V0(0�RP(0)) ≥ u(0�0): a t = 0 rush of size RP(0) is undominated.
Thus, we henceforth assume that the lower bound on the domain of RP is strictly pos-
itive: t0 > 0. But, since this lower bound is defined as the unique safe initial rush time,
Proposition 4 asserts that we cannot have alarm or panic. In this case, the proof of
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Proposition 2B part (a) Step 3 and Proposition 4 establish that the safe rush size obeys
RP(t0) = arg maxq V0(t0� q), but then V0(t0�RP(t0)) > u(t0�0). Now, since V0(t�RP(t)) is
constant in t on [t0� t̄0] by (10) and u(t�0) is increasing in t on this domain, we either have
V0(t�RP(t)) ≥ u(t�0) for all t ∈ [t0� t̄0], in which case we set t̄ ≡ t̄0, or there exists t̄ < t̄0
such that V0(t�RP(t))� u(t�0) as t � t̄ for t ∈ [t0� t̄0]. In either case, RP(t) satisfies (22)
for all t ∈ [t0� t̄], but for any t ∈ (t̄� t̄0], inequality (22) is violated. Q.E.D.

PROOF OF PROPOSITION 7: Let QNP be the set of pre-emption equilibria. With greed
at t∗(1) or panic, QNP�QP = ∅ by Proposition 2B. Henceforth, assume no greed at t∗(1)
and no panic.

Step 1: QNP ⊆QP . By Proposition 2A, pre-emption equilibria share Nash payoff
u(t∗(1)�1) and involve an initial rush. Thus, any equilibrium rush must satisfy u(t∗(1)�
1) = V0(t� q) ≥ u(t�q), that is, be of size q = RP(t) at a time t ∈ [t0� t̄0]. Further, by
Proposition 2A, there can only be a single inaction phase separating this rush from an
uninterrupted gradual play phase obeying (3), which Lemma 1 establishes uniquely de-
fines ΓP . Finally, by Lemma 4, the interval [t0� t̄] are the only times for which stopping in
the initial rush RP(t) is undominated.

Step 2: QP ⊆QNP. Recall that w(t;Q) is the payoff to stopping at time t ≥ 0 given
quantile function Q. Let QS ∈ QP be the unique safe pre-emption equilibrium and con-
sider an arbitrary Q ∈ QP with an initial rush at t0, inaction on (t0� tP), and gradual
play following ΓP(t) on [tP�1]. By construction, the stopping payoff is u(t∗(1)�1) for all
t ∈ supp(Q). Further, since QS is an equilibrium and Q(t) = QS(t) on [0� t0) and [tP�∞),
we have w(t�Q) = w(t�QS) ≤ u(t∗(1)�1) on these intervals: No player can gain by de-
viating to either [0� t0) or [tP�∞). By Lemma 4, RP(t) ≥ ΓP(t) on the inaction interval
(t0� tP) and thus V0(t�RP(t)) ≥ u(t�q): No player can gain from deviating to the inac-
tion interval. Finally, consider the interval [t0� t0) on which Q(t) = 0. Since u(t�0) is in-
creasing on this interval, no player can gain from pre-empting the rush at t0 provided
V0(t0�RP(t0)) > u(t0�0), which is ensured by (22).

Step 3: Covariate Predictions. Consider Q1�Q2 ∈ QP , with rush times t1 < t2. The rush
sizes obey RP(t1) <RP(t2) by RP increasing (Lemma 4). Gradual play start times are or-
dered Γ −1

P (RP(t1)) < Γ −1
P (RP(t2)) by Γ −1

P increasing (Lemma 1). Thus, gradual play du-
rations obey t∗(1)−Γ −1

P (RP(t1)) > t∗(1)−Γ −1
P (RP(t2)). Finally, by construction, Q1(t)=

Q2(t)= ΓP(t) on the intersection of the gradual play intervals [Γ −1
P (RP(t2))� t

∗(1)].
Q.E.D.

C.7. Comparative Statics: Proofs for Changes in Payoffs (Section 7 and Section 8)

LEMMA C.2—Rush Loci Changes: Assume a co-monotone delay. The initial and termi-
nal rush loci RP(t)�RW (t) fall. As a consequence, the initial rush with alarm q0 = RP(0)
falls.

PROOF: Rewriting (10), we see that any initial rush is defined by the indifference equa-
tion:

RP(t)
−1

∫ RP (t)

0

u(t�x|ϕ)
u(t�1|ϕ) dx= u

(
t∗(1|ϕ)�1|ϕ)
u(t�1|ϕ) � (23)

Since the initial rush RP(t) ≥ Π0(t) (by Corollary 1), the LHS of (23) falls in RP(t),
while the LHS falls in ϕ by log-supermodularity of u in (q�ϕ). Now, (23) shares the RHS
of (8), shown increasing in ϕ in the proof of Proposition 5. So, the initial rush locus obeys
∂RP/∂ϕ < 0. Q.E.D.
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Final Steps for Proposition 6

The following lemma completes Proposition 6.

LEMMA C.3: In the safe war of attrition equilibrium, the terminal rush shrinks in greed. In
the safe pre-emption equilibrium with no alarm, the initial rush shrinks in fear.

We prove the result for the pre-emption case; the war of attrition logic is symmetric.
Step 1: Preliminaries. First we claim that

V0(t� q|ϕ)≥ u(t�q|ϕ) ⇒ q−1

∫ q

0
ut(t�x|ϕ)dx≥ ut(t� q|ϕ)� (24)

Indeed, using u(t�q|ϕ) log-submodular in (t� q),

1
q

∫ q

0

ut(t�x|ϕ)
u(t�q|ϕ) dx = 1

q

∫ q

0

ut(t�x|ϕ)
u(t�x|ϕ)

u(t�x|ϕ)
u(t�q|ϕ) dx

≥ ut(t� q|ϕ)
qu(t�q|ϕ)

∫ q

0

u(t�x|ϕ)
u(t�q|ϕ) dx≥ ut(t� q|ϕ)

u(t�q|ϕ) �

Define ν(t� q�ϕ) ≡ u(t�q|ϕ)/u(t�1|ϕ), ν∗(t�ϕ) ≡ u(t∗(1)�1|ϕ)/u(t�1|ϕ), and V(t� q�
ϕ) = q−1

∫ q

0 ν(t�x�ϕ)dx. By u log-modular in (t�ϕ), ν∗
ϕ = 0, while ν∗

t ≶ 0 as ut ≷ 0. By
log-submodularity in (t� q) and log-supermodularity in (q�ϕ), νt > 0 and νϕ < 0.

Step 2: Vt ≥ νt and −Vϕ >−νϕ for all (t� q) satisfying (5), that is, q =Π0(t).

Vt − νt = q−1

∫ q

0

[
ut(t�x|ϕ)
u(t�1|ϕ) − u(t�x|ϕ)ut(t�1|ϕ)

u(t�1|ϕ)2

]
dx

−
[
ut(t� q|ϕ)
u(t�1|ϕ) − u(t�q|ϕ)ut(t�1|ϕ)

u(t�1|ϕ)2

]

≥ −q−1

∫ q

0

[
u(t�x|ϕ)ut(t�1|ϕ)

u(t�1|ϕ)2

]
dx+ u(t�q|ϕ)ut(t�1|ϕ)

u(t�1|ϕ)2 by (24)

= ut(t�1|ϕ)
u(t�1|ϕ)2

[
u(t�q|ϕ)− q−1

∫ q

0
u(t�x|ϕ)dx

]
= 0 by (5)�

Since u is strictly log-supermodular in (q�ϕ), symmetric steps establish that −Vϕ >−νϕ.
Step 3: A Difference in Derivatives. Lemma 1 proved Γ ′

P(t) > 0, Lemma 2 established
Π′

0(t) ≤ 0, while the in-text proof of Proposition 6 showed ∂ΓP/∂ϕ < 0 and ∂Π0/
∂ϕ > 0. We now finish the proof that the initial rush rises in ϕ by proving that starting
from any (t� q�ϕ), satisfying q = ΓP(t) = Π(t) and holding q fixed, the change dt/dϕ in
the gradual play locus (3) is smaller than the dt/dϕ in the peak rush locus (5). Evaluating
both derivatives, this entails

νϕ(t� q�ϕ)− Vϕ(t� q�ϕ)

Vt(t� q�ϕ)− νt(t� q�ϕ)
>

−νϕ(t� q�ϕ)

νt(t� q�ϕ)− ν∗
t (t)

� (25)

Since ut > 0 during a pre-emption game, we have ν∗
t < 0, νt > 0, and νϕ < 0 by Step 1;

so that inequality (25) is satisfied if νt(νϕ − Vϕ) > −νϕ(Vt − νt) ⇔ −Vϕνt > −νϕVt , which
follows from Vt ≥ νt > 0 and −Vϕ > −νϕ > 0 as established in Steps 1 and 2. Q.E.D.
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Set Comparative Statics

We now prove the comparative statics claims of Section 8.

LEMMA C.4: Assume a harvest delay or increase in greed ϕH > ϕL, with qH =RP(tH |ϕH)
undominated. If tL =R−1

P (qH |ϕL)≥ t0(ϕL), then RP(tL|ϕL) is undominated.

Step 1: Harvest Delay. If qH =RP(tH |ϕH) satisfies inequality (22), then

1 ≤
∫ qH

0

u(tH�x|ϕH)

qHu(tH�0|ϕH)
dx=

∫ qH

0

u(tH�x|ϕL)

qHu(tH�0|ϕL)
dx

≤
∫ qH

0

u(tL�x|ϕL)

qHu(tL�0|ϕL)
dx= V0(tL�qH |ϕL)

u(tL�0|ϕL)
�

where the first equality follows from log-modularity in (q�ϕ) and the inequality owes to
u log-submodular in (t� q) and tL < tH by RP falling in ϕ (Lemma C.2). We have shown
V0(tL�qH |ϕL) ≥ u(tL�0|ϕL), while tL ≥ t0(ϕL) by assumption. Together, these two condi-
tions are sufficient for RP(tL|ϕL) undominated, as shown in the proof of Lemma 4 Step 2.

Step 2: Increase in Greed. By Proof Step 2 for Lemma 4, RP(t|ϕ) is undominated for
t ∈ [t0(ϕ)� t̄0(ϕ)] iff u(t�0|ϕ) ≤ V0(t�RP(t|ϕ)|ϕ). Given u(t�0|ϕ) increasing in t ≤ t̄0(ϕ)
and V0(t�RP(t|ϕ)|ϕ) constant in t by (10), if the largest undominated time t̄(ϕ) < t̄0(ϕ)),
it solves

V̄
(
t̄(ϕ)�RP

(
t̄(ϕ)|ϕ)

�ϕ
) = 1� where V̄ (t� q�ϕ)≡ V0(t� q|ϕ)

u(t�0|ϕ) � (26)

By assumption, tL ≥ t0(ϕL). For a contradiction, assume tL is not undominated: tL >
t̄(ϕL).

We claim that starting from any (t̄� q�ϕ) satisfying both (10), that is, q = RP(t̄|ϕ),
and (26), that is, V̄ (t̄� q�ϕ) = 1, the change in the rush locus dR−1

P (q|ϕ)/dϕ, hold-
ing q fixed, exceeds the change along (26) dt̄/dϕ, holding q fixed. Indeed, defining
h(t�q�ϕ) ≡ u(t∗(1)�1|ϕ)/u(t�0|ϕ) and differentiating, we discover dR−1

P (q|ϕ)/dϕ −
dt̄/dϕ= V̄ϕ/(ht − V̄t)− V̄ϕ/(−V̄t) > 0, where the inequality follows from ht < 0 (by ut > 0
for t < t∗(1|ϕ)), hϕ = 0 (by u log-modular in (t�ϕ)), V̄t ≤ 0 (by u log-submodular in
(t� q)), V̄ϕ > 0 (by u log-supermodular in (q�ϕ)), and ht − V̄t ≥ 0 (else R(t|ϕ) falls in
t, contradicting Lemma 4). Altogether, given q̄L ≡ RP(t̄(ϕL)|ϕ), we have shown t̄(ϕL) =
R−1

P (q̄L|ϕH)≥ t̄(ϕH); and thus, tL > t̄(ϕH), but this contradicts tH > tL (by RP(·|ϕ) falling
in ϕ) and tH ≤ t̄(ϕH) (by qH =RP(tH |ϕ) undominated). Q.E.D.

Common Steps

Consider the sets QP(ϕH) and QP(ϕL) for a co-monotone delay ϕH > ϕL. The results
vacuously hold if QP(ϕH) is empty. Henceforth assume not. By Proposition 2B, QP(ϕH)
non-empty implies no greed at t∗(1|ϕH), which in turn implies no greed at t∗(1|ϕL) by∫ 1

0 [u(t�x|ϕ)/u(t�1|ϕ)]dx falling in ϕ (by log-supermodularity in (q�ϕ)), rising in t (by
log-submodularity in (t� q)), and t∗(1|ϕH) ≥ t∗(1|ϕL) (Propositions 5 and 6). Then, since
we have assumed no panic at ϕL, QP(ϕL) is non-empty, containing at least the safe pre-
emption equilibrium by Proposition 2B. Two results follow. First, by Proposition 2B, pre-
emption games end at t∗(1|ϕ), while Proposition 5 asserts t∗(1|ϕH) > t∗(1|ϕL) for a har-
vest delay and Proposition 6 claims t∗(1|ϕH) = t∗(1|ϕL) for an increase in greed. Thus,
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gradual play end times are ordered as claimed for any QH ∈ QP(ϕH) and QL ∈ QP(ϕL).
Likewise, the exit rates are ordered as claimed for all QH ∈ QP(ϕH) and QL ∈ QP(ϕL),
since Γ ′

P rises in ϕ by Propositions 5 and 6 and Q ∈ QP(ϕ) share Q′(t) = Γ ′
P(t) on any

common gradual play interval by Proposition 7.
By construction, choosing QH ∈ Q(ϕH) is equivalent to choosing a rush time tH in the

undominated interval [t0(ϕH)� t̄(ϕH)] characterized by Lemma 4. Let qH ≡ RP(tH |ϕH)
be the associated rush. Let t0(ϕL) and q

L
=RP(t0(ϕL)|ϕL) be the safe rush time and size

for ϕL.

Final Steps for Fundamental Changes

Assume a harvest delay ϕH > ϕL.
Case 1: q

L
> qH . Let QL be the safe pre-emption equilibrium. By Proposition 5, the

safe rush times obey t0(ϕL) ≤ t0(ϕH), while q
L
> qH by assumption: QL has a larger, ear-

lier rush than QH , as claimed. Since ΓP(t|ϕ) is increasing in t by Lemma 1 and decreasing
in ϕ by Proposition 5, the inverse function Γ −1

P (q|ϕ) is increasing in q and decreasing in
ϕ. Thus, gradual play start times obey Γ −1

P (qH |ϕH) > Γ −1
P (q

L
|ϕL), as claimed. Altogether,

QL ≥ QH , since QL has a larger and earlier rush, an earlier start and end time to gradual
play, and the gradual play c.d.f.s are ordered ΓP(t|ϕL) > ΓP(t|ϕH) on the common gradual
play support.

Case 2: q
L

≤ qH . Since QH is an equilibrium, qH = RP(tH |ϕH) is undominated. And
by Lemma 4, RP(·|ϕL) is continuously increasing with domain [q

L
�1], which implies

tL ≡ R−1
P (qH |ϕL) ≥ t0(ϕL) exists. Thus, qH = RP(tL|ϕ) is undominated by Lemma C.4,

and tL defines an equilibrium QL ∈QP(ϕL). Further, QL and QH have the same size rush
by construction, while rush times are ordered tL < tH ≡ R−1

P (qH |ϕH) by RP falling in ϕ
(Lemma C.2). Now, since ΓP(t|ϕ) is increasing in t (Lemma 1) and falling in ϕ (Propo-
sition 5), gradual play start times obey Γ −1

P (RP(tL|ϕL)|ϕL) < Γ −1
P (qH |ϕH), as required.

Altogether, QL ≥ QH , since QL has the same size rush, occurring earlier, an earlier start
and end time to gradual play, and the gradual play c.d.f.s are ordered ΓP(t|ϕL) > ΓP(t|ϕH)
on any common gradual play interval.

Final Steps for Quantile Changes

Since QP(ϕH) = ∅ with panic (Proposition 2B), assume no panic at ϕH . The proof
for alarm at ϕL parallels the above steps for fundamental changes. We henceforth as-
sume no alarm at ϕL, and since the premise assumes no panic at ϕL, inequality (4)
obtains at ϕL. But then, since V0(0� q|ϕ)/u(t∗(1|ϕ)�1|ϕ) falls in ϕ by u log-modular in
(t�ϕ) and log-supermodular in (q�ϕ), inequality (4) also obtains at ϕH . Altogether, nei-
ther alarm nor panic obtain at ϕL and ϕH . Then, by Proposition 6, safe rush times obey
t0(ϕL) < t0(ϕH)≤ tH with sizes q

L
<RP(t0(ϕH)|ϕH)≡ q

H
. By Lemma 4, RP(·|ϕL) is con-

tinuously increasing onto domain [q
L
�1] ⊃ [q

H
�1]; and thus, tL ≡ R−1

P (qH |ϕL) > t0(ϕL)

uniquely exists, is undominated by Lemma C.4, and satisfies tL < tH by RP(·|ϕ) falling in
ϕ (Proposition 6). Altogether, tL defines QL ∈ QP(ϕL) with an earlier rush of the same
size as QH , as claimed. The function ΓP(t|ϕ) is increasing in t (Lemma 1) and decreasing
in ϕ (Proposition 6): Gradual play start times obey Γ −1

P (RP(tL|ϕL)|ϕL) < Γ −1
P (qH |ϕH),

as required. Altogether, QL ≥ QH as claimed, since QL has the same size rush, occurring
earlier, an earlier start and same end time to gradual play, and gradual play c.d.f.s obey
ΓP(t|ϕL) > ΓP(t|ϕH) on any common gradual play interval. Q.E.D.
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C.8. Asset Bubble and Bank Run Payoffs: Omitted Proofs (Section 9)

LEMMA C.5: The bubble payoff (13) is log-submodular in (t� q), and log-concave in t
and q.

PROOF: That κ(t + τ(t� q)) ≡ q yields κ′(t + τ(t� q))(1 + τt(t� q)) = 0 and κ′(t +
τ(t� q))τq(t� q) = 1. So, τt ≡ −1 and τq < 0 given κ′ < 0. Hence, τtq = 0, τtt = 0, and
τqq = −(κ′′/κ′)(τq)2. Thus,

∂2 log
(
F

(
τ(t� q)

))
∂t∂q

F
(
τ(t� q)

)2 = [
FF ′′ − (

F ′)2]
τtτq + FF ′τtq = [

FF ′′ − (
F ′)2]

τtτq ≤ 0�

Twice differentiating log(F(τ(q� t))) in t likewise yields [FF ′′ − (F ′)2]/F 2 ≤ 0. Similarly,

∂2 log
(
F

(
τ(t� q)

))
/∂q2 = (τq)

2
[
FF ′′ − (

F ′)2 − (
κ′′/κ′)FF ′]/F 2 ≤ 0�

where −κ′′/κ′ ≤ 0 follows since κ is decreasing and log-concave. Q.E.D.

LEMMA C.6: The bank run payoff (15) is log-submodular in (q�α). This payoff is log-
supermodular in (q�R) provided the elasticity ζH ′(ζ|t)/H(ζ|t) is weakly falling in ζ.

PROOF: By Lemma 2.6.4 in Topkis (1998), u is log-submodular in (q�α), as H is mono-
tone and log-concave in ζ, and 1 − αq is monotone and submodular in (q�α). It is log-
supermodular in (q�R):

∂2 log
(
H(·))

∂q∂R
H(·)2(1 −R)2 =

(
1 − αq

1 −R

)((
H ′)2 −HH ′′) −HH ′ ≥ 0� (27)

that is, x(H ′(x)2 − H(x)H ′′(x)) − H(x)H ′(x) ≥ 0, namely, with xH ′(x)/H(x) weakly
falling. Q.E.D.

C.9. Payoff Heterogeneity: Unique Gradual Play Loci

Let t0 (t1) be the initial (terminal) rush time in the safe pre-emption (war of attrition)
equilibrium.

LEMMA C.7: For any original game, there exist δ∗ > 0 and λ ≥ 0, such that, for all δ≤ δ∗:
(a) Given no fear at t∗(0) in the original game, there exists a unique solution ΓW (t|δ)

to (18) on [tW (δ)� t1 + λ] satisfying Qδ(tW (δ))= 0, which is continuous in δ.
(b) Given no greed at t∗(1) and no alarm or panic in the original game, there exists a

unique solution ΓP(t|δ) to (18) on [t0 − λ� tP(δ)] satisfying Qδ(tP(δ))= 1, which is continu-
ous in δ.

(c) Given no greed at t∗(1) and alarm in the original game, there exists a unique solution
ΓP(t|δ) to (18) on [0� tP(δ)] satisfying Qδ(tP(δ))= 1, which is continuous in δ.

We prove part (b). The proof for parts (a) and (c) follow similar steps.
Step 1: The MRS is Smooth. The marginal rate of substitution ut(t� q�Eδ(q))/uq(t� q�

Eδ(q)) is continuous in t and δ, and Lipschitz in q on any non-empty set [tL� tH]× [qL�qH]
for which uq is uniformly bounded away from zero (in t). Indeed, continuity in t follows
from ut and uq C

1 in t and uq non-zero. Lipschitz continuity in q and continuity in δ follow
from uq uniformly bounded away from zero, ut and uq C1 in ε = Eδ(q), and the inverse
Eδ(q) of the C1 (in (δ�q)) function Υδ(q) C

1 in q and δ (by the implicit function theorem).



912 A. ANDERSON, L. SMITH, AND A. PARK

Step 2: Uniformly Bounding uq. When u is monotone in q, we assumed |uq| uni-
formly bounded away from 0 (in t), and thus there exists δ∗ > 0 and B > 0 such that
|uq(t� q�Eδ(q))| > B for all δ < δ∗ by uq(t� q�ε) → uq(t� q) as ε → 0 and Eδ(q) → 0 as
δ→ 0.

Next, consider the non-monotone case, that is, q∗(t) ∈ (0�1). In this case, u is log-
concave in q, while u is always log-submodular in (t� q): The ratio u/uq is non-decreasing
in t and q. Thus, since u > 0 and uq(t� q) < 0 for q > q∗(t), if uq(tL�qL) < −B′ for some
B′ > 0, tL, and qL > q∗(tL), then uq(t� q) < −B′ for all (t� q) > (tL�qL). Now, given no
greed at t∗(1) and no alarm or panic, the safe rush at t0 > 0 is of size Π0(t0) ∈ (q∗(t0)�1).
Thus, setting −B′ = uq(t0�Π0(t0)), we have uq(t� q) ≤ −B′ < 0 on [t0�∞) × [Π0(t0)�1].
Finally, u is continuous in (t� q) and uq(t� q�Eδ(q)) → uq(t� q) as δ → 0, thus there exist
(δ∗�B�λ1�λ2) > 0, such that uq(t� q�Eδ(q)) <−B on [t0 −λ1�∞)× [Π0(t0)−λ2�1] for all
δ≤ δ∗.

Step 3: Existence, Uniqueness, and Continuity. First, there exist δ∗ > 0 and M1 > 0, such
that there exists a unique solution ΓP(t|δ) to (18) on [tP(δ) − M1� tP(δ)] satisfying
Qδ(tP(δ))= 1 for all δ≤ δ∗, and this solution is continuous in δ. Indeed, tP(δ)→ t∗(1) as
shown in the text after Proposition A.2, while t0 < t∗(1); and thus, by Steps 1 and 2, there
exist δ∗�M1�M2 > 0 such that ut(t� q�Eδ(q))/uq(t� q�Eδ(q)) is well-defined (uq nonzero),
continuous in t, and Lipschitz in q on [tP(δ)−M1�∞]×[1−M2] for all δ ≤ δ∗. Thus, there
exists a unique solution ΓP(t|δ) to (18) on [tP(δ)−M1� tP(δ)] by the Picard–Lindelof the-
orem. Further, since the MRS is continuous in δ on this interval and tP(δ) is continuous
in δ, Theorem 2.6 in Khalil (1992) yields ΓP(t|δ) continuous in δ≤ δ∗ on this interval.

If tP(δ) − M1 < t0, we are done. Otherwise, we recursively define ΓP(t|δ) on the time
intervals I(n�δ) ≡ [max{tP(δ)−nM1� t0 −λ1}� tP(δ)− (n− 1)M1] for n = 1� � � � �N , where
N satisfies tP(δ) − NM1 < t0 < tP(δ) − (N − 1)M1. The prior paragraph proved that for
sufficiently small δ, the solution ΓP(t|δ) to (18) satisfying Qδ(tP(δ))= 1 uniquely exists on
I(1� δ) and is continuous in δ. For n= 2� � � � �N , let ΓP(t|δ) be the unique solution to (18)
on I(n�δ), obeying terminal condition Qδ(tP(δ)− (n− 1)M1)= ΓP(tP(δ)− (n− 1)M1|δ).
To see that ΓP(t|δ) is uniquely defined and continuous in δ on I(n�δ) for 2 ≤ n ≤ N ,
note that if ΓP(t|δ) uniquely exists and is continuous in δ on I(n−1� δ), then the terminal
condition Qδ(tP(δ)−(n−1)M1)= ΓP(tP(δ)−(n−1)M1|δ) is well-defined and continuous
in δ, converging to ΓP(t

∗(1) − (n − 1)M1) > ΓP(t0) ≥ Π0(t0). Thus, given λ2 > 0 defined
in Step 2, there exists δ∗ > 0 such that the terminal condition exceeds Π0(t0) − λ2 for all
δ≤ δ∗, while the interval I(n�δ)⊂ [t0 −λ1� tP(δ)]. Thus, we may WLOG restrict attention
to (t� q) ∈ [t0 − λ1�∞) × [Π0(t0)− λ2�1] for which we establish in Steps 1 and 2 that the
conditions for the Picard–Lindelof theorem and Theorem 2.6 in Khalil (1992) hold with
Lipschitz constant B across all I(n�δ), justifying the use of the same constant M1 for all n.
Altogether, ΓP(t|δ) uniquely exists and is continuous in δ on an interval [t0 − λ1� tP(δ)]
for all δ≤ δ∗. Q.E.D.
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