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1.  Introduction

Economics is built on the Walrasian sup-
ply and demand cornerstone, with trade 

anonymously guided by a fictitious impar-
tial auctioneer. This survey article explores 
the literature that has largely emerged in 
the last quarter century on decentralized 
matching models with and without frictions. 

Matching models enrich the Walrasian par-
adigm, capturing person-specific goods 
and relationships. The frictional matching 
literature replaces the auctioneer’s gavel by 
a mixture of dynamic choice and chance. It 
thus impedes the invisible hand with costs or 
imperfect information.

In this research thread of the assignment 
and matching literature, a dominant theme is 
positive sorting—the best are matched with 
one another, as are the next best, and so on. 
Indeed, we observe firms spending signifi-
cant resources to hire the right employee; the 
government spends large sums on unemploy-
ment benefits to provide incentives for work-
ers to search for the right jobs; people invest 
great time resources searching for the right 
mates—including the use of online dating 
markets to find more and better partners; and 
house buyers generally hire agents to help 
find their ideal property matching their tastes.

Even in the Walrasian setting with cen-
tralized trade, frictionless matching of 
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heterogeneous agents makes explicit the sort-
ing patterns between agents. The theoretical 
literature on frictionless matching has largely 
pursued two main lines of thought. In one, 
match payoffs are nontransferable, and equi-
librium (stability) requires checking pair-
wise double coincidence of wants. This work 
began with the path-breaking math article 
by Gale and Shapley (1962) that developed 
an intuitive algorithm for generating stable 
matchings; this is the cornerstone of the large 
centralized matching literature. Meanwhile, 
a parallel model allowing transferable payoffs 
emerged, closer in spirit to market econom-
ics, in which a welfare theorem held. This 
social planner’s problem for the matching lit-
erature dates back to the early work by Monge 
(1781) and Kantorovic (1942) on the mass 
transportation problem, and to Koopmans 
and Beckmann (1957) who introduced a pric-
ing system to solve the problem. This liter-
ature saw its fruition in Shapley and Shubik 
(1972). Whereas Gale and Shapley allowed 
heterogeneous preferences, the seminal mar-
riage-model paper by Becker (1973) assumed 
common ordinal preferences over partners. 
He found that matching was assortative when 
the match-payoff function was supermodu-
lar. This literature was naturally drawn to this 
pivotal sorting question in a variety of eco-
nomic contexts like marriage markets, labor 
markets, housing markets, industrial organi-
zation, and international trade.

Concurrent with the matching literature, 
the economics of search theory was devel-
oping. Motivated by the failure of the law of 
one price, Stigler (1961) had formulated the 
first search optimization in economics. This 
has since proven useful for understanding 
wage formation and unemployment in the 
labor market. Search offers a way to formalize 
decentralized trade. In many formulations, 
the Walrasian assumptions on price setting 
are too strong. For example, agents do not 
see all prices of houses transacted, and even 
if they did, in the presence of information 

frictions or because of differences in private 
valuations, they would need costly inspection.

Until the 1990s, the matching and search 
theory literatures largely proceeded in iso-
lation.1 But the development of frictional 
matching models that began in the early 
1990s has sparked renewed interest in both 
the frictionless matching and search para-
digms. This has been driven by the impor-
tance of heterogeneity and sorting in many 
economic environments where search 
frictions are significant. Since then, the 
two literatures have been bedfellows. For 
search frictions create equilibrium feedback 
between types who would otherwise remain 
unmatched. For instance, when low-produc-
tivity jobs are filled by high-ability workers, 
this affects the labor market prospects of the 
low-ability workers. This has been a major 
theme that has emerged.

Pursuant to this merger of the search and 
matching literatures, an alternative approach 
to search theory developed. Rather than 
explicitly and separately model the dynamic 
matching and price negotiation processes, 
in directed search, firms first set prices and 
then buyers direct their search, and finally 
meetings materialize. One slice of the liter-
ature here captured market-clearing failures 
in two-sided matching models in the spirit of 
Gale and Shapley (1962) by explicitly mod-
eling the queues that form. Buyers arrive at 
sellers, and the queue length acts like a price, 
as it does at an amusement park. Another 
approach instead explicitly models the 
stockouts that emerge—students apply for 
slots at colleges, and are generally rejected. 
Formally, they are told that no slot is avail-
able. Directed search often also exploits the 
role of prices: sellers post prices first, upon 

1 Sattinger (1993) nicely surveyed the matching models 
that were standard in labor-market applications until the 
1990s. Search and information frictions play only a minor 
role in that survey. The large literature that we cover in 
this paper illustrates how much it has progressed in the last 
twenty-five years. 
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which buyers make their purchase decisions, 
taking matching frictions into account.

We offer a self-contained review of 
this literature. We introduce the bench-
mark matching models without frictions. 
Motivated by some unrealistic implications, 
we then explore the search models that have 
emerged that best address these failings. We 
finally assemble these pieces, fleshing out 
matching models beset by search and infor-
mation frictions. By focusing on its main 
analytic idea, possibly by way of example, we 
present each as a teachable unit. We then 
touch on salient applications, for in recent 
years matching models have been applied 
broadly in economics. Examples without 
frictions include marriage markets, hier-
archies, international trade, finance, CEO 
compensation, foreign direct investment, 
and development.2 Matching models with 
frictions afford analyses of unemployment 
in the presence of sorting such as mismatch, 
the transmission of labor market risk, and 
the impact of macroeconomic fluctuations.3 
Throughout the review, we refer to some of 
these papers, and highlight open-research 
agendas as a roadmap for future work.

Overall, this survey explores how two eco-
nomic literatures, one in optimization and 
another in equilibrium, merged to create 
a cohesive equilibrium story of frictional 
markets.

2.  Frictionless Matching and Sorting

To study how search frictions and/or infor-
mation frictions shape matching outcomes in 

2 See, among many others, Garicano (2000); Sørensen 
(2007); Antras, Garicano, and Rossi-Hansberg (2006); 
Grossman, Helpman, and Kircher (2013); Grossman and 
Maggi (2000); Tervio (2008); Gabaix and Landier (2008); 
Guadalupe et al. (2014); and Ackerberg and Botticini 
(2002). 

3 See, for example, Lise, Meghir, and Robin (2013); 
Lamadon (2014); Lise and Robin (2017). 

economic environments, we first analyze the 
benchmark case without frictions.

Many important problems can be thought 
of as pairwise matching or an assignment 
of two groups of heterogeneous elements, 
either individuals or goods. This can be 
accomplished by a benevolent planner or can 
take place in a decentralized setting where 
there is competition for agents or objects. 
Examples abound: sorting men and women 
into marriages, assigning workers to firms, 
locations to plants, buyers to sellers, coun-
tries to goods, etc. A distinctive feature is 
that agents or objects on each side are indi-
visible and frequently heterogenous.

An important modeling choice in this 
framework is how payoffs are shared within 
a match. Two polar choices are perfectly 
transferable utility (perfect TU), where 
agents can freely transfer payoffs between 
them at a constant rate, and nontransferable 
utility (NTU), where either no transfers are 
possible or the division of the match sur-
plus is exogenously given and preferences 
over mates can be fully expressed in ordinal 
terms. A blend of both cases is imperfectly 
transferable utility (imperfect TU), where 
payoffs are neither fully transferable nor 
exogenously given.4 In the rest of the sec-
tion, we provide a detailed analysis of the 
TU and NTU paradigms, as well as several 
economic applications.5 Our focus is on the 
conditions under which assortative match-
ing obtains. Given our interest in sorting, we 

4 We break with tradition and use the more suggestive 
terminology in Noeldeke and Samuelson (2015) instead 
of the well-established one from cooperative game theory 
used by Legros and Newman (2007). That is, instead of 
transferable utility we call it perfectly transferable utility; 
instead of nontransferable utility we call it imperfectly 
transferable utility; and instead of strictly nontransferable 
utility we call it simply nontransferable utility.

5 We abuse the terminology slightly by calling the NTU 
case “frictionless,” since this feature can be due to some 
friction that prevents full transferability. What we mean 
here is that there are no search frictions (agents observe all 
potential partners) and no incomplete information about 
partners (agents observe their characteristics). 
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only discuss the NTU case results that shed 
light on sorting patterns, leaving aside many 
interesting issues in this framework that are 
extensively covered in the book by Roth and 
Sotomayor (1990).

2.1	 The Theory of Frictionless Sorting  
with Perfectly Transferable Utility

The insights below encapsulate the mes-
sage of a trio of seminal papers: Koopmans 
and Beckmann (1957), Shapley and 
Shubik (1972), and Becker (1973). 6 They  
first analyzed the matching problem between 
plants and locations and derived the prop-
erties of the optimal assignment and com-
petitive equilibrium as solutions to a linear 
programming problem and its dual. The sec-
ond one used as a metaphor the assignment 
of buyers and sellers in a market for hetero-
geneous houses, and provided solid game 
theoretic foundations to the problem, deriv-
ing the optimal assignment, core allocations, 
and competitive equilibrium in a unified 
way.7 None of these papers focus on sort-
ing patterns. It was Becker (1973) who, in a 
marriage context, provided the fundamental 
insight about complementarities of partners’ 
characteristics in the match payoff function 
and the resulting positive or negative assorta-
tive matching (PAM or NAM) in the optimal/
equilibrium assignment of men and women. 
His analysis remains a cornerstone of match-
ing theory, and has also become important in 
empirical work on the subject, since it pro-
vides the theory with empirical content.

2.1.1	 The Basic Model 

We derive the main insights using a simple 
instance of the matching model with perfect 

6 In the mathematics literature, the Monge–Kantorovich 
optimal-transport problem subsumes many frictionless 
matching problems. For an authoritative treatise of this 
problem, see Villani (2009). 

7 An excellent source for these results in both the finite 
and continuous case is Gretsky, Ostroy, and Zame (1999). 

TU (i.e., an assignment game, using the 
terminology of Shapley and Shubik 1972), 
leaving extensions for later. For definiteness, 
we cast the problem in terms of a marriage 
market, but it will be obvious that other 
applications follow by a simple reinterpreta-
tion of the two sides of the market. There are ​
N​ women and ​N​ men. Each woman ​i​ has a 
characteristic (type) ​​x​ i​​  ∈  [0, 1]​ and each man ​
j​ has a characteristic ​​y​ j​​  ∈  [0, 1]​; for simplic-
ity, assume that ​​x​ 1​​  < ​ x​ 2​​  <  ⋯  < ​ x​ N​​​ and ​​
y​ 1​​  < ​ y​ 2​​  <  ⋯  < ​ y​ N​​​. If woman ​​x​ i​​​ marries 
man ​​y​ j​​​ , then they produce a positive output ​
f (​x​ i​​ , ​y​ j​​)​. We can thus identify each agent 
with his or her type. We make the innocuous  
assumption that single agents produce zero 
output. Crucially, agents’ preferences are 
linear in money (perfect TU), and thus part-
ners can freely share the match output pro-
duced using transfers.8

We answer the following questions: What 
is the optimal matching of men and women? 
Under what conditions does this assignment 
exhibit PAM or NAM? Is this allocation in 
the core of the assignment game? Can it be 
decentralized as a Walrasian equilibrium?

2.1.2	 The Optimal Assignment Problem

Start with the planner’s problem. Since 
utility is transferable, efficiency demands 
that an optimal matching maximize the sum 
of all match outputs.9 Formally, the optimal 
matching is the solution to the following 
maximization problem: 

(1)	​​ max​ 
π
​    ​  ∑ 

i=1
​ 

N

 ​​ f ​(​x​ i​​ , ​y​ π(i)​​)​​,

where the maximization is taken over all 
possible permutations ​π : {1, 2, … , N}  →  

8 Actually, the model allows for transfers to other pairs, 
but one can easily show that they are not used in the core 
or competitive-equilibrium allocations. 

9 If this were not the case, there would be a rematching 
of some of the agents that would increase the total size of 
the pie to be distributed, contradicting optimality. 
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{1, 2, … , N}​. By a well-known result in 
rearrangement inequalities (e.g., see Vince 
1990 and the main sorting result in the 
appendix of Becker 1973), the identity per-
mutation ​π(i)  =  i​ for all ​i​ solves problem (1) 
if ​f​ is supermodular10, 11 on ​​[0, 1]​​ 2​​. This con-
dition is not only sufficient but also necessary 
if the result must hold for all distributions of 
types for men and women. In short, PAM is 
optimal if and only if ​f​ is supermodular, that 
is, when men’s and women’s types are com-
plements in the match output function. In 
this case, the planner pairs the woman and 
man with the best characteristics, the second 
best woman with the second best man, and 
so on.

It is easy to see why supermodularity is 
sufficient for PAM—independently of the 
distribution of men’s and women’s types. 
Under any other assignment, there are two 
women, say ​i​ and ​i′​ with ​i′  >  i​, respectively 
matched with two men ​j​ and ​j′​ with ​j  >  j′​.  
The total output of these couples ​f (​x​ i​​ , ​y​ j​​) +  
f (​x​ ​i​ ​ ′​​​, ​y​ ​j​

 
​ ′​​​)​ is lower than ​f (​x​ i​​, ​y​ ​j​

 
​ ′​​​) + f (​x​ ​i​ ​ ′​​​, ​y​ j​​)​,  

by supermodularity. Hence, the planner 
can increase total output by assortatively 
rematching them.

A similar argument reveals that the reverse 
permutation ​π(i)  =  N − i + 1​ solves the 
problem if and only if ​f​ is submodular  
in ​(x, y)​. Thus, NAM is optimal when types 

10 A real-valued function ​f​ on a lattice ​X  ⊆ ​ 핉​​ n​​ (e.g.,  
​​[0, 1]​​ 2​​) is supermodular if ​f (x′ ∨ x″ ) + f (x′ ∧ x″ )  ≥  f (x′ ) +  
f (x″ )​ for all ​x′​ and ​x″​ in ​X​, where ​x′ ∨ x″  =  max {x′, x″  }​ 
and ​x′ ∧ x″  =  min {x′, x″  }​. If ​f​ is twice continuously dif-
ferentiable, then this is equivalent to ​​∂​​ 2​ f (x)/∂ ​x​ i​​ ∂ ​x​ j​​  ≥  0​ 
for all ​i  ≠  j​. The function is submodular if ​f (x′ ∨ x″  ) +  
f (x′ ∧ x″  )  ≤  f (x′  ) + f (x″  )​ for all ​x′​ and ​x″​ in ​X​, and this is 
equivalent to ​​∂​​ 2​ f (x)/∂ ​x​ i​​ ∂ ​x​ j​​  ≤  0​ for all ​i  ≠  j​ if ​f​ is twice 
continuously differentiable. These concepts are strict if the 
inequalities are strict. 

11 This is a nonlinear generalization of an inequality for 
products of vectors in Hardy, Littlewood, and Polya (1952). 
In the discrete case considered, it states (see Vince 1990) 
that if ​​f​ 1​​, … , ​f​ n​​​ are real-valued functions on an interval ​I​,  
then ​​∑ i​   ​​ ​f​ i​​ (​b​ n−i+1​​)  ≤ ​ ∑ i​   ​​ ​f​ i​​ (​b​ π​​ (i))  ≤ ​ ∑ i​   ​​ ​f​ i​​ (​b​ i​​)​ for all 
sequences ​​b​ 1​​  ≤ ​ b​ 2​​  ≤  ⋯  ≤ ​ b​ n​​​ and all ​π​ if and only if ​​
f​ i+1​​ − ​f​ i​​​ is increasing on ​I​ for ​1  ≤  i  <  n​. 

are substitutes in production. In this case, 
the best woman is paired with the man with 
the lowest type, the second best woman  
with the man with the second lowest type, 
and so on.

A useful alternative linear programming 
formulation of the optimal assignment prob-
lem is: 

(2)	​​ max​ 
α

​    ​ ∑ 
i=1

​ 
N

 ​​ ∑ 
j=1

​ 
N

 ​​  f (​x​ i​​ , ​y​ j​​) ​α​ ij​​​

subject to ​​∑ j=1​ N  ​​ ​α​ ij​​  ≤  1​ for all ​i​, ​​∑ i=1​ N  ​​ ​α​ ij​​  
≤  1​ for all ​j​, and ​​α​ ij​​  ≥  0​ for all ​i, j​. Since ​​
α​ ij​​​ is not merely zero or one, the problem 
permits fractional assignment of men and 
women. Koopmans and Beckmann (1957) 
and Shapley and Shubik (1972), however, 
showed that there is an optimal solution 
with ​​α​ ij​​  ∈  {0, 1}​. If ​f​ is supermodular, then ​​
α​ ij​​  =  1​ when ​i  =  j​, and PAM ensues; if 
not, then one can find a profitable rematch-
ing. A similar analysis holds for NAM.

2.1.3	� Core, Stability, and Walrasian 
Equilibrium

Instead of the planner’s problem, we could 
envision men and women competing for 
partners in the assignment game, where they 
can bid for each other and sign contracts 
specifying how to divide the match output. 
To fix ideas, assume ​f​ is strictly supermodular, 
and thus the optimal assignment is PAM. Let ​
i  >  i′​ and ​j  >  j′​; by strict supermodularity, ​
f (​x​ i​​ , ​y​ j​​) + f (​x​ ​i​ ​ ′​​​, ​y​ ​j​

 
​ ′​​​)  >  f (​x​ i​​ , ​y​ ​j​

 
​ ′​​​) + f (​x​ ​i​ ​ ′​​​, ​y​ j​​)​.  

This inequality implies ​f (​x​ i​​ , ​y​ j​​) − f (​x​ ​i​ ​ ′​​​, ​y​ j​​)  
>  f (​x​ i​​ , ​y​ ​j​

 
​ ′​​​) − f (​x​ ​i​ ​ ′​​​, ​y​ ​j​

 
​ ′​​​)​, so that the willing-

ness to pay for the higher woman ​​x​ i​​​ is higher 
for the higher man ​​y​ j​​​ than for ​​y​ ​j​

 
​ ′​​​​. So when 

competing for partners, ​j​ can outbid ​j′​ in 
the quest for ​i​. Consequently, any “stable” 
outcome of the assignment game exhibits 
PAM. Alternatively, we could explore the 
performance of a competitive market where 
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agents from each side take “partners’ prices” 
as given. The same logic reveals that any 
Walrasian equilibrium of this market deliv-
ers PAM when ​f​ is strictly supermodular, and 
NAM when ​f​ is strictly submodular.

Let ​​v​ 1​​, … , ​v​ N​​​ and ​​w​ 1​​, … , ​w​ N​​​ be the mul-
tipliers associated with the constraints after 
(2). Then the dual problem is12 

(3)	​​ min​ 
v, w

​ 
 
  ​ ∑ 

i=1
​ 

N

 ​​ ​v​ i​​ + ​ ∑ 
j=1

​ 
N

 ​​ ​w​ j​​​,

subject to ​​v​ i​​ + ​w​ j​​  ≥  f (​x​ i​​ , ​y​ j​​)​, ​​v​ i​​  ≥  0​, and ​​
w​ j​​  ≥  0​. From the linear programming 
duality theorem, the value to this prob-
lem is the same as that of problem (2), and 
thus of (1). Moreover, the ​​α​ ij​​​ s of problem 
(2) are the multipliers of problem (3). It 
follows that if ​(α, v, w)​ solves (2) and (3), 
then (i) ​​∑ i=1​ N  ​​  ​∑ j=1​ N  ​​ f (​x​ i​​ , ​y​ j​​) ​α​ ij​​  = ​ ∑ i=1​ N  ​​ ​v​ i​​ +  
​∑ j=1​ N  ​​ ​w​ j​​​; and ​(ii)​ ​​v​ i​​ + ​w​ j​​  =  f (​x​ i​​ , ​y​ j​​)​ for each 
pair ​(i, j)​ such that ​​α​ ij​​  =  1​; and ​(iii)​ ​​v​ i​​ + ​w​ j​​  
≥  f (​x​ i​​ , ​y​ j​​)​ for each pair ​(i, j)​ such that ​​
α​ ij​​  =  0​.

The triple ​(α, v, w)​ optimally matches 
the two populations and provides a division 
of the match output between partners that 
exhausts output, if we interpret ​​v​ i​​​ and ​​w​ j​​​ as 
the wages of woman ​i​ and man ​j​. That triple 
is also a stable matching of the assignment 
game, for no man and woman not originally 
matched can profitably block the assignment 
given (iii), since the sum of the utilities in 
their original matches more than exhausts 
the match output if they rematch. Moreover, 
(iii) implies that no coalition of men and 
women can improve upon ​(α, v, w)​. Hence, 
the solution of the dual problem character-
izes the core of the assignment game.

We now decentralize the optimal/core 
matching as a Walrasian equilibrium. Let 
women take the men’s wages ​​w​ 1​​, …, ​w​ N​​​ as 
given. Then woman ​i​ chooses the man ​j​ that 

12 See Chvatal (1983), chapter 5, for a derivation and for 
the proof of the duality theorem of linear programming. 

maximizes ​f (​x​ i​​ , ​y​ j​​) − ​w​ j​​​ . By construction 
of the core allocation, ​​v​ i​​  =  f (​x​ i​​ , ​y​ j​​) −  
​w​ j​​​ if ​​α​ ij​​  =  1​. That is, ​​v​ i​​​ is the wage that 
woman ​i​ obtains in the core allocation. 
Also, for any other man ​j′​ with ​​α​ i​j​

 
​ ′​​​  =  0​, we  

have ​​v​ i​​  ≥  f (​x​ i​​, ​y​ ​j​
 
​ ′​​​)  −  ​w​ ​j​

 
​ ′​​​​, or ​f (​x​ i​​ , ​y​ j​​)  −  ​w​ j​​  

≥  f (​x​ i​​ , ​y​ ​j​
 
​ ′​​​) − ​w​ ​j​

 
​ ′​​​​. Hence, when con-

fronted with men’s wages ​​w​ 1​​, … , ​w​ N​​​,  
woman ​i​ optimally selects the same partner 
as in the core allocation.

Since one can perform this analysis for 
men, the optimal matching can be decen-
tralized as a Walrasian equilibrium of the 
marriage market. The wage of a woman in 
this market depends only on her type, and 
not on that of the man she matches with. For 
these wages are formally the utility payoffs 
of each woman in the core allocation. Since 
these wages are the multipliers of the lin-
ear programming constraints, each can be 
interpreted as the shadow value of adding a 
woman to the matching market—hence the 
dependence only on the woman’s type.

This analysis is valid with an unequal 
number of men and women. In that case, 
some agents on the long side of the market 
will remain single. Similarly, if we assume 
that agents can produce some output as sin-
gles, then match surplus will be its output 
minus the sum of the singles outputs. In this 
case, some agents may remain single at the 
optimal matching. While we have assumed 
only one agent of each type, our analysis is 
valid with different discrete distributions 
of types on each side. In this case, PAM 
matches agents from the top types down, 
respecting the measure of agents of each 
type in the population until the populations 
are exhausted.

2.1.4	 The Large-Market Case

As is standard in economics, the contin-
uum of agents idealization not only provides 
solid foundations for price-taking behavior, 
but also enables the use of calculus in the 
derivation of equilibria and their properties. 
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We will illustrate this convenient feature 
below with some important economic 
applications of the frictionless matching 
paradigm.

Assume an equal unit mass continuum of 
men and women. Each female has a type ​
x  ∈  [0, 1]​ drawn from a strictly increasing 
and continuously differentiable cdf ​G​ with 
positive density ​g​. Similarly, each man 
has a type ​y  ∈  [0, 1]​, with cdf ​H​ and den-
sity ​h​. We can define a (pure) matching as 
a function ​μ : [0, 1]  →  [0, 1]​ that is mea-
sure preserving, i.e., matching equal mea-
sures of men and women. For instance, 
PAM requires that ​G(x)  =  H(μ(x))​ for 
all ​x​. Hence, ​μ(x)  = ​ H​​ −1​ (G(x))​ is strictly 
increasing and ​μ′ (x)  =  g(x)/ h(μ(x))  >  0​. 
Under NAM, ​G(x)  =  1 − H(μ(x))​ for all ​x​,  
and thus ​μ(x)  = ​ H​​ −1​ (1 − G(x))​, with ​μ′(x)  
=  − g(x)/ h(μ(x))  <  0​.

The match output of a woman with type ​
x​ with a man with type ​y​ is ​f (x, y)​, now 
assumed twice continuously differentiable. 
A continuous version of the above rearrange-
ment inequality (e.g., see Lorentz 1953 and 
Crowe, Zweibel, and Rosenbloom 1986) 
shows that PAM is optimal if and only if ​f​ is 
supermodular, and NAM is optimal if and 
only if ​f​ is submodular. Also, the Shapley–
Shubik linear programming derivation of 
the optimal assignment, core allocations, and 
Walrasian equilibrium extends to continuous 
models (Gretsky, Ostroy, and Zame 1992, 
1999).

We now derive the Walrasian equilibrium 
and deduce the sorting pattern that ensues 
when production ​f (x, y)​ is supermodular or 
submodular. In so doing, we draw a simple 
connection between matching models and 
a basic monotone comparative statics result 
(Topkis 1998).

Consider a man of type ​y​ facing a wage 
profile ​v(x)​ for women ​x​. He seeks the 
woman ​x​ that maximizes his payoff: 

	​​   max​ 
x∈[0, 1]

​  
  ​  f (x, y) − v(x)​.

Now, if ​f​ is strictly supermodular (i.e., ​​
f​ xy​​  >  0​), then the objective function sat-
isfies the strict single-crossing property in  
​(x, y)​.13 Hence, in any solution to this 
problem, men with higher ​y​ choose women 
with higher ​x​.14 So if a Walrasian equilibrium 
exists, then it must exhibit PAM. This pro-
vides an alternative view of the sufficiency 
of supermodularity for PAM.15 From the 
above measure-preserving (market-clearing) 
property, the only candidate for equilib-
rium matching is ​y  =  μ(x)  = ​ H​​ −1​ (G(x))​ 
or ​x  = ​ μ​​ −1​ (y)​. This must satisfy the  
first-order condition ​v′(x)  = ​ f​ x​​ (x, μ(x))​, and 
thus: 

(4)	​ v(x)  = ​ v​ 0​​ + ​∫ 
0
​ 
x
​​ ​f​ x​​ (s, μ(s)) ds,​

where ​​v​ 0​​​ is a constant of integration. (One 
can show that global optimality holds.) 
Hence, if ​f​ is strictly supermodular, then ​
μ(x)  = ​ H​​ −1​ (G(x))​ and (4) constitute a 
Walrasian equilibrium and exhibits PAM. 
Clearly, each man ​y​ in equilibrium obtains ​
w(y)  =  f (​μ​​ −1​ (y), y) − v(​μ​​ −1​ (y))​. A similar 
analysis can be done for ​f​ strictly submodular 
and NAM.

13 A function ​z : X × ​[​ t _ ​, ​ 
_
 t ​]​  →  핉​, ​X​ a lattice, satisfies 

the strict single-crossing property in ​(x, t)​ if for all ​x″  >  x′​ 
and ​t″  >  t′​, ​z(x″, t′  ) − z(x′, t′  )  ≥  0​ implies ​z(x″, t″) −  
z(x′, t″  )  >  0​. 

14 Apply theorem 4′ in Milgrom and Shannon (1994) 
(quasi-supermodularity in ​y​ trivially holds in this problem). 

15 In a CEO–firm assignment application, Tervio (2008) 
derives the Walrasian equilibrium of the model in a simi-
lar way, and points out the relationship with the incentive 
compatibility conditions in screening problems. What lies 
at a more basic level is the monotone comparative statics 
result alluded to above, since both the problem of each 
agent in a matching setting and the incentive compatibility 
problem are parameterized optimization problems (in one 
case by an agent’s observable type, and in the other case by 
an agent’s privately known type). 
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2.2	 Applications of Frictionless Sorting with 
Perfectly Transferable Utility

2.2.1	 The O-Ring Production Function

In an application of Becker’s marriage 
model, Kremer (1993) explores a “weakest 
link” production model that naturally gen-
erates supermodularity. There are ​n​ tasks, 
each performed by a worker. Each worker ​i​  
has a type ​​x​ i​​  ∈  [​ x _ ​, 1]​, ​0  < ​  x _ ​  <  1​, drawn 
from a continuous density ​g​. This type is the 
probability that the worker successfully per-
forms the task. Production happens when 
all ​n​ workers succeed in their tasks. That is, 
the expected output of a firm is ​nB ​∏ i=1​ n  ​​ ​x​ i​​​,  
where ​B  >  0​ is the output per worker if all 
perform their tasks successfully. There is a 
unit mass of workers and a limited number 
of identical potential firms that each hires ​
n​ workers from a competitive labor market. 
Firms take the wage function ​ω : [​ x _ ​, 1]  → ​
핉​ +​​​ as given. For simplicity, we assume that 
labor is the only factor of production.

In the matching problem, each firm hires 
n possibly heterogeneous workers to maxi-
mize expected profits: 

(5)	​​  max​ 
{​​x​i​​}​ i=1​ n  ​

​  
  ​ nB ​ ∏ 

i=1
​ 

n
  ​​ ​x​ i​​ − ​ ∑ 

i=1
​ 

n

  ​​ ω(​x​ i​​).​

Since ​​∂​​ 2​ ​(​∏ i=1​ n  ​​ ​x​ i​​)​/∂ ​x​ j​​ ∂ ​x​ k​​  >  0​ for all ​j  ≠  k​,  
the expected output is strictly supermodular 
in ​(​x​ 1​​, ​x​ 2​​, … , ​x​ n​​)​ and the equilibrium exhib-
its PAM: In other words, all the workers 
employed by any given firm have the same 
type ​x​. The first order condition for (5) in ​​x​ i​​​ 
evaluated at ​​x​ i​​  =  x​ yields ​ω′(x)  =  nB​x​​ n−1​​. 
Consequently, ​ω(x)  =  B​x​​ n​ + ​ω​ 0​​​, where the 
constant ​​ω​ 0​​​ is pinned down by the firm’s zero 
profit condition, or ​​ω​ 0​​  =  0​. All told, each 
firm hires workers of the same skill ​x​ and pays 
them the wage ​ω(x)  =  B​x​​ n​​, equally dividing 
the expected output among its workers.

Kremer (1993) shows how the model sheds 
light on several stylized facts, such as the 

positive correlation among wages of workers 
in different occupations within a firm.

2.2.2	 CEO–Firm Assignment Model

Tervio (2008) and Gabaix and Landier 
(2008) develop a matching model of firm 
size and CEO talent, and calibrate it using 
US data to analyze CEO pay. They assume a 
unit mass continuum of CEOs and of firms. 
The CEO talent ​x​ has a differentiable cdf ​G​, 
and the firm size ​y​ has a differentiable cdf ​H​.  
They (and Tervio 2008) identify each CEO 
of talent ​x​ with his quantile rank ​i  =  G(x)​;  
since ​G​ is differentiable, there is a smooth 
relationship between ​i​ and ​X(i)​, with ​X′(i)  
>  0​. Likewise, associate firms with their 
quantile rank ​j  =  H(y)​, where firm ​Y(  j)​ 
smoothly increases: ​Y′(  j)  >  0​. They assume 
that the revenue when CEO ​i​ is matched with 
firm ​j​ is ​C​Y​​ d​(  j)X(i)​, for constants ​C, d  >  0​, 
from which the CEO gets paid ​ω(i)​.

In a Walrasian equilibrium, firm ​j​ max-
imizes ​C​Y​​ d​(  j)X(i) − ω(i)​ over ​i  ∈  [0, 1]​. 
Since the objective function is strictly super-
modular in ​(i, j)​, the equilibrium exhibits 
PAM—to wit, ​i  =  j​, for all ​j​. The first-order 
condition (FOC) yields ​ω′(i)  =  C​Y​​ d​(  j)X′(i)​,  
and hence 

	​ ω(i)  = ​ ∫ 
0
​ 
i
​​ C​Y​​ d​(s)X′(s) ds + ω(0)​.

This wage function, along with PAM, consti-
tutes the Walrasian equilibrium of the model 
(modulo the constant ​ω(0)​).

To calibrate the model, Gabaix and 
Landier (2008) posit a Pareto firm size dis-
tribution ​H(y)  =  1 − ​​(​ y _ ​/y)​​​ 1/τ​​, which yields ​
Y(  j)  = ​  y _ ​​(1 − j)​​ −τ​​. Meanwhile, inspired by  
extreme value theory, they posit that the 
“spacing function” for CEO talents ​X′(i)​ sat-
isfies ​X′(i)  =  K(1 − i​)​​ ν−1​​, for constants ​K​ 
and ​ν​. The wage function is 

  ​ω(i)  = ​ 
CK ​​ y _ ​​​ d​

 ______ τ d − ν ​ ​(​(1 − i)​​ −(τ  d−ν)​ − 1)​ + ω(0)​.
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Assuming ​τ d  >  ν​, Gabaix and Landier 
(2008) calibrate the model and analyze sev-
eral features of CEO pay and its increase in 
recent years in the United States (see also 
Tervio 2008). They show that the model 
exhibits a “superstar” property (Rosen 
1981): small differences in talent can have a 
drastic impact in pay at the top—i.e., CEOs  
with rank close to one, here.16 Also, the 
increase in size of large firms in recent 
years can account for a large fraction of the 
increase in CEO pay.

2.2.3	 Matching Principals and Agents

In the principal–agent model, the princi-
pal hires an agent to perform a task. Since 
the agent’s actions are unobservable, the con-
tract is based on a stochastic signal, such as 
output, that is correlated with those actions. 
Ackerberg and Botticini (2002) convinc-
ingly argue that accounting for endogenous 
matching of principals and agents is import-
ant when testing predictions of contract the-
ory, since it can bias many of the relevant 
coefficients. Using data from Renaissance 
Tuscany, they find strong evidence for 
matching between landlords with crops of 
different riskiness and tenants with different 
levels of wealth (proxying for risk aversion), 
which affects the contract form used (share 
contracts or fixed-rent contracts).

Serfes (2005) explores a tractable match-
ing model of heterogeneous principals and 
agents under moral hazard. He restricts 
attention to linear contracts and constant 
absolute risk aversion (CARA) utility func-
tion (i.e., using the standard justification of 
Holmstrom and Milgrom 1987), and this 
turns the model into a matching problem 
with perfect TU. Without this assumption, 

16 Differentiation reveals that ​ω(i)​ is strictly increasing 
and strictly convex, with ​ω″(i)​ going to infinity as ​i​ goes to 
one. Thus, CEOs matched with large firms receive increas-
ingly larger pay near the top. 

we will see in section 2.4 that moral hazard 
leads to imperfect TU.

The type ​x​ of a principal is the variance 
of her output, while the type ​y​ of the agent 
is his coefficient of absolute risk aversion. 
A match of principal ​x​ and any agent gen-
erates stochastic output ​q  =  e + ε​, where ​
ε  ∼  N(0, x)​, and the agent’s effort ​e  ≥  0​ 
incurs disutility ​k ​e​​ 2​/2​. With CARA utility 
function, agent ​y​’s expected utility is ​1 − ​
e​​ −y(I−k​e​​ 2​/2)​​, where ​I​ is income. The optimal 
contract is linear in output: ​I(q)  = ​ I​ 0​​ + bq​,  
where ​​I​ 0​​​ is a base wage and ​b​ the incentive 
power. By Holmstrom and Milgrom (1987), 
the optimal contract sets ​b  =  1/(1 + kyx)​ 
and yields the principal expected profit ​
f (x, y)  =  1/(2 k(1 + kyx))​. (The base wage ​​
I​ 0​​​ is irrelevant with CARA utility.) Finally, 
we can check that ​​f​ x  y​​  <  0​ if and only if ​yx  
<  1/k​, and this holds for all ​x  ∈  [​ x _ ​, ​ 

_
 x ​]​ and  

​y  ∈  ​[​ y _ ​, ​ 
_

 y ​]​​ if ​​ 
_

 y ​ ​ 
_
 x ​  <  1/ k​. So NAM emerges 

if this condition holds, and PAM if ​​ y _ ​​ x _ ​  
>  1/ k​.

This principal–agent model predicts that ​
b​ is decreasing in ​x​, namely, a negative rela-
tionship between risk and incentives. The 
evidence on this prediction is weak: the data 
exhibits either a positive or an insignificant 
relationship. Embedding the principal–agent 
problem in a matching model can account 
for this finding if NAM is optimal: for in this 
case, high variance ​x​ principals are matched 
with less risk averse agents ​y  =  μ(x)​. Since ​
μ​ is strictly decreasing, the incentive power ​
b  =  1/(1 + kμ(x) x)​ could increase in ​x​ if 
matching is endogenous. If ​μ(x) x​ decreases 
in ​x​, which depends on the distributions ​G​ 
and ​H​, then ​b​ increases in ​x​, as the evidence 
shows.

2.3	 Frictionless Sorting with  
Imperfectly Transferable Utility

2.3.1	 Background

When partners cannot transfer utility one 
for one, we say that there is imperfect TU. 
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Many economic environments of interest fall 
into this category, such as risk-sharing prob-
lems or matching problems where moral 
hazard is present.

In one extreme case, NTU, partners can-
not transfer utility at all. For instance, the 
output ​f (x, y)​ from a match between ​x​ and ​
y​ may be divided according to some fixed 
sharing rule; more generally, assume that if ​x​ 
matches with ​y​, then ​x​ obtains utility ​​f​ 1​​ (x, y)​ 
and ​y​ obtains ​​f​ 2​​ (x, y)​, as done in Smith 
(1997). Actually, matching models with-
out transfers have been extensively studied 
since Gale and Shapley (1962)—see Roth 
and Sotomayor (1990). In their two-sided 
matching model, preferences are formulated 
as ordinal rankings over the partners on the 
other side of the market, and an equilibrium 
is defined in terms of stability. A matching 
is stable if there exists no blocking pair of 
agents, preferring to be matched to each 
other rather than  their respective partners 
in the candidate allocation. The fundamen-
tal result is that a stable matching exists. The 
existence proof is constructive by means of 
the deferred acceptance algorithm. One side 
of the market, say women, can make offers 
to their preferred man, who temporarily 
retains his best choice. Each woman who 
has not been retained then makes an offer to 
her second most preferred man. Again, men 
retain their most preferred women, possibly 
dropping an earlier retention. This process 
continues until no more women are left who 
prefer any man over remaining single. This 
yields existence of a stable matching, and it 
highlights also that there may be multiple 
ones.

Using a cardinal representation of pref-
erences, Becker (1973) noted that if each 
agent strictly prefers a partner with a higher 
type, then PAM emerges under NTU. In our 
notation, we need ​​f​ 1​​​ to be strictly increas-
ing in ​y​ and ​​f​ 2​​​ in ​x​. To see this, consider two 
women and two men, with types ​x′  >  x″​ and ​
y′  >  y″​, who are matched in a NAM way, 

that is, ​x′​ with ​y″​ and ​x″​ with ​y′​. Then ​x′​ and ​y′​ 
can block the matching and offer to rematch, 
since ​​f​ 1​​ (x′, y′  )  > ​ f​ 1​​ (x′, y″  )​ and ​​f​ 2​​ (x′, y′  )  
> ​ f​ 2​​ (x″, y′  )​, due to the monotonicity in 
partner’s type. Similarly, NAM emerges if 
one of the partial derivatives is positive and 
the other one is negative. So while Becker 
did not cite Gale and Shapley (1962), he 
intuitively grasped their pairwise stability 
notion in this case.

Recently, Legros and Newman (2010) 
have shown that PAM does not require 
monotonicity in the partner’s type. Indeed, 
the necessary and sufficient condition for 
PAM in this setting is that preferences 
exhibit “co-ranking”: given any two men 
and women, either the top man and woman 
prefer each other, or the bottom man and 
woman do. In the example above, this means 
that it has to hold for any two pairs of men 
and women, and this condition is consis-
tent with ​​f​ i​​​, ​i  =  1, 2​, not being increasing 
in partner’s type (see Legros and Newman 
2010 for an example).

Thus far we have explored assortative 
matching in both the perfect TU and the 
NTU cases. Notice that the Pareto frontier of 
payoffs achievable by a pair of matched agents 
is linear in the perfect TU case (with constant 
slope that is independent of the agents’ types), 
and collapses to a point in the NTU case. 
What about typical intermediate cases where 
agents can transfer utility but not at a constant 
rate, so that the Pareto frontier is decreasing 
but neither linear nor a single point (see fig-
ure 1)? Legros and Newman (2007) address 
this case. We now provide a detailed summary 
of their main insights and several illustrative 
applications.

2.3.2	 The General Model

There are two populations, women and 
men, indexed by types ​x  ∈  [0, 1]​ and ​
y  ∈  [0, 1]​. For simplicity, we assume that 
they have the same size, which can be finite 
or a continuum, and their autarchy payoff is 
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normalized to zero. We identify agents by 
their types, so that agents of the same type 
behave alike and receive the same payoff in 
equilibrium—the “equal-treatment” prop-
erty deduced in Legros and Newman (2007).

To capture a utility frontier for each pair 
of agents, let ​ϕ(x, y, w)​ be the maximum 
utility that ​x​ generates when matched with ​
y​, if ​y​ receives utility ​w​. Since no agent 
receives less than their autarchy payoff in 
equilibrium, ​ϕ(x, y, 0)​ is the maximum that ​
x​ can obtain when matched with ​y​. We 
assume that ​ϕ(x, y, w)​ is strictly decreas-
ing in ​w​ when positive. In later applica-
tions, we derive this Pareto frontier from 
assumptions on technology and preferences. 
Let ​ψ(y, x, v)​ be the maximum utility of ​y​ 
when matched with ​x​ who receives utility ​v​.  
This is the partial inverse of ​ϕ(x, y, · )​, in 
the sense that ​ϕ(x, y, ψ(y, x, v))  =  v​ for all ​
v  ∈  [0, ϕ(x, y, 0) ]​.

The equilibrium concept is the core of 
this assignment game—namely, a matching 
function ​μ​ and utility functions ​v​ for types ​
x​ and ​w​ for types ​y​, that satisfy the follow-
ing properties: (i) feasibility of ​v​ and ​w​ with 
respect to ​μ​, so ​v(x)  ≤  ϕ(x, y, w(μ(x)))​ 

and ​w(μ(x))  ≤  ψ(y, x, 0)​ for all ​x​ and ​y​;  
and (ii) stability of ​μ​ with respect to ​v​ and ​
w​, so that there is no pair of agents with ​
x​ and ​y​ with ​w  >  w(y)​ and ​ϕ(x, y, w)  
>  v(x)​. This subsumes the perfect TU 
model with ​ϕ(x, y, w)  =  f (x, y) − w​, and 
subsumes the NTU model with ​ϕ(x, y, w)  
= ​ f​ 1​​ (x, y) ​1​ w=  ​f ​ 2​​(x, y)​​​.

2.3.3	 Generalized Increasing Differences

First consider supermodular production 
with perfect TU, so that PAM is optimal. If ​
x  >  x′​ and ​y  >  y′​, then ​y​ can weakly outbid ​
y′​ in the competition for ​x​, or ​f (x, y) − f (x′, y
)  ≥  f (x, y′  ) − f (x′, y′  )​. Rewrite this increas-
ing differences condition as 

(6)  ​  f (x, y) − [  f (x′, y) − v] 

	     ≥  f (x, y′  ) − [  f (x′, y′  ) − v] ,​

where ​x′​ obtains utility ​v​. Inequality (6) holds 
for any level of utility ​v​. By this increasing 
difference condition, higher types choose 
higher-matching partners, and thus PAM is 

Figure 1. Examples of Pareto Frontiers for TU and NTU Cases

Note: We depict examples of the Pareto frontiers respectively for perfect TU; the intermediate imperfectly 
TU case introduced in Legros and Newman (2007) (with a decreasing nonlinear frontier); and NTU.
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optimal. Extending (6) to our richer class of 
match payoffs in the general NTU case, ​y​ 
can weakly outbid ​y′​ in the competition for ​
x​ when the outside option is a match with ​x′​ 
who earns utility ​v​ if and only if 

(7)  ​  ϕ(x, y, ψ(y, ​x ′ ​, v)) 

          ≥  ϕ(x, y′, ψ(y′, x′, v)).​

This reduces to (6) with perfect TU, as  
​ϕ(x, y, ψ(y, x′, v))  =  f (x, y) − ψ(y, x′, v) 
=  f (x, y) − [  f (x′, y) − v]​, and similarly the 
right sides of (6) and (7) coincide. There are 
generalized increasing differences if (7) holds 
whenever ​x  >  x​′, ​y  >  y′​, and ​v​ is feasible, 
namely, ​v  ∈  [0, ϕ(x′, y, 0)]​.

Legros and Newman (2007) prove that 
when (7) holds, all equilibria are payoff 
equivalent to PAM. Similarly, given the 
reverse condition, generalized decreasing 
differences, all equilibria are payoff equiva-
lent to NAM. These conditions are necessary 
if PAM must hold for any type distribution. 
To wit, as with Becker’s supermodularity 
and submodularity conditions, generalized 
increasing and decreasing differences are 
the necessary and sufficient distribution-free 
conditions for PAM and NAM, respec-
tively. This powerful result nests perfect TU 
and NTU as special cases, and thus greatly 
enlarges the set of economic applications for 
which we can assert PAM and NAM.

Condition (7) can be usefully simplified. 
Label ​w  =  ψ(y, x′, v)​ and ​w′  =  ψ(y′, x′, v)​.  
Then ​v  =  ϕ(x′, y, w)  =  ϕ(x′, y′, w′  )​, so that 
type ​x′​ obtains the same utility ​v​ either in a 
match with ​y​, paying him ​w​, or in a match 
with ​y′​, paying him ​w′​. Then (7) asserts ​
ϕ(x, y, w)  ≥  ϕ(x, y′, w′  )​, so that ​x  >  x′​ 
obtains more utility by matching with ​y​ 
than with ​y′​, if she must pay them the same. 
Put differently, if ​x′​ is indifferent between ​
(y, w)​ and ​(y′, w′)​, then ​x  >  x′​ prefers ​
(y, w)​. Formally, if ​x  >  x′​ then ​ϕ(x′, y, w)  
=  ϕ(x′, y′, w′  )  ⇒  ϕ(x, y, w)  ≥  ϕ(x, y′, w′  )​.  

Finally, we can write this in a standard  
single-crossing form with an inequality 
premise—that for any ​(y, w)​ and ​(y′, w′  )​:17 

(8)	​ ϕ(x′, y, w)  ≥  ϕ(x′, y′, w′  ) 

	 ⇒  ϕ(x, y, w)  ≥  ϕ(x, y′, w′  )

for all y  >  y′ and x  >  x′​.

We next provide a new differential version 
of (8). Let ​ϕ​ be twice continuously differen-
tiable. Then under the regularity assump-
tions in theorem 3 in Milgrom and Shannon 
(1994),18 the single crossing property (8) is 
equivalent to the Spence–Mirrlees condition, 
that the marginal rate of substitution ​− ​ϕ​ y​​ /​ϕ​ w​​​  
between ​y​ and ​w​ increases in one’s type ​x​. 
Since ​ϕ​ is twice differentiable, we have 

(9) ​​ ϕ​ xy​​ (x, y, w) 

        ≥ ​ 
​ϕ​ y​​ (x, y, w)

 __________ 
​ϕ​ w​​ (x, y, w)

 ​ ​ϕ​ xw​​ (x, y, w)​

since ​​ϕ​ w​​  <  0​. In other words, a high type ​
x​ is willing to pay more of ​w​ for an incre-
ment in his partner’s type ​y​. Consequently, 
the indifference curves in ​(y, w)​-space single 
cross as ​x​ changes.

We are now equipped to give a simple 
smooth argument for why (9) leads to PAM 
with a continuum of agents. Mimicking logic 
familiar in screening models (Fudenberg 

17 Indeed, (8) implies (7), since equality is a special case 
of the left side of (8). To see that (7) is equivalent to (8), 
recall that ​ϕ​ strictly falls in the partner’s utility. Let ​​v​ 1​​  ≡ 
ϕ(x′, y, w)  ≥  ϕ(x′, y′, w′  )  ≡ ​ v​ 2​​​, so that ​w  =  ψ(y, x′, ​v​ 1​​)​ 
and ​w′  =  ψ(y′, x′, ​v​ 2​​)​. Since ​ψ​ is also decreasing in ​v​, we 
have ​ψ(y′, x′, ​v​ 2​​)  ≥  ψ(y′, x′, ​v​ 1​​)​. Along with (7), this yields 

  ​  ϕ(x, y, w)  =  ϕ(x, y, ψ(y, x′, ​v​ 1​​)) 

        ≥  ϕ(x, y′, ψ(y′, x′, ​v​ 1​​))  ≥  ϕ(x, y′, ψ(y′, x′, ​v​ 2​​)) 

        =  ϕ(x, y′, w′  )​.
18 See also theorem 2.1 in Edlin and Shannon (1998), 

and theorem 3 in Athey, Milgrom, and Roberts (1998). 
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and Tirole 1991, chapter 7), assume a PAM 
allocation ​y  =  μ(x)​, with ​μ​ strictly increas-
ing and smooth. Consider the problem that 
type x solves when matched with a type 
y agent who earns w(y). If this is an equi-
librium, the FOC for type x’s optimization 
ma​​x​y​​​ ​ϕ​(x, y, w(y)) holds when evaluated at 
y  =  μ(x), or

(10) ​​ ϕ​y​​ ​(​μ​​ −1​ (y), y, w (y))​

        + ​ϕ​w​​ ​(​μ​​ −1​ (y), y, w (y))​w′ (y)  =  0​.

Next, the solution to (10) is a global maximum. 
For consider any other type, say ​​y ˆ ​​  >  y. Then

 ​ ϕ(x, ​y ˆ ​, w(​y ˆ ​)) − ϕ(x, y, w(y)) 

    = ​ ∫ y​ 
​y ˆ ​
​​ ​[​ϕ​ y​​ (x, s, w(s)) 

	 + ​ϕ​ w​​ (x, s, w(s))w′(s)]​ ds

    = ​ ∫ y​ 
​y ˆ ​
​​ ​(−​ϕ​ w​​ ​(​μ​​ −1​ (y), s, w(s))​)​

	 × ​
(

− ​ 
​ϕ​ y​​ ​(​μ​​ −1​ (y), s, w(s))​

  _________________  
​ϕ​ w​​ ​(​μ​​ −1​ (y), s, w(s))​

 ​ − w′(s)
)

​ ds

    ≤ ​ ∫ y​ 
​y ˆ ​
​​ ​(​−ϕ​ w​​ ​(​μ​​ −1​ (y), s, w(s))​)​

× ​
(

− ​ 
​ϕ​ y​​ ​(​μ​​ −1​ (s), s, w(s))​

  __________________  
​ϕ​ w​​ ​(​μ​​ −1​ (s), s, w(s))​

 ​ − w′(s)
)

​ ds​,

where the inequality follows from ​​−ϕ​ y​​ /​ϕ​ w​​​  
increasing in ​x​ and the last line vanishes 
by the FOC (10). Hence, ​ϕ(x, y, w(y))  
≥  ϕ(x, ​y ˆ ​, w(​y ˆ ​))​, so x does not have incen-
tives to deviate up. A similar argument shows 
that x does not incentives to choose ​​y ˆ ​  ≤  y​. 
Hence, choosing ​y​ is a global optimum for ​x​.

In other words, the differential inequality 
(9) is an easily-checked condition for PAM 
(NAM) in imperfect TU matching models. 

We repeatedly exploit it in later applications. 
This inequality reveals a tension between 
complementarity in one’s own type and one’s 
partner’s type (​​ϕ​ xy​​​) or in a partner’s utility  
(​​ϕ​ xw​​​). The latter reflects whether transfering 
utility to a partner becomes easier as one’s type 
increases. In the perfect TU case, the second 
complementarity is absent, and (9) collapses 
to Becker’s condition ​​f​ xy​​  ≥  0​, since ​​f​ xy​​  ≡ ​ ϕ​ xy​​​  
with perfect TU. Next, assume that ​ϕ​ 
increases in one’s partner’s type (​​ϕ​ y​​  >  0​). 
Since ​​ϕ​ w​​  <  0​, inequality (9) and therefore 
PAM ensues if ​​ϕ​ xy​​  ≥  0​ and ​​ϕ​ xw​​  ≥  0​ while 
NAM obtains if ​​ϕ​ xy​​  ≤  0​ and ​​ϕ​ xw​​  ≤  0​. 
Intuitively, type complementarity abets sort-
ing, whereas increasing difficulty of transfer-
ring utility to one’s partner (namely ​​ϕ​ xw​​  ≤  0​,  
recalling that ​​ϕ​ w​​  <  0​) discourages sorting. 
But if transferring utility becomes easier with 
higher types (​​ϕ​ xw​​  ≥  0​), then the two effects 
reinforce each other and PAM obtains.

2.4	 Applications of Frictionless Sorting  
with Nontransferable Utility

2.4.1	 Matching Principals and Agents

We revisit this application from sec-
tion  2.2, but now without assuming CARA 
and linear contracts. An agent’s character-
istic ​y​ is her initial wealth, which affects 
her risk attitude. His utility is ​V(y + I) − e​, 
where ​e  ∈  { 0, 1}​ is the disutility of exerting 
effort. Per usual, we assume ​V′  >  0  >  V″​,  
with a decreasing coefficient of absolute 
risk aversion ​−V″/ V′​. The agent’s effort is 
unobservable, while his output ​q  ∈  {​ _ q ​, ​ q _ ​}​ is 
observable. If the agent exerts effort ​e  =  0​,  
then output is low ​q  = ​  q _ ​​ for sure. If she 
exerts effort ​e  =  1​, then output ​q  = ​ 

_
 q ​​ 

with probability ​x  >  0​. Principals differ in ​x​,  
a riskiness measure. We assume that ​​ 

_
 q ​ − ​ q _ ​​ 

is large enough so that principals always want 
to implement ​e  =  1​.

A contract is a pair ​​(​ I _ ​, ​ 
_
 I ​)​​ of wages con-

tingent on outputs ​​ q _ ​​ and ​​ 
_

 q ​​. If principal ​x​ 
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matches with agent ​y​, whose reservation util-
ity is ​w​, the resulting contracting problem is ​
ϕ(x, y, w)  = ​ max​ ​ I _ ​, ​ 

_
 I ​​ ​  ​ x​(​ 

_
 q ​ − ​ 

_
 I ​)​ + (1 − x)  

×  ​(​ q _ ​ − ​ I _ ​)​​ subject to an incentive con-

straint ​xV​(y +   ​ 
_
 I ​)​ +  (1 −  x)V(y +  ​ I _ ​) −  1  

≥  V(y + ​ I _ ​) and a participation constraint  
xV​(y + ​ 

_
 I ​)​ + (1 − x)V(y + ​ I _ ​) − 1  ≥  w​.  

Both constraints bind at the optimum: if 
either is slack, then wages can be reduced 
to strictly raise the principal’s expected 
profit. Solving the two binding con-
straints yields ​​ 

_
 I ​  =  Z​(w + ​x​​ −1​)​ − y​ and  

​​ I _ ​  =  Z(w) − y​, where ​Z  ≡ ​ V​​ −1​​. So: 

  ​  ϕ(x, y, w)  =  x​(​ 
_

 q ​ − Z​(w + ​ 1 __ x ​)​)​ 

	 + (1 − x)​(​ q _ ​ − Z(w))​ − y.​

Notice that ​ϕ​ is strictly concave in ​w​, as in 
figure 1. Moreover, ​​ϕ​ xy​​ (x, y, w)  =  0​ and 

(11) ​​ ϕ​ xw​​ (x, y, w) 

= ​  1 __ x ​  Z″​(w + ​ 1 __ x ​)​ − Z′​(w + ​ 1 __ x ​)​ + Z′(w).​

If ​Z′​ is convex,19 then the first term in (11) 
dominates the last two, and so ​​ϕ​ xw​​  ≥  0​.  
Since ​​ϕ​ xy​​  =  0​, we obtain PAM by (9). 
That is, agents with high initial wealth and 
thus low risk aversion matched with prin-
cipals with safer output distributions. As 
Legros and Newman (2010) point out, the 
sorting pattern emerges despite the lack of 
any complementarities between ​x​ and ​y​. 
If instead ​Z′​ is concave, then ​​ϕ​ xw​​  ≤  0​ and  
there is NAM.

19 Since ​Z′  =  1 /  V′​, this is convex if and only if  
​−V‴/  V″  ≤  −3V″ /  V′​. Many standard utility functions sat-
isfy this condition, including CARA (exponential) utility as 
well as ​V(I)  = ​ I​​ ξ​​ with ​ξ  ≤  0.5​. This commonly emerges 
in principal–agent models with moral-hazard and wealth 
effects. Conversely, ​Z′​ is concave, say, for ​V(I)  = ​ I​​ ξ​​ with ​
ξ  >  0.5​. 

2.4.2	 Marriage and Risk Sharing

Consider a marriage market where men 
and women with different wealths (and thus 
different risk aversion levels) marry to share 
risk.20 If a woman of wealth ​x​ marries a man 
of wealth ​y​, then they share the risk embed-
ded in a gamble whose payoff ​q  ∈  [0, 1]​ 
has a continuous distribution ​Γ​. The utility 
function of women is ​log (1 + x + I)​ and of 
men is ​log (1 + y + I)​, where ​I​ is income. 
Efficient risk sharing solves the following 
problem:21 

(12) ​ ϕ(x, y, w) 

= ​ max​ 
I(·)

​  
  ​ ​∫ 

0
​ 
1
​​ log (1 + y + q − I(q)) dΓ(q)

​subject to

	​​ ∫ 
0
​ 
1
​​ log (1 + x + I(q)) dΓ(q)  ≥  w​,

where ​I(q)​ is the woman’s share of ​q​ and ​
q − I(q)​ the man’s share.

Intuitively, the constraint binds at the 
optimum. Maximizing pointwise, we obtain  
​I(q)  =  (−(1 + x) + (1 + y + q) ζ)/(1 + ζ)​, 
where ​ζ​ is the Lagrange multiplier. Inserting ​
I(q)​ into (12) and solving for ​ζ​ yields 

(13) ​ ϕ(x, y, w) 

        =  log​(1 − ​e​​ v−​∫ 
0
​ 
1
​​ log(2+x+y+q) dΓ(q)​)​ 

	 + ​∫ 
0
​ 
1
​​ log (2 + x + y + q) dΓ(q)​.

20 For a survey of the literature, see the book by 
Browning, Chiappori, and Weiss (2014). 

21 This is a general version of an example in Legros and 
Newman (2010), section 5.1 (see also Chiappori and Reny 
2015 and Schulhofer-Wohl 2006). We use our differential 
version of their condition to readily check for NAM. 
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We claim that NAM emerges, i.e., wealthy 
women who are less risk averse marry poor 
men who are more risk averse. Intuitively, 
a more risk averse individual is willing to 
pay more for insurance. To wit, a highly risk 
averse man can outbid a less risk averse one 
for a wealthy woman.

To prove this result, one must check that ​​
ϕ​ xy​​  ≤  (​ϕ​ y​​  /​ϕ​ w​​) ​ϕ​ xw​​​. It is easy to check that ​​
ϕ​ xy​​  <  0​ and ​​ϕ​ xw​​  >  0​, so that the quick 
sufficient condition for PAM or NAM does 
not hold. But some algebra reveals that ​​ϕ​ xy​​  
<  (​ϕ​ y​​  /​ϕ​ w​​) ​ϕ​ xw​​​. Thus, the optimal sorting 
pattern is NAM.

2.4.3	 Matching in Large Firms

The one-to-one matching paradigm misses 
an important feature of actual labor markets. 
Labor market realism demands that firms 
can hire many workers. In principle, one 
could reinterpret a firm as a series of inde-
pendent jobs that do not affect any other 
job’s productivity. Often, however, there are 
complementarities between jobs.

Gale and Shapley (1962) highlighted 
the importance of many-to-one match-
ing with their college admissions problem. 
A more relevant setup for labor market 
applications is one with a large number 
of firms and transfers (wages). In the 
O-ring technology in Kremer (1993), firms 
employ a given fixed number of workers.22  
Kelso and Crawford (1982) develop a gen-
eral many-to-one matching model of firms 
to any number or type of workers. Existence 
of equilibrium, however, is not guaran-
teed, as the following simple example illus-
trates. Consider two workers ​x  =  1, 2​ 
and two firms ​y  =  1, 2​. Let ​f (y, {X})​ be 
the output of firm ​y​ matched with a set 
of workers ​{X}  ∈  {{1}, {2}, {1, 2}, {∅}}​.  

22 For another application where firms hire teams 
with a fixed number of experts, see Chade and Eeckhout 
(forthcoming).

Assume the following technology for  
producing output: 

f (1, {∅})  =  0, f (1, {1})  =  4, f (1, {2})  =  1,     f (1, {1, 2})  =  10

f (2, {∅})  =  0, f (2, {1})  =  8, f (2, {2})  =  5,     f (2, {1, 2})  =  9.

Then all possible allocations with full 
employment are blocked. For instance, if 
firm 1 hires both workers, then the total 
output is ten at firm 1 and zero at firm 2. 
Worker 1 must earn at least eight, namely, 
what firm 2 is willing to offer when it hires 
only him. Likewise, worker 2 must earn at 
least five. But this total-wage bill overex-
hausts firm 1’s total output. So this alloca-
tion is not stable, and all other allocations 
are also blocked.

The nonexistence is driven by worker 
complementarities. Specifically, if firm 1 
hires worker 2 when it already employs 
worker 1, then worker 1’s productivity rises, 
and she can thus command a higher wage. 
The gross substitutes condition in Kelso and 
Crawford (1982) precludes this possibility, 
and secures for existence. It asserts that 
if wages increase for some workers, then 
the firm will not drop from its labor force 
any worker whose wage did not increase. 
Additively separable production functions 
easily obey this condition, since a work-
er’s productivity does not depend on her 
coworkers. Gross substitutes is sufficient 
and almost necessary, as it leaves little 
room for complementarities (Hatfield and 
Milgrom 2005 and Hatfield and Kojima 
2008). Kelso and Crawford (1982) also pro-
vide an algorithm that finds the equilibrium 
allocation and wages. It is a variation on the 
deferred acceptance algorithm of Gale and 
Shapley (1962) (see section 2.3).23

Modeling firms with an endogenous size 
and labor force composition with comple-
mentarities has proven difficult, given the 
gross substitutes condition. For instance, in 

23 Hatfield and Milgrom (2005) apply their ascending- 
bid auction to analyze package auctions. 
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a model of the span of control by manage-
ment, Lucas (1978) focused on the inten-
sive margin decision of how many workers 
to hire, but ignored composition. A more 
productive management hires a larger work 
force, increasing its span of control. This 
model shed light on the distribution of firm 
size. In reality, however, management at a 
firm also faces an extensive-margin decision 
about workers’ composition; this is precisely 
the focus of matching models.

Eeckhout and Kircher (2012) develop a 
tractable model with size and composition 
margins. We present a slightly simplified 
version that yields their sorting condition. 
Assume match output is given by a produc-
tion function ​F(x, y, ​l​ x​​, ​r​ x​​)​, where ​y​ is the 
firm type, ​x​ the worker type, ​​l​ x​​​ the labor 
force size of type ​x​, and ​​r​ x​​​ the resources the 
firm dedicates to workers of type ​x​. That 
is, a firm of type ​y​ hires a quantity or mea-
sure ​​l​ x​​​ of workers of a common type ​x​ at a 
wage ​ω(x)​ per worker.24 Since a firm chooses 
both the type and the number of workers, 
the model embeds size and composition 
margins: It is inspired by Becker’s TU pair-
wise matching model, but instead allows for 
variable sizes of one side of the match. It is 
further assumed that ​F​ is strictly concave 
in ​l​ and ​r​, and exhibits constant returns in ​
l, r​, so that ​F(x, y, l, r)  ≡  r f (x, y, θ)​, where ​
f (x, y, θ)  ≡  F(x, y, θ, 1)​, and where ​θ  =  l/r​ 
is the labor resources ratio. The prob-
lem of firm ​y​ reduces to the maximization 
problem: ​ma​x​x, θ​​ f (x, y, θ) − θω(x)​. Let us 
solve first the maximization in ​θ​, for each ​x​.  
The FOC ​​f​ θ​​ (x, y, θ)  =  ω(x)​ yields the 
unique maximizer ​θ(x, y, ω(x))​. Recalling 
that ​F​ is strictly concave in its third argu-
ment, we have ​​f​ θθ​​  <  0​. Define ​ψ(y, x, ω)  
≡  f (x, y, θ(x, y, ω)) − θ(x, y, ω) ω​. Then the 

24 Eeckhout and Kircher (2012) provide a justifica-
tion for focusing on a single type of worker by positing a 
production function that is additively separable in worker 
types. 

optimization problem reduces to maximizing ​
ψ(y, x, ω(x))​. Since this has the NTU struc-
ture analyzed in section 2.3, PAM or NAM 
ensues depending on whether ​ψ(y, x, ω)​ 
has ​− ​ψ​ x​​ / ​ψ​ ω​​​ globally increasing or globally 
decreasing in ​y​ for all ​(y, x, ω)​, i.e., ​​ψ​ xy​​ −  
(​ψ​ x​​ / ​ψ​ ω​​) ​ψ​ ωy​​  ≷   0​ from (9). Now, ​​ψ​ x​​  = ​ f​ x​​​,  
​​ψ​ ω​​ = − θ​, and ​​ψ​ y​​ = ​f​ y​​​ by the envelope the-
orem. Also, for fixed ​ω​ in ​ψ(x, y, ω)​, it fol-
lows from implicitly differentiating the FOC ​​
f​ θ​​ (x, y, θ)  =  ω​ that ​​θ​ y​​  =  − ​f​ yθ​​ / ​f​ θθ​​​ and ​​
θ​ x​​  =  − ​f​ xθ​​ / ​f​ θθ​​​. Therefore, differentiating ​​
ψ​ ω​​  =  − θ​ yields ​​ψ​ ωy​​  =  − ​θ​ y​​​, while differ-
entiating ​​ψ​ x​​  = ​ f​ x​​​ gives ​​ψ​ xy​​  = ​ f​ xy​​ + ​f​ xθ​​ ​θ​ y​​  
= ​ f​ xy​​ − ​f​ xθ​​  ​f​ yθ​​ / ​f​ θθ​​​. Next, 

	​​ ψ​ xy​​  = ​ f​ xy​​ + ​f​ yθ​​ ​θ​ x​​  = ​ f​ xy​​ − ​ 
​f​ yθ​​  ​f​ xθ​​ _____ 

​f​ θθ​​
 ​​

and

	​​ ψ​ xω​​  =  −  ​ ​f​ xθ​​ ___ 
​f​ θθ​​

 ​​ .

Since ​​f​ θθ​​  <  0​, the condition for PAM 
reduces to ​​f​ xy​​  ​f​ θθ​​ − ​f​ yθ​​ ​f​ xθ​​ + ​( ​f​ x​​  ​f​ yθ​​ /θ)​  ≤  0​, 
for 

(14) ​ 0  ≤ ​ ψ​ xy​​ − (​ψ​ x​​ / ​ψ​ ω​​) ​ψ​ ωy​​ 

	 = ​ f​ xy​​ − ​ 
​f​ yθ​​  ​f​ xθ​​ _____ 

​f​ θθ​​
 ​  + ​( ​f​ x​​ /θ)​ ​ 

​f​ yθ​​​​ ___ 
​f​ θθ​​

 ​

	 = ​ (​f​ xy​​  ​f​ θθ​​ − ​f​ yθ​​  ​f​ xθ​​ + ​ 
​f​ x​​ ​f​ yθ​​ ____ θ ​ )​/ ​f​ θθ​​,​

which is the inequality in Eeckhout and 
Kircher (2012). The reverse inequality yields 
NAM.

We now express this in terms of ​F(x, y, l, r)​.  
Since ​F​ is homogeneous of degree one in  
​(l, r)​, ​​F​ l​​​ is homogeneous of degree zero, and 
so ​l ​F​ ll​​ + r ​F​ lr​​  =  0​ by Euler’s theorem, i.e.,  
​− ​F​ lr​​  =  θ ​F​ ll​​​. Additionally, ​​F​ x​​​ is homoge-
neous of degree one in ​(l, r)​, whence ​​F​ x​​  
=  θ ​F​ xl​​ + ​F​ xr​​​ , by Euler’s theorem. So the 
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inequality ​​f​ xy​​  ​f​ θθ​​  −  ​f​ yθ​​ ​ f​ xθ​​  +  ​( ​f​ x​​  ​f​ yθ​​ / θ)​  ≤  0​  
can be rewritten as 

 ​​ F​ xy​​ ​F​ ll​​ − ​F​ yl​​​(​F​ xl​​ − ​ ​F​ x​​ __ θ ​)​ 

      = ​ F​ xy​​ ​F​ ll​​ + ​F​ xr​​ ​ 
​F​ yl​​ ___ θ ​ 

      =  − ​F​ xy​​ ​ 
​F​ lr​​ ___ θ ​ + ​F​ xr​​ ​ 

​F​ yl​​ ___ θ ​  ≤  0,​

which rearranges to the key finding of 
Eeckhout and Kircher (2012), namely, that ​​
F​ xy​​ ​F​ lr​​  ≥ ​ F​ xr​​ ​F​ yl​​​ delivers PAM. The left 
side of this inequality involves the stan-
dard cross-interactive term between the 
worker and firm types, scaled by the cross- 
interactive term of labor and resources of 
the firm. Meanwhile, the right side is the 
product of the cross-interactive terms of 
firm type and labor force size, and that of 
the worker type and firm resources. This 
analysis highlights the importance of the 
condition in Legros and Newman (2007) 
for analyzing sorting patterns in matching 
problems.

2.4.4	 Further Topics

Many applications involve just one popula-
tion of agents, such as collaboration between 
partners in law firms, team members in con-
sulting or sports, gay marriage, etc. Although 
the existence of stable matchings might be 
problematic (Roth and Sotomayor 1990), 
sometimes one can divide agents into two 
sides and match them as if they came from 
a two-sided problem. Kremer and Maskin 
(1996) explore such a model in which identi-
cal agents might be able to perform different 
tasks with different productivities. If man-
agers and workers are drawn from the same 
population and they are complementary but 
managers play a more important role, then 
they show that technology changes can aggra-
vate wage inequality and the segregation 

of workers by skill. Moreover, the optimal 
matching need not exhibit PAM. 

The models analyzed above assume 
that output ​f​ depends only on the types of 
matched pairs. In some applications, the 
value of the match to a pair also depends 
on the entire matching, which gives rise to a 
problem with externalities. Sasaki and Toda 
(1996) and Pycia and Yenmez (2015) have 
analyzed matching with externalities, intro-
ducing notions of stability with externalities 
in both the perfect TU and NTU cases, and 
studying their implications. More recently, 
Chade and Eeckhout (2015) analyze the 
impact of externalities on the optimal and 
equilibrium matching patterns using a 
two-stage model of teams where teams are 
formed and later compete.

We have focused on matching by agents 
with scalar characteristics. The multidimen-
sional problem—say where men and women 
differ in education, income, attractiveness, 
etc., or in a labor market where firms have 
many heterogeneous tasks and workers differ 
across several skill dimensions—is technically 
harder. Chiappori, McCann, and Nesheim 
(2010) explore existence and uniqueness of 
equilibrium in the multidimensional perfect 
TU matching model. They use tools from the 
optimal transport literature, linking match-
ing models and hedonic pricing models. 
Lindenlaub (2014) provides a notion of sort-
ing for multidimensional problems and stud-
ies a matching model where workers have 
both manual and cognitive skills and firms 
have jobs demanding both skills. Using US 
data, she analyzes technological change and 
its effects on the wage distribution.

Most of the matching literature assumes 
that agents’ characteristics are primitives 
of the model. A small literature explores 
ex ante investments followed by a matching 
stage. A standard question addressed in 
these papers is whether the prospect of 
a better match induces agents to invest 
ex ante, thereby mitigating the hold-up 
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problem. Another one is to understand 
how imperfections at the matching stage 
combine with the investment problem 
ex ante and generate inefficiencies. Early 
work here includes Makowski and Ostroy 
(1995), Felli and Roberts (2016), and Cole, 
Mailath, and Postlewaite (2001). Noldeke 
and Samuelson (2015) and Bhaskar and 
Hopkins (2016) explore the efficiency of 
pre-matching investments, and Chade and 
Lindenlaub (2015) derive comparative stat-
ics of risk on pre-matching investments.

Search frictions or learning, analyzed later, 
can lead to mismatch and so rematch. In 
Chade and Eeckhout (2016), agents match 
based on observable characteristics that 
index the distributions of payoff-relevant 
attributes that are revealed after the match. 
For example, employers may sort workers by 
education, hoping this signals later produc-
tivity, and this leads to mismatch. They pro-
vide an empirical application of the model to 
the assignment of CEOs to firms.

3.  Foundations of Search Theory

3.1	 Why Search Frictions?

The matching paradigm as we have 
described it has some unrealistic economic 
properties. For one thing, it predicts no 
unmatched agents, except due to obvi-
ous imbalance. For another, it says nothing 
about mismatch among those that do match. 
Finally, its predictions are excessively vola-
tile in a counterfactual way. To see this last 
claim, consider a standard Walrasian model. 
Either a small change in the supply of some 
endowment, or a slight increase in the num-
ber of individuals with some preference, 
has only a small effect on the price. But in a 
pairwise matching setting, slight imbalances 
can sometimes have dramatic effects. For 
instance, consider a marriage market with 
homogeneous men and women. With slightly 
more men than women, all matching rents 

go to women, but with slightly more women 
than men, the opposite holds.  25 Or assume 
a world with heterogeneous people available 
for matches. There can be implausibly discon-
tinuous matching allocations. Suppose that 
match payoffs are ​f (x, y)  =  1 + εxy​, with ​
| ε |  >  0​ and incredibly small. Depending on 
whether ​ε  ≷   0​, we either have positive or 
negative assortative matching, respectively. 
So the frictionless predictions by Becker of 
both the matched and unmatched agents are 
counterfactual in different ways. Additionally, 
the Walrasian auctioneer fiction is a far less 
accurate description of the actual matching 
process, since the Walrasian fiction rings less 
true for a market with a massive number of 
essentially unique items for sale. Indeed, 
organizing this as a market is the very chal-
lenge facing online matching services.

To fully understand how search frictions 
distort equilibrium market outcomes, we 
first need to learn some basic decision theo-
retic tools of search theory. Below, we explore 
single-agent search theory and illustrate it 
with some economic applications. Search in 
microeconomic models is usually modeled 
in two ways: sequential, where the decision 
maker samples options over time until she 
decides to stop, and nonsequential or simul-
taneous, where all the options are sampled 
at once and then the best one is chosen. In 
all cases, search theory explores how option 
value governs choices: where to search or 
how long or how much to search. Just as in 
finance theory, an option value is increasing 
in the riskiness of the choices, since extreme 
events yield the surplus.

3.2	 Simultaneous Search

The seminal paper by Stigler (1961) 
started the literature on search in econom-
ics. In this model of simultaneous search, a 
consumer samples prices from a distribution, 

25 For a recent reference on this issue, see Ashlagi, 
Kanoria, and Leshno (2017). 
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and chooses how many searches to make. 
Each search costs ​c  >  0​. Specifically, sup-
pose you are searching for a product, and 
must buy it today. In the morning you can 
call many (ex ante) identical stores, and in 
the afternoon, after searching through their 
stock, they will call back with a price quote. 
Upon observing the prices sampled, the con-
sumer buys the product in question from 
the firm that quoted the lowest price. The 
optimal sample size is an easy optimization 
problem in one variable and, for some dis-
tributions, it can be obtained in closed form.

Let the distribution of prices be given 
by a non-degenerate distribution ​F(p)​ on ​
[0, 1]​. A consumer chooses a fixed sam-
ple size ​n​ to minimize the expected total 
cost ​C​ (expected purchase cost plus search 
cost) of purchasing it. With ​n​ independent 
draws, the distribution of the lowest price is ​​
F​ n​​ (p)  =  1 − ​[1 − F(p)]​​ n​​. Thus, if one will 
purchase ​K​ units, the expected total outlay is 

  ​  P(n)  =  K ​∫ 
0
​ 
1
​​ p d ​F​ n​​ (p) 

	 =  K ​∫ 
0
​ 
1
​​ [1 − ​F​ n​​ (p)] dp 

	 =  K ​∫ 
0
​ 
1
​​ ​[1 − F(p) ]​​ n​ dp​.

Observe that ​​[1 − F(p)]​​ n​​, and thus the 
expected cost ​P(n)​, falls in ​n​, but at a dimin-
ishing rate. Thus, the second-order con-
dition is met, and the optimal sample size ​​
n​​ ∗​​ obeys the discrete first-order condition:  
​P(​n​​ ∗​ − 1) − P(​n​​ ∗​) ≥ c > P(​n​​ ∗​) − P(​n​​ ∗​ + 1)​.  
Easily, a larger planned purchase ​K​ raises 
the marginal benefit of sampling, and thus 
induces weakly more searches ​​n​​ ∗​​.

Stigler’s fixed sample size search is tough 
to motivate, as it is almost always a contrived 
thought experiment (as above). But there is 
one major occasion in life when we make 
such a one-shot search experiment: applying 
for college. This ignores the possibility of 
early admission at one school, which adds 

an interesting dynamic wrinkle, to which we 
will return. Since the locations of prizes are 
known, but their realizations are not, this 
may be better thought of as an information 
friction. Unlike in Stigler’s model, one must 
choose the colleges to apply to, and not sim-
ply their number because colleges vary by 
admission chances and career value.

Recently, Chade and Smith (2006) 
extended the simultaneous-search paradigm 
to allow for ex ante heterogeneous options. 
The decision maker chooses not only the 
number of options to sample, but also the 
sample composition. Each option gener-
ates a stochastic reward. After observing the 
rewards of each option, the decision maker 
chooses the largest one. Specifically, imagine 
a set of colleges ​{ 1, 2, … , N}​, with payoffs ​​
v​ 1​​ > ​v​ 2​​  > ⋯ > ​v​ N​​​. Since better colleges 
are presumably harder to secure entry to, 
assume inversely ranked admission chances ​​
α​ 1​​  < ​ α​ 2​​  <  ⋯  < ​ α​ N​​​.

Chade and Smith (2006) then deduce the 
optimal portfolio of any given size ​n  ≤  N​
—and thus solve the richer problem of the 
optimal portfolio when all college applica-
tion costs are ​c  >  0​. (Their analysis does not 
help if application costs vary.) In principle, 
the optimal portfolio might require search-
ing through all possible ​n​-subsets, or in the 
richer problem, all ​​2​​ N​​ portfolios. Could 
college students actually be solving such a 
fantastically seemingly complex NP-hard 
problem? The authors prove that a simple 
marginal improvement algorithm (MIA) 
yields the optimal portfolio, and it only takes 
about ​​N​​ 2​​ steps to find the best portfolio with ​
N​ schools: At stage 1, one selects the school 
with greatest expected value. If that value 
exceeds ​c​, then put college ​i​ in the tentative 
portfolio. At any stage ​n + 1​ in the recur-
sion, one finds the school ​​i​ n+1​​​ yielding the 
greatest marginal benefit on the portfolio 
constructed so far. Add that school to the 
tentative portfolio if the incremental value is 
at least the cost ​c​. Otherwise, stop.
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That this algorithm works is surprising, 
since the problem is static and not amena-
ble to dynamic programming. One could 
easily imagine that a college optimal for 
one portfolio size might not remain so for 
a larger portfolio. The proof that this never 
happens—a joint mathematical induction on 
the number of options and cardinality of the 
portfolio set—shows why one never wishes 
to remove a college added at an earlier stage. 
The MIA is a member of a class of “greedy 
algorithms,” in which a sequence of locally 
optimal choices leads to the global optimum.

For a minimal illustrative example, assume 
just three colleges with payoffs ​​v​ 1​​  =  1​,  
​​v​ 2​​  =  0.8​, and ​​v​ 3​​  =  0.6​, and admission 
chances ​​α​ 1​​  =  0.5​, ​​α​ 2​​  =  0.8​, and ​​α​ 3​​  =  1​. 
The expected payoffs ​​z​ i​​  ≡ ​ α​ i​​ ​v​ i​​​ are therefore ​​
z​ 1​​  =  0.5​, ​​z​ 2​​  =  0.64​, and ​​z​ 3​​  =  0.6​. With an 
application fee ​c  =  0.15​, the optimal port-
folio includes college 2. The marginal benefit 
of adding college 1 to a portfolio ​{2}​ is 

  ​  M​B​ 12​​  =  [​z​ 1​​ + (1 − ​α​ 1​​) ​z​ 2​​ ] − ​z​ 2​​ 

	 = ​ z​ 1​​ − ​α​ 1​​ ​z​ 2​​​

since college 2 is only relevant in the event 
that one is rejected at college 1. On the other 
hand, in pondering the marginal benefit 
of adding 3 to a portfolio ​{2}​, we note that 
college 2 matters whenever one is accepted 
there. The marginal benefit is computed 
therefore in a different way: 

  ​  M​B​ 32​​  =  [​z​ 2​​ + (1 − ​α​ 2​​) ​z​ 3​​ ] − ​z​ 2​​ 

	 =  (1 − ​α​ 2​​) ​z​ 3​​​.

We conclude from the MIA that college 1  
belongs to the optimal portfolio, since ​​
z​ 1​​ − ​α​ 1​​ ​z​ 2​​  =  0.18  >  0.12  =  (1 − ​α​ 2​​) ​z​ 3​​​.  
Finally, one does not wish to add college 3 
to this portfolio since ​(1 − ​α​ 1​​)(1 − ​α​ 2​​) ​z​ 3​​  
=  0.06  <  0.15  =  c​, and thus, the optimal 
college portfolio is ​{1, 2}​.

Using the algorithm, Chade and Smith 
(2006) prove that students apply more 
aggressively than they would if they were 
unaware of how their colleges jointly inter-
act in their portfolio. They should not blindly 
apply to their best expected options. For 
instance, the lower-ranked colleges 2 and 3 
have the two highest expected payoffs.

This is best seen as a justification for 
why students pursue “stretch schools.” For  
assume a world with just college ​i​ and 
many identical lower-ranked colleges ​j​. 
Assume that even though any such college ​j​  
has a lower payoff ​​v​ j​​  < ​ v​ i​​​ , it has a higher 
expected value ​​α​ j​​ ​v​ j​​  > ​ α​ i​​ ​v​ i​​​. As a result, the 
MIA starts with college ​j​. While it may well 
continue to add “copies” of college ​j​, college ​i​ 
is eventually chosen by the algorithm before 
exhausting all of the ​j​ colleges. Let’s see how a 
temptation to gamble upwards emerges. The 
marginal benefit of adding more college ​j​  
copies vanishes geometrically in their num-
ber, and so eventually falls below ​​α​ i​​ (​v​ i​​ − ​v​ j​​) −  
c  >  0​, for any application cost ​c  >  0​. By 
contrast, the marginal benefit of adding col-
lege ​i​ to a portfolio of ​n​ colleges ​j​ is 

  ​​  α​ i​​ ​v​ i​​ − ​α​ i​​ ​v​ j​​ ​(1 − ​​(1 − ​α​ j​​)​​​ n​)​ − c 

        > ​ α​ i​​ ​(​v​ i​​ − ​v​ j​​)​ − c​.

For large enough ​n​, adding the stretch appli-
cation to college ​i​ is the best course of action.

By the same token, “safety schools” can 
only be understood if acceptances are not 
independent. For instance, suppose that a 
common unknown shock may affect all col-
lege evaluations. If a student is unaware, 
e.g., that math requirements have shot up, 
then as insurance, he might wish to pursue 
a safety-school strategy. This remains a chal-
lenging but important research avenue.

Modeling search frictions in this simul-
taneous way appears in some equilibrium 
search models of price dispersion such as 
Burdett and Judd (1983); directed search 
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models with one or multiple applications and 
ex ante identical firms such as Burdett, Shi, 
and Wright (2001) and Albrecht, Gautier, 
and Vroman (2006); as well as search prob-
lems with multiple applications and hetero-
geneous options such as Chade, Lewis, and 
Smith (2014) for college admissions, and 
Kircher (2009) and Galenianos and Kircher 
(2009) for labor markets.

3.3	 Sequential Search

Amusingly, while Stigler’s paper intro-
duced price search—deploring information 
as the “slum dwelling in the town of eco-
nomics”—his model was almost immediately 
abandoned. After McCall (1965) intro-
duced sequential search to economics, the 
simultaneous-search model was essentially 
ignored until Chade and Smith (2006). For 
in Stigler’s model, if the searcher could 
decide sequentially on whether to continue, 
he does better. Indeed, he would always have 
available the fixed sample size commitment 
policy, simply by ignoring what he has seen 
until sampling ​​n​​ ∗​​ stores, and then picking the 
best so far. But if given the option to recall a 
past search, he might well wish to stop either 
earlier or later. McCall (1970) re-worked his 
1965 model for wage search, assuming that a 
worker samples a wage from a distribution in 
each period and decides whether to continue 
the search, or stop and work at that wage. 
His classic model has become a fundamen-
tal building block for macroeconomic mod-
els of the labor market (see the discussion in 
section 3 in Rogerson, Shimer, and Wright 
2005), and we will also use it extensively 
in section 4. The worker’s optimal strategy 
is fully summarized by a reservation wage  
​​ 
_ w ​​ above which the worker stops searching, 
and below which he continues.26 Since he  
is now indifferent when faced with his 

26 Morgan and Manning (1985) endogeneized the sam-
ple size at each stage of the search process, thereby blend-
ing sequential and simultaneous search. 

reservation wage, and will in the future be, 
his new optimality condition requires: 

(15)  ​​  
_ w ​  = ​ ∫ 

0
​ 
∞

​​ max​​ (​ 
_ w ​, w) dF(w) − c

	 ⇒  c  = ​ ∫ 
​ 
_ w ​

​ 
∞

​​ [1 − F(w)] dw​.

Since the problem is stationary, a wage once 
rejected is forever rejected. As a result, an 
option to return to a previously declined 
option is worthless. This expression admits 
some immediate predictions. For instance, 
the hazard rate of finding jobs is constant 
through time. Also, if one interprets ​c​ as 
foregone unemployment benefits, then the 
reservation wage rises in these benefits. And 
by standard stochastic dominance reasoning, 
a mean-preserving spread of the wage dis-
tribution ​F​ likewise raises the reservation 
wage, since the max operator is convex, and 
hence it encourages risk-taking behavior—
for instance, acquiring information about ​F​.

The impact on search duration is a priori 
ambiguous—for the searcher is more ambi-
tious with a mean-preserving spread, but 
there is also more probability weight in the 
upper tail. Choi and Smith (2016) resolve 
this ambiguity, showing that if every pair 
of percentiles of the wage distribution shift 
apart—namely, there is a right shift in the 
dispersion order—then the hazard rate of 
stopping ​1 − F(​ 

_ w ​)​ falls, and consequently 
the search duration rises.

We pursue a richer model than McCall 
(1970) that allows for ex ante hetero-
geneous options: the Pandora’s box of 
Weitzman (1979). Assume a finite number of 
heterogeneous options, each represented by 
a unique probability distribution ​​F​ k​​ (w)​ over 
prizes. Opening box ​k​ costs ​​c​ k​​  >  0​, and 
incurs a time discounting factor ​​δ​ i​​  ∈  (0, 1]​,  
due to delay. Only one prize may ultimately 
be accepted. Payoffs are independent, 
and the decision maker must sample them 
sequentially. At any point in time, she can 
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decide to stop the search and keep the best 
reward observed thus far. So an optimal strat-
egy requires specifying the order to explore 
options and a stopping rule.

Uncertain options in life should be under-
taken as long as one is sufficiently opti-
mistic. Uncited in Weitzman (1979) was 
the earlier solution of the infinite horizion 
multi-armed bandit problem in Gittins and 
Jones (1974) and later Gittins (1979)—the 
so-called Gittins index.27 When arm payoffs 
are independent, the index for each arm 
solely reflects the uncertainty of that arm. 
Capturing the contingent decision making, it 
is the fixed prize ​​​ 

_ w ​​ k​​​ that leaves the decision 
maker indifferent about choosing a prize, 
and paying to open box ​k​, knowing that the 
prize awaits him if he wants it. Namely: 

(16) ​​​ 
_ w ​​ k​​  = ​ δ​ i​​ ​∫ 

0
​ 
∞

​​max​ ( 
_ w ​​ k ​​, w) d ​F​ k​​ (w) − ​c​ i​​​ .

Solving the problem by induction and 
dynamic programming, Weitzman showed 
that the optimal selection and stopping rules 
were then straightforward: at each stage, 
the decision maker samples the option with 
the largest index and stops when the reward 
observed exceeds the reservation values of 
all the remaining options.28 Notice that the 
reservation wage equation (15) emerges from 
(16) with homogeneous options and costs and 
no discounting—namely, ​​F​ i​​  =  F​, ​​c​ i​​  =  c​,  
and ​​δ​ i​​  =  1​. McCall (1965) intuitively feels 
like a special case of Weitzman (1979) when 
there is a vast number of identical options. 
This logic shows that the reservation wage 
coincides with Weitzman’s index with only 
finitely many options when there is recall of 

27 A multi-armed bandit is a finite action, infinite hori-
zon Bayesian experimentation problem. When the payoff 
of each “arm” is independent of all others, the optimal 
strategy is given by Gittins indices. 

28 Olszewski and Weber (2015) explore the limits of this 
class of index rules for different payoff functions. 

past options. Any such recall freedom has no 
value in the stationary job search setting.

Keeping in mind our predictions about 
how reservation wages change, we can see 
that the searcher will first explore options 
with lower costs, higher means, and higher 
variances. Weitzman gives an example where 
the first options explored are statically dom-
inated, with a lower mean and a higher cost. 
They are valuable provided they have a high 
enough variance.

Let’s revisit the college application prob-
lem of section 3.2. Assuming that one could 
apply in sequence to colleges, one would 
optimally employ Weitzman’s rule. This is 
true even with college-specific application 
costs. With our binary payoff distribution, the 
index equation (16) of college ​i​ reduces to: 

   ​​​   
_ w ​​ i​​  =  (1 − ​α​ i​​) 

_ w ​​ i​​ + ​α​ i​​ ​u​ i​​ − c

	 ⇒ ​​ 
_ w ​​ i​​  = ​ u​ i​​ − c / ​α​ i​​  =  (​z​ i​​ − c)  / ​α​ i​​​ .

So sequential decision making is governed 
not by the expected net gains ​​z​ i​​​, but instead 
by the expected net gain divided by the 
probability of success. Chade and Smith 
(2006) prove that individuals act more 
aggressively with sequential decision mak-
ing than simultaneous choices. One should 
pursue less likely options first. For instance, 
in the example of section 3.2, college ​i  =  2​ 
is the first applied to; however, the indexes 
are 

 ​​​ 
_ w ​​ 1​​  = ​ u​ 1​​ − c/​α​ 1​​  =  1 − 0.15/0.5 

	 =  0.7  >  0.6125  =  0.8 − 0.15/0.8 

	 = ​ u​ 2​​ − c/​α​ 2​​  = ​​ 
_ w ​​ 2​​​.

A general lesson is that sequential deci-
sion making pushes toward more risk- 
taking behavior. For example, early admis-
sion might be unwise for the most elite 
schools because it encourages more 
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aggressive “stretch” applications by weaker 
students who otherwise would not apply.

These optimal stopping problems have 
long been explored in operations research, 
where it is assumed that a decision maker 
chooses a sequentially optimal time at 
which he takes an action to maximize his 
expected payoff. As expected, their solution 
typically involves heavy use of dynamic- 
programming tools. There are excellent ref-
erences on the subject, ranging from elemen-
tary to advanced, such as DeGroot (1970); 
Chow, Robbins, and Siegmund (1971); 
Shiryaev (1978); Ross (1983); Ferguson 
(2016); and Peskir and Shiryaev (2006).

Modeling search as a sequential process 
is standard in much of economics. For 
instance, it is widely used in macroeco-
nomic models of the labor market (e.g., 
Rogerson, Shimer, and Wright 2005), in the 
literature of matching with vanishing fric-
tions (e.g., Osborne and Rubinstein 1990), 
and in assortative matching models with 
search (see section 4).

One might view search theory as optimal 
stopping when one knows the payoff dis-
tribution, but not the realizations. In a key 
extension of the sequential-search problem, 
Rothschild (1974) explored the implications 
of learning the distribution while search-
ing. This has been revisited in many guises, 
recently by Adam (2001), and Gershkov and 
Moldovanu (2012).

Finally, in equilibrium applications that 
we will study in section 4, a continuous- 
time search model with exponential arrivals 
replaces the discrete-time model. Assume 
that the arrival rate is ​ρ  >  0​. Subtract  
​​δ​ i​​ ​w​ k​​​ from both sides of (16), and think of ​​
δ​ i​​  =  1 − r dt​, and ​​c​ i​​​ as a flow search cost. 
Then (16) becomes 

(17) ​ r 
_ w ​​ k​​ 

=  ρ ​∫ 
0
​ 
∞

​​ max (w − ​​ 
_ w ​​ k​​, 0) d ​F​ k​​ (w) − ​c​ i​​​ .

This admits the intuitive statement that the 
return on the value equals the sum of the 
dividend ​− ​c​ i​​​ and the expected capital gains, 
namely, the expected surplus of prizes ​x​ over 
the value ​​​ 

_ w ​​ k​​​.

3.4	 Sequential Search with Hidden  
and Known Components

Choi and Smith (2016) explore another 
specialization of Weitzman (1979) in which 
they assume that the prize distributions ​​F​ k​​​ 
reflect the sum of hidden and known com-
ponents, each with a common distribution. 
For simplicity, we touch on their applica-
tion to web search, since it is a major new 
way that sorting and matching are proceed-
ing now.29

In this case, assume that all payoffs ​W​ 
hail from a Gaussian distribution. Since the 
Gaussian distribution is stable, it can be 
parsed as: 

(18)	​ W  =  αX + ​√ 
_____

 1 − ​α​​ 2​ ​ Z​ ,

in which ​X​ and ​Z​ are each standard normal 
random variables. For instance, after enter-
ing the keyword, the search engine ranks the 
search outcomes by the realized known com-
ponents ​X​. To learn the idiosyncratic compo-
nent ​Z​, the user must click on the website 
and read it.

The search engine accuracy ​α​ represents 
how effective the search engine is in reduc-
ing the idiosyncratic noise, rendering more 
predictable web searches. When ​α  =  0​,  
the problem reduces to a stationary search 
problem. In that case, the user employs the 
same cutoff for all periods, and will never 
use the recall option unless the last period 
is reached. When ​α  =  1​, the websites are 

29 Varian (1999) mused on practical advice for offering 
books to a rushed consumer in an airport bookstore. He 
identified Weitzman (1979) as a parable for web search 
engines. 
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perfectly sorted, and the user will stop at the 
first result. In this case, the recall option is like-
wise unused. For intermediate ​0  <  α  <  1​,  
the user faces a nonstationary search prob-
lem with decreasing cutoffs, and so might 
well recall an earlier draw. This is intuitively 
the world most of us find ourselves in while 
searching the internet.

Even though the search problem is 
highly nonstationary, the options stochas-
tically worsen as one proceeds through 
the list: ​​x​ 1​​  > ​ x​ 2​​  >  ⋯​. In this model, a 
user clicks on the ​k th​ web site if and only 
if the best draw so far lies below ​​​ 

_ w ​​ k​​  =  α ​
x​ k​​ + ζ(α)​, where ​α ​x​ k​​​ reflects the common 
component, and ​ζ(α)​ measures the search 
optionality—namely, the net benefits of the 
idiosyncratic randomness. Given (18), the 
threshold ​ζ(α)​ obeys a reservation equation 
akin to (15), conveniently invariant to the web  
site rank ​k​: 

	​ c  = ​ ∫​ 
ζ(α)

​ 
∞

 ​ ​
[

1 − Φ​
(

​  y
 ________ 

​√ 
_____

 1 − ​α​​ 2​ ​
 ​
)

​
]

​ dy.​

One can compute that the implied “option-
ality measure” ​ζ(α)​ monotonically falls in 
accuracy ​α​—as a concave and then con-
vex function of ​α​, with extreme values ​
ζ(0)  >  − c  =  ζ(1)​.

Choi and Smith (2016) assume that indi-
viduals can quit any search and exercise an 
outside quitting option ​u​, or continue search-
ing. Search engines are keenly interested in 
the chance that one never quits searching, so 
that the search engine secures a successful 
match. This chance increases in accuracy 
if and only if ​u  <  ζ(α)​. In other words, 
there may be a conflict of interest between 
online shopping sites (for, say, Amazon) and 
consumers. In particular, when the outside 
options are high or the price is low, a shop-
ping website secures higher sales with a nois-
ier search engine.

Choi and Smith (2016) derive an array 
of results for this nonstationary search 

environment. For instance, search intensi-
fies, with recall rates and quitting rates rising 
over time.

3.5	 Sequential Search by Committee

We finally explore an intriguing appli-
cation of search theory as it applies to the 
search for job candidates. Of the two sem-
inal papers here, Albrecht, Anderson, and 
Vroman (2010) and Compte and Jehiel 
(2010), we focus on the former (AAV), 
since it shows how search costs skew 
the partner search process. Consider a 
department seeking to hire job candidates 
that arrive sequentially, one per period.  
The search cost is impatience: the payoff is 
discounted by ​0  <  δ  <  1​. Each member ​i​ 
of hiring committee of ​N​ members observes 
a random private value ​W  ∈  [0, 1]​,  
independently drawn from the common  
cdf ​F​. After seeing her private value, each 
committee member casts a yea or nay vote 
to hire the current candidate or continue 
the search. Search ends with the current 
option if at least ​M  ≤  N​ members vote to 
hire the current candidate, and continues 
otherwise.

For a flavor of the theory, consider first a 
committee of one. It votes to hire a candi-
date when ​W  ≥ ​ 

_ w ​​, given the reservation 
value ​​ 

_ w ​  =  δV(​ 
_ w ​)​, where ​V​ is a fixed point ​

V  =  T V​ of the Bellman operator ​T V(w)  
=  (1 − F(w))E[W | W  ≥  w] + δF(w)V(w)​.  
Next, assume a size ​N  =  2​ committee. In 
the symmetric equilibrium, each player still 
employs a reservation value ​w​, and secures 
Bellman value ​​V​ M​​ (w)​. For ​M  =  1​, the value 
solves the Bellman recursion ​​T​ 1​​ ​V​ 1​​  = ​ V​ 1​​​, 
where 

 ​​ T​ 1​​ V(w)  =  (1 − F(w)) E [W | W  ≥  w]  

      + F(w)(1 − F(w)) E [W | W  ≤  w]  

      + F ​(w)​​ 2​ δ V(w)​.
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For any player ​j​’s payoff exceeds the thresh-
old ​w​ with chance ​1 − F(w)​, whereupon 
search ends with that payoff ​E [W | W  ≥  w]​. 
Next, ​j​’s payoff is below ​w​ with chance ​F(w)​.  
In this case, if the other player ​k​’s payoff 
exceeds ​w​ (chance ​1 − F(w)​), then ​j​ earns 
his low payoff ​E [W | W  ≤  w]​. Otherwise, ​j​ 
earns the discounted continuation value.

Since the operators are ordered ​​T​ 1​​ V  
<  TV​ for all ​v​, their fixed points are ranked ​​
V​ 1​​  <  V​, and their reservation values like-
wise so: ​​​ 

_ w ​​ 1​​  < ​ 
_ w ​​. In other words, commit-

tee members are individually less picky: the 
single agent ​i​ rejects any candidate that com-
mittee member ​i​ rejects. The value reflects 
a stopping externality, the bad event that  
Ms. ​k​ votes to stop when Mr. ​j​ has a low draw.

Next assume unanimity is needed: ​M = 2​.  
The expected value ​​V​ 2​​ (w)​ is then a fixed 
point of: 

 ​​ T​ 2​​ V(w)  ≡ ​ (1 − F(w))​​ 2​ E [W | W  ≥  w]

	 + F(w) (2 − F(w)) δV(w)​

with reservation wage ​​​ 
_ w ​​ 2​​  =  δ ​V​ 2​​ ( 

_ w ​​ 2​​)​.  
By the same logic, committee members 
are less demanding than solo searchers 
in equilibrium—namely, ​​​ 

_ w ​​ 2​​  < ​ 
_ w ​​—now 

because of a continuation externality, in 
the bad event that Ms. ​k​ votes to continue 
when Mr. ​j​ has a high draw. Since the stop-
ping or continuation externalities obtain 
on any search committee, the committee is 
always less choosy than the solo searcher in 
any symmetric equilibrium. When ​M  =  1​, 
this reservation value ordering implies that 
the committee concludes search faster on 
average, since the continuation probability 
is lower: ​F ​( 

_ w ​​ 1​​)​​ N​  <  F( 
_ w ​​ 1​​)  ≤  F(​ 

_ w ​)​. But 
when ​M  >  1​, there is a trade-off—a candi-
date must independently pass several lower 
thresholds. AAV show that when ​M  <  N​, 
the committee concludes search faster then 
a solo searcher with enough patience or 
impatience: for ​δ  ∉  (​δ​ L​​, ​δ​ H​​)​.

In the single agent problem, mean- 
preserving spreads are unambiguously 
beneficial, since one can always dis-
card low draws. In the committee search 
problem, AAV show via example that 
mean-preserving spreads can lower welfare. 
For a mean-preserving spread can increase 
either (a) the stopping externality, by mak-
ing low draws more costly, or (b) the contin-
uation externality, by increasing the chance 
that another member of the committee 
blocks you, or both.

This literature adding strategic elements 
to the search problem is an inviting future 
direction, in light of the important of col-
lective decision making in resolving search 
frictions.

4.  Search and Matching

4.1	 An Introduction to Sorting in Search 
and Matching Models

In the Walrasian matching model, it is 
costless for agents to find potential partners, 
be they women searching for men, work-
ers searching for jobs, or buyers searching 
for sellers. Building on the basic matching 
model, we now introduce search frictions. 
This twist is important, since it eliminates 
discontinuous matching sets and wage pro-
files (in section 3.1) predicted by the fric-
tionless model, and explains important 
phenomena like equilibrium unemployment 
and imperfect sorting (mismatch), and ratio-
nalizes price and wage dispersion.

We distinguish between time intensive 
random search, and directed or competi-
tive search, where markets clear by queues 
and stockouts. Some of the questions we 
address are: How do market frictions affect 
match formation and sorting in marriage 
and labor markets as well as in models of 
bilateral trade? Who matches with whom 
in equilibrium? The literature frontier 
assumes a common evaluation of agents, 
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without a hint that beauty is in the eye of 
the beholder,30 and this remains a major 
direction of future research.

But the quest to enrich Becker’s framework 
and account for search frictions has received 
an enormous amount of attention in recent 
years. Among the earliest such models of 
heterogeneous agent search were Bergstrom 
and Bagnoli (1993), which we explore in 
section 5.2, and Smith (1992). These papers 
assumed NTU, and were followed up by 
Burdett and Coles (1997) and Smith (2006). 
But the proper extension of Becker’s model 
required perfect TU, as was later assumed 
in Shimer and Smith (2000). Recently, the  
literature has explored the implications of 
replacing the assumption of anonymous 
search by that of directed search (e.g., 
Eeckhout and Kircher 2010a, Shi 2001), 
where agents can identify where they send 
their applications to find potential partners.

With random search, there are several 
other modeling assumptions besides perfect 
TU or NTU. First, it is standard to assume 
continuous time with an exponential arrivals 
of matching opportunities. Next, for models 
of partner search, it is common to model 
search cost as impatience, rather than an 
explicit search cost. Also, with a few salient 
exceptions, the unisex model is assumed for 
simplicity, but a similar analysis can be done 
with two distinct sides, as in the frictionless 
case.

Crucially, one must take a stand on the 
nature of the search technology (Diamond 
and Maskin, 1979). With anonymous search, 
unmatched individuals meet one another 
in direct proportion to their mass in the 
unmatched pool. But what then is the propor-
tionality constant? In a linear search technol-
ogy, potential partners arrive with constant 
rate ​ρ  >  0​. To wit, the density mass of new 
matches is linearly proportional to the mass 

30 This assumption has already been explored in a 
search and trading model in Smith (1995). 

of unmatched agents. On the other hand, in 
the quadratic-search technology, unmatched 
individuals face a constant arrival rate of poten-
tial partners ​ρ​ times the mass of unmatched 
agents; here, the mass of new matches is pro-
portional to the squared mass of unmatched 
agents. We will refer to ​ρ​ as a meeting rate, 
or possibly, the rendezvous rate. For intuition, 
this arises if invitations to meetings arrive at 
fixed rate ​ρ​ to everyone, but when either party 
is already matched, he misses the meeting.

The quadratic-search technology embeds 
a crucial analytic advantage: players are unaf-
fected by the matching decisions of those 
unwilling to match with them. This strategic 
independence greatly simplifies equilibrium 
analysis. By contrast, in order to hold the 
matching rate constant with a linear-search 
technology, new individuals that enter one’s 
matching set crowd out previous individu-
als. This complicates and sometimes renders 
impossible equilibrium analysis, especially in 
a nonstationary environment. We now illus-
trate this with Smith (1992), the first hetero-
geneous agent search model that properly 
tracked the demographics. This leads us into 
the sorting results.

4.2	 Sorting with Random Search and 
Nontransferable Utility

4.2.1	 Block Assortative Matching

When individuals sort into matches by 
anonymous random search, an intriguing 
equilibrium matching pattern emerges. To see 
this, assume that everyone is summarized by a 
scalar type in ​[0, 1]​, and posit a uniform den-
sity on types. Assume no match complemen-
tarities,31 and posit that anyone matching with 
type ​x​ earns payoff ​x​. A pairwise matching mar-
ket is newly opening, with everyone initially 
unmatched, and meeting potential partners 
according to a quadratic-search technology 

31 Some introspection reveals that this analysis also 
works when the payoff to the match of types ​x​ and ​y​ is ​xy​. 
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with meeting rate ​ρ​. We assume that match-
ing is irreversible, but this will be optimal ex 
post anyhow. Everyone wishes to enter a per-
manent match with the highest discounted 
expected present value. In the equilibrium 
that transpires, intuitively everyone will start 
off wanting to match with the highest types, 
but then these types gradually vanish, and 
the cutoff monotonically falls. By the logic of 
section 3.3, the marginal type that leaves one 
indifferent between matching and continuing 
is the unmatched value ​​ 

_
 v ​​. If this marginal 

type monotonically vanishes, then the equi-
librium assumes the form: any types in ​[​ _ v ​, 1]​ 
agree to a match when they meet, and every-
one declines to match with anyone in ​[0, ​ 

_
 v ​)​.

To verify this equilibrium, we adapt the 
reservation wage equation (17) for a non-
stationary world, in which there is a further 
capital loss reflecting the falling value ​​ 

_
 v ​′  <  0​  

(suppressing the time subscripts). For any 
interest rate ​r  ≥  0​, the return is the sum of 
the “capital gains” and “dividends,” namely: 

(19) ​ r ​ 
_

 v ​  = ​ 
_
 v ​′ + ρ ​∫ 

​ 
_

 v ​
​ 
1
​​ (x − ​ 

_
 v ​) u (x) dx​,

where ​u(x)​ is the unemployment mass 
density of type ​x  ∈  [0, 1]​. Tracking the 
unmatched mass density ​u(x)​ is essential in 
heterogeneous agent search models. But we 
can greatly simplify the problem, and capture 
the evolution of this threshold simply using 
two state variables—the total unmatched 
measure mass ​​ 

_
 u ​  = ​ ∫ 0​ 1​​ u(x) dx​, and the first 

moment ​χ  = ​ ∫ 0​ 1​​ xu(x) dx​ of unmatched 
agents. So the average type of an unmatched 
agent is ​χ/  ​ 

_
 u ​​. Rewrite the law of motion (19) 

for the unmatched value as:32 

(20)	​​ 
_

 v ​′  =  r ​ 
_

 v ​ + ρ (​ 
_

 v ​​ 
_

 u ​ − χ + ​​ 
_

 v ​​​ 2​/2)​.

32 Write (19) as ​​ 
_
 v ​′  =  r ​ 

_
 v ​ − ρ ​∫ ​ _ v ​​ 

1​​ (x − ​ 
_

 v ​) dx​. Since types 
below ​​ 

_
 v ​​ have not matched, they still have a uniform density, 

so that ​u(x)  =  1​ for all ​x  ≤ ​ 
_

 v ​​. Hence, ​​∫ ​ _ v ​​ 
1​​ (x − ​ 

_
 v ​)u(x) dx  

= ​ ∫ 0​ 1​​ xu(x) dx − ​∫ 0​ 
​ 
_

 v ​​​ x dx − ​ 
_

 v ​(​ 
_

 u ​ − ​ 
_

 v ​)  =  χ − ​ 
_

 v ​​ 
_

 u ​ + ​​ 
_

 v ​​​ 2​ / 2​. 

Since types in ​[​ _ v ​, 1]​ match just among them-
selves and they have mass ​​ 

_
 u ​ − ​ 

_
 v ​​, the qua-

dratic-search technology implies that their 
unmatched density ​u(x)​ falls at rate ​ρ(​ 

_
 u ​ − ​ 

_
 v ​)​.  

Because the mass and first moment of agents 
below ​​ 

_
 v ​​ is respectively ​​ 

_
 v ​​ and ​​​ 

_
 v ​​​ 2​/2​, the laws 

of motion for ​​ 
_

 u ​​ and ​χ​ are thus: 

	​ 
_

 u ​′  =  −ρ ​(​ 
_

 u ​ − ​ 
_

 v ​)​​ 2​

and

	 χ′  =  −ρ(​ 
_

 u ​ − ​ 
_

 v ​)(χ − ​​ 
_

 v ​​​ 2​/2).

All told, this nonstationary “rush” equilib-
rium is captured by this three-dimensional 
state ​(​ 

_
 v ​, ​ 
_

 u ​, χ)​. Naturally, the threshold ​​ 
_

 v ​​ 
vanishes; Smith (1992) argues that it does so 
at rate ​O(1/t)​.33

Assume now a flow entry with uniform 
density ​e  >  0​ on ​[0, 1)​, the threshold ​​ 

_
 v ​​ no 

longer vanishes. For a constant inflow of 
high types, there is now a strictly positive 
lower bound on the option value of waiting. 
This equilibrium offers a unique approach 
to thinking about steady-state analysis. In 
the long-run limit equilibrium, we should 
approach steady state, in which the thresh-
old ​​​ 

_
 v ​​ 1​​​ is intuitively constant and strictly pos-

itive. For the matching threshold need not 
vanish in order to satisfy dynamic optimality. 
The logic of steady state requires that entry 
of new unmatched agents balance the flow 
of agents from the unmatched pool into 
matches. This yieldes ​e  =  ρ ​u​ 1​​ (1 − ​​ 

_
 v ​​ 1​​)​.  

Meanwhile, the steady-state condition  
​​​ 
_

 v ​​1​ ′ ​  =  0​ in (20) intuitively yields an optimal-
ity condition: 

  ​  r ​​ 
_

 v ​​ 1​​  =  ρ ​u​ 1​​ ​∫ ​​ _ v ​​ 1​​
​ 

1
 ​​ (x − ​​ 

_
 v ​​ 1​​) dx 

	 =  ρ ​u​ 1​​ ​(1 − ​​ 
_

 v ​​ 1​​)​​ 2​/ 2​.

33 In pursuant work, Damiano, Li, and Suen (2005) 
develop a general theory of how matching unravels. 
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Jointly, we can solve for the pair ​(​u​ 1​​, ​​ 
_

 v ​​ 1​​)​.  
But then to understand how types ​
x  < ​​ 

_
 v ​​ 1​​​ match, the logic starts anew. 

Recursively, there is a sequence of thresh-
olds ​1  > ​​ 

_
 v ​​ 1​​  > ​​ 

_
 v ​​ 2​​  >  ⋯​ and associ-

ated unmatched rates ​​u​ 2​​, ​u​ 3​​, …​ computed 
inductively.34 In other words, whenever 
two types in the same interval ​[​​ _ v ​​ k​​, ​​ 

_
 v ​​ k−1​​)​ 

meet, for some ​k  =  1, 2, …​, they agree to 
match; otherwise, the higher type declines 
the match. Smith (2006) suggestively called 
this equilibrium block segregation. This  
balanced-flow approach was formally devel-
oped for any matching sets in (the 1997 
working paper version of) Smith (2006), with 
a general existence proof.

The earliest heterogeneous agent sort-
ing paper, McNamara and Collins (1990) 
assumed a stationary equilibrium, without 
clarification. Later, Bloch and Ryder (2000) 
made an endogenous “cloning assumption,” 
positing that agents who leave the matching 
market are somehow magically replaced by 
clones. This simply requires solving a set 
of difference equations, as does the later 
approach in Burdett and Coles (1997), 
who assumed a fixed flow entry of all types 
and no match dissolution. Finally, if match 
dissolution is indeed economically central, 
then one can assume a constant stock of 
agents, and just ask that severances balance 
new matches for each type; Shimer and 
Smith (2000) take this tack, as their primary 
application is labor.

We see how the first taste of sorting mod-
els with search frictions entailed jumps: 
Individuals match in ranked-equivalence 
classes. Smith (2006) highlights the coun-
terfactual discontinuous aspects of this block 
segregation—extremely close individual 

34 Further, by strategic independence of the qua-
dratic-search technology (see section 4.1), these 
can be computed in isolation: for we have ​r ​​ 

_
 v ​​ k+1​​  

=  ρ ​u​ k+1​​ ​∫ ​​ _ v ​​ k+1​​​ 
​​ 
_

 v ​​ k​​  ​​ (x  −  ​​ 
_

 v ​​ k+1​​) dx  =  ρ ​u​ k+1​​ [​​ 
_

 v ​​ k​​  −  ​​ 
_

 v ​​ k+1​​​]​​ 2​ / 2​, as ​
k  =  1, 2, …​. 

types do not typically have entirely dis-
jointed sets of match partners. Burdett and 
Coles (1997) instead took it as a parable of  
“marriage and class” in Britain. It is a very 
stark form of PAM.35 The question then 
arose as to when matching sets were contin-
uous in types. Relatedly, with a continuum of 
types, it is not even clear what we should call 
positive sorting. For since every type must 
match with a positive mass of types, it is no 
longer possible to assert that the percen-
tiles of matched men and women coincide. 
Shimer and Smith (2000) offered a formula-
tion of PAM and NAM that simultaneously 
applies to singleton matching sets or sets of 
positive measure. This definition asks that 
the matching set as a subset of ​​핉​​ 2​​ be a lat-
tice. In other words, if ​(​x​ 1​​, ​y​ 2​​)​ and ​(​x​ 2​​, ​y​ 1​​)​ 
are willing to match, and ​​x​ 1​​  < ​ x​ 2​​​, ​​y​ 1​​  < ​ y​ 2​​​,  
then so are ​(​x​ 1​​, ​y​ 1​​)​ and ​(​x​ 2​​, ​y​ 2​​)​. Intuitively, 
any mismatches are explained by the thick-
ness of the matching set. So when matching 
sets collapse to a singleton for each ​x​, as in 
Becker’s marriage model, this notion reduces 
to an increasing or decreasing function under 
PAM and NAM, respectively.

By drawing a suitably small rectangle at 
the edge of the matching set, this definition 
implies that each type ​x​ matches with types 
in an interval ​[a(x), b(x)]​, with both ​a(x)​ and ​
b(x)​ weakly increasing in ​x​. With NAM, the 
functions ​a​ and ​b​ are decreasing in ​x​. This 
definition has compelling economic impli-
cations. Most easily, the distribution of part-
ners with whom ​x​ matches is increasing in ​x​ 
in the sense of first-order stochastic domi-
nance; as a result, the expected value of the 
partner with whom ​x​ matches is increas-
ing in ​x​ under PAM, and decreasing under 

35 This early literature on sorting with search fric-
tions has many other participants, some with overlapping 
results, with varying insights into search costs, intermedia-
tion, and the block segregation logic. See McNamara and 
Collins (1990), Morgan (1996), Bloch and Ryder (2000), 
Chade (2001), and Eeckhout (1999). 

02_Chade_552.indd   28 5/15/17   2:59 PM



29Chade, Eeckhout, and Smith: Sorting Through Search and Matching Models

NAM. This is a testable implication for the 
data.

4.2.2	 Strict Assortative Matching

Under NTU, a sufficient condition for 
PAM in the frictionless case is that the match 
output function is increasing in partner’s 
type (Becker 1973). We now explore under 
what conditions PAM ensues in this case 
with search frictions.

In Smith (2006), time is continuous on ​
[0, ∞)​ and search is a time cost: unmatched 
agents discount the future at rate ​r  >  0​. 
There is a continuum of types ​x  ∈  [0, 1]​ with 
cdf ​G​ and a positive density ​g​. Unmatched 
agents earn zero flow payoffs, while a 
match with a type ​x​ agent yields flow payoff ​
f (x, y)  >  0​. Here, ​f​ is strictly increasing in 
partner’s type, so that ​​f​ y​​  >  0​ everywhere.  
No side payments are allowed (NTU). 
Already, Gale and Shapley (1962) predict 
that PAM is the unique stable matching. Is 
that still true in a model with frictions?

Let unmatched agents randomly meet, 
according to a quadratic-search technol-
ogy with meeting rate ​ρ  >  0​. When agents 
meet, they approve a match if both earn non-
negative surplus. Matches vanish at match 
dissolution rate ​κ  >  0​, i.e., the match lasts 
past time ​t​ with chance ​​e​​ −κt​​.

Each type ​x​ agent chooses an acceptance 
set ​A(x)  ⊆  [0, 1]​ with whom she is will-
ing to match. In turn, ​x​ is deemed accept-
able by the types in the opportunity set ​
Ω(x)  =  { y | x  ∈  A(y)}​. Hence, the match-
ing set of an agent with type ​x​ is ​A(x) ∩ Ω(x)​. 
Observe how NTU captures the classic dou-
ble coincidence of wants that money solves. 
Of course, in the TU model, the matching 
decision is mutual, and so ​A(x)  =  Ω(x)​, 
whereas in the NTU model, ​A(x)​ should be 
a higher set than ​Ω(x)​, since one’s prefer-
ences invariably surpass one’s opportunities. 
The model is in steady state with a constant 
unmatched density function ​u​, satisfying ​
0  ≤  u(x)  ≤  g(x)​ for all ​x​.

We now set up and solve a contin-
uum of heterogeneous but interlaced 
dynamic-programming problems. Let ​v(x)​ 
be type ​x​’s expected present discounted 
unmatched value, and ​v(x | y)​ the analo-
gous value from being matched with ​y​. 
In the Bellman equation, there is no divi-
dend (zero payoff while unmatched), and 
an arrival rate of a capital gain equal to the 
expected match surplus: 

(21) ​r v(x) 

=  ρ ​∫ Ω(x)​ 
 

 ​​  max (v(x | y) − v(x), 0) u(y) dy 

	 =  ρ ​∫ A(x)∩Ω(x)​ 
 

  ​​ (v(x | y) − v(x)) u(y) dy.​

Similarly, the matched value solves ​rv(x | y)  
=  f (x,  y) + κ[v(x) − v(x  |  y)]​. Naturally, ​v(x  |  y)  
>  v(x)​ since ​f (x, y)  >  r v(x)​. Since ​​f​ y​​  >  0​,  
type ​x​ accepts all types in an upper set ​
A(x)  =  [a(x), 1]​. Also, the threshold part-
ner ​a(x)  >  0​ acts like a reservation wage, 
and solves the indifference condition ​
f (x, a(x))  =  r v(x)​. So the opportunity set ​
Ω(x)  =  { y | x  ≥  a(y)}​ is increasing in ​x​.  
Substituting the expression for ​v(x | y)​ and ​
A(x)  =  [a(x), 1]​ into (21) yields the explicit 
recursion equation: 

(22) ​r v(x) 

= ​   ρ _____ r + κ ​ ​∫ A(x)∩Ω(x)​ 
 

 ​​  [  f (x, y) − r v(x)]u(y) dy​.

This expression reveals how the return on 
the unmatched value reflects how matches 
dissolve at rate ​κ​. Finally, an equilibrium is 
a triple ​(v, a, u)​, such that ​v(x)​ obeys (22) 
for the acceptance set ​A(x)  =  [a(x), 1]​, ​a(x)​ 
solves ​f (x, a(x))  =  r v(x)​ given ​u(·)​, and ​u(x)​ 
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obeys the balanced flow condition (23) at 
every type ​x​:36 

(23) ​ κ​(g(x) − u(x))​ 

	     =  ρ u(x) ​∫ A(x)∩Ω(x)​ 
 

  ​​ u(y) dy.​

Smith (2006) and Chade (2001) suggest a 
unified approach to exploring sorting under 
NTU; it applies to search with impatience, 
but extends to the case of fixed search costs. 
If ​a(x)​ is weakly increasing in ​x​, then so too is 
its inverse ​b(x)​.37 Graphically, matching then 
engulfs all types between two increasing 
bands ​[a(x), b(x)]​, whereupon PAM obtains.

Assume for now that ​Ω(x)  =  [0, b(x)]​ for 
all ​x​, and with ​b(x)​ weakly increasing. For 
the highest types, this is true since ​b(x)  =  1​. 
Since ​a(x)​ is an optimal lower threshold, (22) 
becomes 

(24) ​ r v(x)  = ​ 
​∫ a(x)​ 

b(x)
​​ f (x, y)u(y) dy

  ________________  
ψ + ​∫ a(x)​ 

b(x)
​​ u(y) dy

 ​ 

	 = ​ max​ 
a
​    ​ ​ 

​∫ 
a
​ 
b(x)

​​ f (x, y)u(y) dy
  ________________  

ψ + ​∫ 
a
​ 
b(x)

​​ u(y) dy
 ​​ ,

where ​ψ  =  (r + κ)/ρ​ encapsulates search 
frictions in a scalar constant. Assume an 
interior solution. The first-order condition 
that determines the optimal threshold ​a(x)​ 
satisfies 

(25) ​ ψ  = ​ ∫​ 
a

​ 
b(x)

​ ​( ​ 
f (x, y)

 ______ 
f (x, a)

 ​ − 1)​ u(y) dy.​

36 Smith (1997, 2006) analyzes this equation. Smith 
(2011) shows that one essentially applies the implicit func-
tion theorem to deduce a continuous map from ​a(·)​ to ​u(·)​. 

37 The logic for PAM holds with two-sided matching, 
with two populations, like men and women. In that case, 
the upper bound function ​b(x)​ is derived from the accep-
tance threshold of the other population. 

Since ​y  >  a​, the integrand on the right 
side increases in ​x​ if ​f (x, y)/ f (x, a)​ is strictly 
increasing in ​x​—namely, ​f (x, y)​ is strictly 
log supermodular (that is, log f is super-
modular). As a result, ​a(x)​ is increasing, 
and so PAM ensues for the highest agents. 
But then the inverse ​b(x)​ increases, and 
this logic works for all types ​x​. To follow 
the key observation that led to this general 
log-supermodularity condition for PAM, 
note that block segregation arises in Smith 
(1992) for any multiplicative payoffs ​f (x, y)  
= ​ f​ 1​​ (x) ​f​ 2​​ (y)​, where each ​​f​ i​​​ is positive and 
increasing. Next observe that such multi-
plicative functions are obviously log mod-
ular. Not surprisingly, ​a(x)​ is constant if ​
f (x, y)/ f (x, a)​ is always constant. This also 
offers another way of understanding why 
block segregation emerges for the assumed 
payoffs when one cares about one’s partner’s 
type, namely, ​f (x, y)  =  y​.

Although we have not solved the fixed 
search cost search, a similar analysis yields 
the first-order condition: 

(26) ​ c  = ​ ∫ 
a
​ 
b(x)

​​ ​( f (x, y) − f (x, a))​u(y) dy​.

The integrand here increases in ​x​ if ​f​ is 
strictly supermodular in ​(x, y)​, for then ​
f (x, y) − f (x, a)​ is strictly increasing in ​x​ for 
all ​y  >  a​. Once more, the optimal threshold ​
a(x)​ increases. But in this fixed-search case, 
block-segregation PAM arises with a modular 
production function ​f (x, y)  = ​ f​ 1​​ (x) + ​f​ 2​​ (y)​ 
(Chade 2001). Morgan (1996) also studies 
NTU matching with fixed-search costs.

All told, the productive conditions for 
PAM are harder to satisfy in the presence of 
time cost search frictions. In the frictionless 
setting, supermodularity gives higher types  
greater gains from matching up. But since 
the search costs rise in proportion to the 
value, a stronger assumption is required—log 
supermodularity rather than just supermod-
ularity. This ensures that higher types have 
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proportionately greater gains from matching 
up. While log-supermodular payoffs are suf-
ficient for PAM, it is also necessary to ensure 
PAM for all unmatched distributions—oth-
erwise, one could put a large mass on the 
failure type set, and violate PAM.

The outlined argument yields a unique 
equilibrium, given the unmatched density 
function ​u(x)​. But an equilibrium is really 
a triple ​(v, a, g)​. Moving outside our model 
with a differentiable type distribution, 
Burdett and Coles (1997) provide a simple 
example with just two types, low and high, 
that exhibits multiple equilibria once the 
unmatched density is accounted for. In the 
nonselective equilibrium, high-type agents 
accept both high and low types. In the 
selective one, high-type agents only accept 
matches with other high types. If less than 
half of types are high, then high types match 
with lower probability than the low types, 
and so comprise most of the unmatched 
pool; this raises the option value of wait-
ing, and thereby induces them to choose 
a higher reservation type. The selection of 
types in the pool leads to multiplicity.

4.3	 Sorting with Random Search  
and Perfectly Transferable Utility

We now turn to the other benchmark: 
matching with search frictions under TU. 
It is essential to consider transfers between 
matched partners in order to broaden the 
applicability of the search and matching 
models. For instance, while there are cer-
tainly nontransferable aspects to an employ-
ment relation, the wage is the central part 
that determines the terms of trade. Even in 
the marriage market, there are many trans-
fers between partners, both monetary (like 
shared income or joint mortgage payment) 
and nonmonetary (such as division of child 
care or household chores).

The present value to any two matched 
types ​x, y  ∈  [0, 1]​ is no longer exogenously 
fixed, since the surplus split is endogenous. 

Easily, match surplus equals match output 
less the sum of the returns on the unmatched 
values: ​s(x, y)  ≡  f (x, y) − r v(x) − r v(y)​. In 
a unisex model, it is natural to split surplus 
equally.38 Since match surplus is nonneg-
ative, we need no longer keep track of an 
acceptance set and opportunity set, but a sin-
gle matching set ​M(x)  =  { y | s(x, y)  ≥  0}​.  
Analogizing (22): 

(27) ​ r v(x)  = ​  1 __ 
2
 ​ ​  ρ _____ r + κ ​ 

× ​∫ M(x)​ 
 

 ​​  [  f (x, y) − r v(x) − r v(y)] u(y) dy​.

The sufficient condition for PAM or NAM 
is much less obvious than it was with NTU, 
for the integral includes endogenous value 
functions. Shimer and Smith (2000) simpli-
fied matters and restricted focus to increasing 
payoffs ​​f​ x​​, ​f​ y​​  >  0​. As in Becker (1973), they 
first argued that the locus of zero-surplus 
matches is increasing in one’s type provided ​​
f​ xy​​  >  0​. PAM then obtains if matching sets 
are convex and ​a(0)  =  0​, as ​a(x)​ and ​b(x)​ are 
then weakly increasing.

Now, if we assume ​​f​ x​​ (x, 0)  ≡  0​, then ​
a(0)  =  0​. Next, to deduce convex match-
ing sets, differentiate the Bellman equation 
(27). Since match surplus ​s(x, y)​ vanishes 
along the edge of the matching set ​M(x)​, an 
intuitive application of the fundamental the-
orem of calculus yields: 

(28) ​ r v′(x)  = ​  1 __ 
2
 ​ ​  ρ _____ r + κ ​ 

× ​∫ M(x)​ 
 

 ​​  [  ​f​ x​​ (x, y) − r v′(x)]u(y) dy 

	 = ​ 
​∫ M(x)​ 

 

 ​​ ​ f​ x​​ (x, y)u(y) dy
  _________________  

2ψ + ​∫ M(x)​ 
 

 ​​  u(y) dy
 ​​ .

38 Called the Nash bargaining solution, this uses none 
of that concept’s richness, as the surplus frontier is linear. 
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This expression obviously parallels (22) and 
(24), and so the proof takes inspiration from 
Smith (1997, 2006). Now, a simple suffi-
cient condition for the matching set of type ​
x​ to be convex is that his surplus ​s(x, y)​ be 
quasi-concave in his partner ​y​. To argue this, 
Shimer and Smith (2000) use ​​f​ xy​​  >  0​ and 
the right ​v′(x)​ formula in (28) to argue that ​​
s​ x​​ (x, y)  >  0​ for all large enough ​y  <  1​.  
In this case, ​s(x, y)​ is quasi concave in ​y​. 
Next, using the same ​v′(x)​ expression, and ​​f​ x​​​ 
log supermodular, Shimer and Smith (2000) 
deduce that ​r v′(x)/ ​f​ x​​ (x, y)​ is increasing for 
all small ​y  >  0​. So in this case, ​​s​ x​​ (x, y)  
≡ ​ f​ x​​ (x, y) − r v′(x)​ is reverse single-crossing 
in ​y​, i.e., positive and then negative as ​y​ rises. 
This implies that ​s(x, y)​ is quasi concave in ​
y​. Finally, a third single crossing property 
argues that ​y​ is large enough for the first case, 
or small enough for the second, provided  
​​f​ xy​​​ is log supermodular. Smith (2011) care-
fully distills this argument.

Besides providing sufficient conditions 
for PAM, Shimer and Smith (2000) also 
prove existence of equilibrium. Their proof 
assumes the quadratic-meeting technology; 
later, Noldeke and Troger (2009) showed 
existence under the technically harder lin-
ear-meeting technology. Manea (2017) 
recently dispensed with the quadratic 
assumption, deducing existence in a larger 
class of stationary search and matching mod-
els when there is a finite number of types.

Instead of time discounting, one could 
assume a fixed search cost. In environ-
ments where search resolves swiftly, a direct 
search cost in monetary terms may be a 
more appropriate measure of search costs 
than the opportunity cost of time. Atakan 
(2006) shows that a sufficient condition for 
PAM with TU is that production ​f (x, y)​ be 
supermodular.

In summary, PAM obtains under super-
modularity in the benchmark TU model. 
But with search frictions, greater comple-
mentarity in types is needed, such as log 

supermodularity and even more, depend-
ing on the precise form of frictions. An 
important question is whether either model 
just described can shed light on actual labor 
markets or if a new one is needed. The form 
of search frictions is critical when identify-
ing the complementarities between worker 
ability and firm productivity. There are now 
many papers bringing macro and micro 
search models with heterogeneous agents 
to the data on labor markets. This exercise, 
even for applying Becker (1973) to the data 
on labor markets, is futile without possibly 
profound modifications for frictions. Finding 
the conditions for sorting with more general 
search costs is an important agenda.

The effects of frictional mismatch is 
another frontier of this literature. For exam-
ple, Burdett and Mortensen (1998) intro-
duced on-the-job search and Postel-Vinay 
and Robin (2002) used it to capture import-
ant aspects of the data. This creates an ini-
tial mismatch among firms and workers, and 
then a career ladder for workers—with or 
without complementarities.

Another line of research beginning with 
Shimer and Smith (2000) questions the 
correlation between worker and firm fixed 
effects. Using a simple two-period model 
with heterogeneous workers and firms, 
Eeckhout and Kircher (2011) find that 
wages are non-monotonic in job productiv-
ity. While output rises in job productivity, 
given the mismatch from search, a high 
productivity job has a high option value of 
continuing vacancy. That job will match with 
a lower-skilled worker if it receives a high 
share of the output. Wages then have an 
inverted U-shape.

The presence of equilibrium mismatch 
offers sufficient variation to identify the 
technology underlying the match value out-
put function ​f (x, y)​. In a two-step procedure, 
Eeckhout and Kircher (2011) first derive 
the search cost from the wage distribution 
earns across jobs, and then use the range 
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of job types that the worker matches with 
to derive the degree of complementarity 
between workers and jobs. Hagedorn, Law, 
and Manovskii (2012) extend this model to 
a general setting akin to Shimer and Smith 
(2000), and provide a methodology to iden-
tify the model.39

It has long been recognized that labor mar-
kets can generate multiplicity, and therefore 
cyclical outcomes. Diamond (1982) shows 
that multiple steady states can arise in a sim-
ple exchange economy, but his logic exploits 
the increasing return-to-scale property of the 
quadratic-search technology. Pissarides and 
Petrongolo (2001) find evidence of constant 
returns in the observed matching technol-
ogy in the labor market. Burdett and Coles 
(1997) deduce that heterogeneous types and 
an endogenous searching pool creates local 
increasing returns for subsets of types. In a 
related two-type model with transferable 
utility, Shimer and Smith (2001) analyze 
optimal policy and characterize the planner’s 
assignment constrained by the search tech-
nology. They find that even absent any intrin-
sic uncertainty, optimal allocations may be 
nonstationary. This draws into question the 
focus on steady-state models in search, and 
suggests that it may prove an intrinsic source 
of volatility. This is a difficult and inviting 
frontier of the search literature.

We have explored models with nonvanish-
ing search frictions. The literature on search 
and trade, by contrast, focuses on the mini-
mal frictions case and seeks a foundation for 
the Walrasian outcome. To briefly touch on 
the analogous question here, Adachi (2003) 
assumes cloning and impatience and shows 
that, for a general match output function ​f​, 
the set of stationary equilibria converges to 
the set of stable matches as frictions vanish. 

39 See also the related work by Teulings and Gautier 
(2004), De Melo (2009), Bagger and Lentz (2014), 
Lamadon et al. (2013), and Bartolucci and Devicienti 
(2013). 

So the stable matchings in Gale and Shapley 
(1962) are the limits of equilbria of the 
decentralized market with search frictions. 
Without cloning, Lauermann and Noldeke 
(2014) show that convergence of equilibrium 
matchings is guaranteed if and only if there is 
a unique stable matching. Otherwise, there 
exists a sequence of equilibria converging to 
unstable allocations.

4.4	 Directed Search and Sorting

4.4.1	 Background

Anonymous random search takes the 
dynamic process of partner quest in labor 
and marriage markets seriously. Yet, when 
agents are heterogeneous, the purely ran-
dom meetings process perforce assumes 
that high types meet low types, even though 
they know they will never form a match. This 
is particularly costly and, not surprisingly, 
quasi-market structures or coordination 
games have emerged that seek to mitigate 
these losses.

In a competitive economy, prices play an 
informative role, since they signal willing-
ness to buy and sell. With anonymous ran-
dom search, prices simply determine the 
output split between buyers and sellers, but 
in no way influence the actual meeting pro-
cess. Directed search instead assumes that 
prices influence the meeting process rather 
than solely the surplus split. Whereas trading 
partners meet and then determine the price 
through bargaining with random search, the 
order is reversed under directed search. 
There, sellers commit to a price and post it, 
and after observing the price, buyers choose 
with whom to trade. This allows buyers to 
direct their search towards sellers that offer 
better prices.40 But it also allows coordination 

40 The directed-search model, mostly for homogeneous 
agents or heterogeneous agents without complementar-
ities, has extensively been analyzed since the late 1970s: 
to name a few, see Butters (1977), Peters (1984), Moen 
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failures, in which either multiple workers 
turn up for one job and some workers remain 
unemployed in equilibrium, or in which no 
workers show up, and some vacancies are 
thus left unfilled. This yields wholly different 
predictions than the Walrasian one.

There are two formulations of directed 
search in the literature. In one, the frictions 
are captured by queues, which determine 
a trading probability. This is often referred 
to as competitive search, following Moen 
(1997), who analyzes stationary equilibria in 
a continuous-time setting. In another formu-
lation, the friction is embodied by the chance 
of a stockout. Here, if several workers turn up 
for a job, it is probabilistically rationed. Both 
approaches generate a trading probability as 
a function of the ratio of applicants to jobs, 
and a wage (transfer).41

Because of the search frictions, traders 
now value both the price and the probability 
with which trade occurs. This trade-off gov-
erns agent’s optimal strategies: sellers that 
post lower prices will attract more poten-
tial buyers and will therefore sell with a 
higher probability. Buyers who pursue low-
er-priced goods must accept lower trade 
probabilities since there are more compet-
ing buyers. With two-sided heterogeneity 
and complementarity, this trade-off plays an 
important role in the determination of the 
equilibrium sorting patterns.

4.4.2	 Sorting and Directed Search

There is a continuum mass of buyers each 
with a characteristic ​x  ∈  [0, 1]​ and unit 
demands, and likewise of sellers with charac-
teristic ​y  ∈  [0, 1]​, each holding a unit. For 
instance, this might be the housing-exchange 
model of Shapley and Shubik (1972). If the 

(1997), Acemoglu and Shimer (1999), and Burdett, Shi, 
and Wright (2001). 

41 The difference between the two interpretations 
becomes real for more general mechanisms than mere 
price posting (Eeckhout and Kircher 2010b). 

buyer ​x​ pays price ​p​ for a good bought from 
seller ​y​, then her payoff is ​f (x, y) − p​ and the 
seller’s is ​p​. The seller’s characteristics are 
observable. The characteristic distributions ​
G(x)​ and ​H(y)​ are continuous, with positive 
densities ​g(x)​ and ​h(y)​.

With anonymous random matching, the 
expected number of newly forming matches 
depends on the mass of buyers and sellers 
in the market. Under a standard assumption 
that the “matching function” exhibits constant 
returns to scale—e.g., twice as many buyers 
and sellers leads to twice as many matches—
the matching function is linear in the ratio of 
buyers to sellers ​θ​. This same matching-func-
tion logic applies to the directed-search  
environment, where ​θ​ now coincides with 
the expected queue length in each submar-
ket at each seller. The interaction here takes 
two stages. First, each seller ​y​ posts a price ​
p​ at which she is willing to sell the good. 
Second, buyers choose which seller ​(y, p)​ to 
visit. We illustrate this idea in the model of  
Eeckhout and Kircher (2010a).42

With queue length ​θ​, buyers meet sellers 
with chance ​q(θ)​ and sellers meet buyers 
with chance ​m(θ)  =  θq(θ)​. Buyer ​x​ thus has 
expected payoff ​q(θ)[  f (x, y) − p]​ in pursuing 
seller ​y​ with price ​p​ and queue ​θ​, and that 
seller has expected payoff ​m(θ)p​. Here, ​m​ is 
assumed twice continuously differentiable, 
strictly increasing, and strictly concave. 
Seller ​y​ could choose different pairs ​(p, θ)​, 
but buyer ​x​ would have to enjoy the same 
reservation utility, say ​v(x)​. All told, seller ​y​ 
solves 

	​​  max​ 
x, θ, p

​  
  ​ m(θ) p​

subject to

	​ q(θ)​( f (x, y) − p)​  =  v(x)​

42 Versions of this model have been analyzed by Shi, 
(2001), Mortensen and Wright (2002), Eeckhout and 
Kircher (2010a), and Jerez (2012). 
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where ​v(x)​ is the reservation utility of ​x​. We 
will show that this optimization is of the 
imperfect TU form in section 2.3 and, as a 
result, we derive the sorting conditions by 
applying the differential inequality (9).

Substituting for ​p​ from the constraint yields 
the optimization ​ma​x​x, θ​​​ m(θ) f (x, y) − θv(x)​.  
Equivalently, each type ​y​ must maximize ​
ψ(y, x, v(x))  ≡  m(θ(x, y, v(x))) f (x, y) −  
θ(x, y, v(x)) v(x)​ in ​x​, where the optimal 
queue length ​θ(x, y, v(x))​ solves the FOC ​
m′(θ) f (x, y)  =  v(x)​. Despite having lin-
ear preferences over money, the objec-
tive function is nonlinear in ​v​, reflecting 
the imperfect TU structure of match-
ing. PAM or NAM arises in equilib-
rium depending on whether ​ψ(y, x, v)  
=  m(θ(x, y, v)) f (x, y) − θ(x, y, v) v​ satisfies  
​​ψ​ xy​​ − (​ψ​ x​​ / ​ψ​ v​​) ​ψ​ vy​​  ≶   0​. This allows us a 
quick derivation of the sorting condition (14) 
of Eeckhout and Kircher (2010a). For one 
can verify that ​​θ​ y​​  =  − m′ ​f​ y​​  / m″  f​, as well as ​​
ψ​ x​​ = m ​f​ x​​​ and ​​ψ​ v​​ = − θ​ by the envelope the-
orem. Also, differentiating ​​ψ​ x​​  =  m ​f​ x​​​ and ​​
ψ​ v​​  =  − θ​ respectively yield ​​ψ​ xy​​  =  m ​f​ xy​​  
+ m′​θ​ y​​  ​f​ x​​​ and ​​ψ​ vy​​  =  − ​θ​ y​​​. Hence: 

(29) ​​ ψ​ xy​​ − ​ ​ψ​ x​​ ___ 
​ψ​ v​​

 ​ ​ψ​ vy​​ 

	     =  [m ​f​ xy​​ + m′ ​θ​ y​​ ​f​ x​​ ] − [m ​f​ x​​ ] ​θ​ y​​ /θ 

	 =  m ​f​ x​​  ​f​ y​​​[​ 
​f​ xy​​  f ___ 
​f​ x​​  ​f​ y​​

 ​ − ξ(θ)]​,​

where ​ξ(θ)  =  m′(θm′ − m)/(m″mθ)​. Then 
PAM or NAM arises as ​​f​ xy​​  f / (​f​ x​​ ​f​ y​​)  ≷  ξ(θ)​ for 
all ​θ​.

To gain some intuition about this condi-
tion, assume first no match complementari-
ties ​​f​ xy​​  =  0​, as in the labor market model of 
Mortensen and Wright (2002). If the elastic-
ity ​ξ(θ)​ is always positive, then NAM arises, by 
this criterion. Since output is purely additive, 
high-type firms have the most to lose with a 

vacancy; therefore, they prefer to trade with 
higher probability, and so opt for a shorter 
queue ​θ​. As a result, many high-type workers 
match with fewer low-type firms, and vice 
versa. PAM only emerges if there are suffi-
ciently strong match complementarities.

If the elasticity ​ξ(θ)​ is identically zero, then 
supermodular production ​f​ suffices for PAM, 
by the criterion. For in this case, ​m(θ)  =  θ​,  
and so ​q(θ)  =  1​, which is to say that the 
arrival rate of sellers for each buyer is con-
stant. At the opposite extreme, if the elastic-
ity ​ξ(θ)​ is identically one, then the criterion 
asserts that log-supermodular production ​f​ 
gives PAM. So unless production ​f​ is “suffi-
ciently supermodular,” the search frictions 
lead to NAM.

The required condition on production is 
stronger than supermodularity and weaker 
than log supermodularity for intermediate 
elasticities ​0  <  ξ(θ)  <  1​. For instance, if ​
0  <  ξ(θ)  <  1 − ϒ  <  1​, then PAM obtains 
if 

	​​ 
​f​ xy​​ (x, y) f (x, y)

  ____________  
​f​ x​​ (x, y) ​f​ y​​ (x, y)

 ​  ≥  1 − ϒ​.

This suggests a simple sufficient condition 
for PAM is supermodularity of the power 
function ​​f​​  ϒ​​, and in the limit as ϒ  →  0, we 
recover log supermodularity (to see this, 
take the limit of ​(  ​f ​​ ϒ​ − 1)/ ϒ​). Altogether, 
Becker’s supermodularity assumption on pro-
duction no longer suffices for sorting in the 
frictional world. With anonymous random 
search and ex post equal surplus splitting, 
log supermodular production is required. 
When search is directed, the reduced fric-
tions entail generally an intermediate level of 
supermodularity.

4.4.3	 Market Segmentation

An alternative to directed search assumes 
random matching, but allows heterogeneous 
agents to set up separate trading posts. 
Jacquet and Tan (2007) find that even with 
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random matching, there are gains for indi-
viduals to set up segmented markets. For 
example, starting from the block assorta-
tive matching equilibrium in section 4.2, all 
agents in the upper class prefer to meet only 
among themselves in a segregated market.

Since the distribution of singles is trun-
cated, the acceptance threshold of each agent 
rises. This gives them incentives to continue 
segregating, further refining their type parti-
tion. One might expect that this leads to per-
fect segregation, as in the frictionless model, 
with each agent type matching with a unique 
type. Jacquet and Tan (2007) refute this intu-
ition. For no agent can commit to rejecting 
a partner slightly below his ideal. Because 
of search frictions, it is costly to wait for the 
ideal partner, and so if the current candidate 
is marginally lower, the agent will accept. 
So equilibrium segmentation consists of a 
sequence of nondegenerate intervals of types.

4.4.4	 Competing Mechanisms

There is a close relationship between 
directed search and competing mechanism 
design. McAfee (1993) and Peters (1997) 
argue that if one allows the set of feasible 
mechanisms to include more than just price 
posting, then price posting need not be opti-
mal. Assume that buyers have heteroge-
neous valuations for the good sellers offer, 
and sellers have heterogeneous costs for the 
good they sell. Sellers simultaneously choose 
and commit to a mechanism that maximizes 
their profits within a broad class, includ-
ing auctions, price posting, and bargaining. 
Observing the announced mechanism, buy-
ers then visit a seller, equally randomiz-
ing over all sellers who announce the same 
mechanism.

McAfee (1993) finds an equilibrium in 
which firms choose a second-price auction 
with a reserve price equal to the firm’s cost 
for the good. Buyers visit each seller with a 
probability falling in the reserve price. The 
reserve price strictly exceeds the cost in the 

optimal second-price auction by a monop-
olist, but here it coincides with the cost. 
This reflects the competition among sellers 
for buyers, as with Bertrand price competi-
tion. Since the number of buyers each seller 
attracts is inversely related to the seller’s 
reserve price, this is a force toward lower 
reserve prices.

In an endorsement of second-price auc-
tions, McAfee (1993) also shows that this 
mechanism is always a best response to any 
arbitrary set of mechanisms by the other 
sellers. Peters and Severinov (1997) and 
Peters (1997) later justified the large market 
assumption in McAfee (1993) by considering 
the limit of equilibria with finite markets as 
the number of agents grows large. McAfee’s 
results suggest that auctions are superior 
to posted prices when there is competition 
between auctioneers. But Eeckhout and 
Kircher (2010b) argue that this result 
depends on the ability of auctioneers to 
extract rents ex post from buyers by having 
them simultaneously participate in the auc-
tion and then screening them. To see this, 
notice that in the queueing interpretation of 
directed search (Moen 1997), a posted price 
is optimal because a firm only faces one bid-
der at a time. Thus, the use of posted prices 
or auctions reflects the nature of the search 
frictions. If the auctioneer cannot round up 
sufficient applicants to bid in the mechanism, 
she is better off posting a price.43 Auctions 
are optimal when meeting probabilities are 
unaffected by the decision of another buyer 
to visit a submarket.44 With posted prices, 

43 Pinheiro (2012) provides a microfoundation in a 
model where the firm’s mechanism design problem takes 
place in continuous time with random arrival of buyers. 
Now firms face a trade-off between trading fast and having 
few bidders or waiting longer to round up more bidders. 
He shows there is an optimal interior solution with finite 
time before trading and applies it to initial public offerings. 

44 Lester, Visschers, and Wolthoff (2015) strengthen 
this “non-rivalry” condition—namely, the quadratic-search 
technology defined in section 2.4—by deriving a suffi-
cient condition that is also necessary and which they call 
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buyers sort across posted price-trading prob-
ability pairs, revealing their types ex ante. 
But with competing auctions, buyers visit the 
sellers randomly and are screened ex post.

In a labor market setting, Shi (2002) and 
Shimer (2005) consider different forms of 
competition with the flavor of an auction, 
where the price paid depends on the com-
position of the ex post demand—specifically, 
the number and characteristics of agents that 
show up. With observable worker charac-
teristics, in Shimer’s equilibrium, high-type 
workers obtain a job with the highest proba-
bility, while low types only succeed if no high 
types show up. This allocation is similar to 
that of a second-price auction. As Shi (2002) 
argues, this is not only realistic in many 
market settings, but is also important for the 
efficient allocation of resources.

4.4.5	 Directed Search and Large Firms

The directed-search model can be used 
to analyze large firms in the presence of 
frictions. Under random search, Smith 
(1999) focuses on the role of hiring in 
large firms that have decreasing returns 
to employment. To understand how these 
firms set wages, Smith (1999) assumes 
a reduced-form bargaining process (in 
the spirit of an earlier paper by Stole and 
Zwiebel 1996) where each worker is treated 
as the marginal worker and wages depend 
on marginal productivity. He shows that the 
outcome is inefficient and leads to overem-
ployment, with firm size larger than opti-
mal. Kaas and Kircher (2015) and Schaal 
(forthcoming) propose a directed-search 
model with large firms, finding that price 
posting with coordination frictions yields 
a constrained efficient surplus division. 
These search models can handle realistic 
environments where firms hire multiple 
workers and technology is nonadditive. 

“invariance,” i.e., the action of one buyer does not affect 
the distribution of buyers in the submarket. 

This is useful for applied analyses of match-
ing workers to firms, and where firm size 
is endogenous.45 Finally, Eeckhout and 
Kircher (2012) (in section 4.1) contains an 
extension with directed search and derives 
a sorting result with heterogeneous workers 
and large firms.

5.  Matching, Information, and Dynamics

Search frictions is the story of costly coor-
dination—not knowing where a counter-
party is, or how hard it is to match with him. 
Informational frictions expand the scope 
towards not knowing the match payoffs or 
types or other costs of individuals; this richer 
form of frictions promises to be the next 
frontier in matching models. We touch on 
some promising highlights of the work.

5.1	 Sorting in Static Models

5.1.1	� Stability under Incomplete 
Information

A crucial assumption in Becker’s match-
ing model is that agents’ types are publicly 
observable. This is not the case in many 
marriage and labor market applications. A 
natural question then is what constitutes a 
stable matching under incomplete informa-
tion about agents’ types because in checking 
whether a blocking pair exists, the agents 
involved must be able to compute their 
payoffs from rematching, and that requires 
some knowledge about their partner’s type. 
There have been some attempts at formal-
izing a workable notion of stability, the most 
recent and relevant one for our purposes 
being the definition of stability in Liu et al. 
(2014), who analyze matching with one sided 
incomplete information and TU.46 Their 

45 For example, Sepahsalari (2016) analyzes cyclical 
variations in the presence of credit frictions. 

46 For the NTU case and centralized matching, see Roth 
(1989) and Chakraborty, Citanna, and Ostrovsky (2010). 
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incomplete information stability notion is in 
the spirit of rationalizability in game theory, 
rather than mechanism design. An interest-
ing result they show is that a mild strength-
ening of supermodularity yields PAM under 
incomplete information.

5.1.2	 Sorting with Signaling Costs

In some matching applications in labor 
and marriage markets, agents with private 
information about their characteristics try 
to signal them to the other side of the mar-
ket before matching takes place. Intuitively, 
those signals may be costly to send, and such 
costs reduce the benefits of sorting. Hoppe, 
Moldovanu, and Sela (2009) analyze this 
issue in a static model with production com-
plementarities and incomplete information 
about types. In their model, if ​x​ matches 
with ​y​ then the utility of each agent is ​xy​ 
minus any signaling cost. They consider two 
populations, men and women, who engage 
in the following contest: agents simultane-
ously send signals, which consist of a bid or 
amount of utility that they give away. After 
observing all the signals, a planner assorta-
tively matches men and women by signal.

In one equilibrium, everyone bids zero 
and the planner randomly matches the two 
sides. The paper shows that there is another 
equilibrium in strictly increasing strate-
gies, with positively sorted agents. They ask 
whether the random matching welfare dom-
inates PAM, net of signaling costs. The paper 
provides conditions under which this is the 
case in both the case with a finite number of 
agents and with a continuum of them. In the 
latter, simpler context, assume that two unit 
mass populations with the same type distri-
bution ​G​ and density ​g​ on ​[0, 1]​.

In the random matching equilibrium, 
the expected total welfare is ​2E [x] E [ y]  
=  2 ​​(​∫ 0​ 1​​ xg(x) dx)​​​ 2​​. Under perfect PAM, 
the total expected output is ​2 ​∫ 0​ 1​​ ​x​​ 2​ g(x) dx​.  
If both sides use the same signaling quantity 

function ​β​, then the equilibrium utility of 
type ​x​ equals: 

	​ π (x)  = ​ max​ 
z
​    ​ x z − β(z)  = ​ x​​ 2​ − β(x)​.

We proceed as in a first-price auction. Since 
every type ​x​ must optimally bid as if it had 
type ​x​, the envelope theorem yields ​π′(x)  
=  x​, and so ​π(x)  = ​ ∫ 0​ 

x​​ s ds​. Altogether, 

  ​  β(x)  = ​ x​​ 2​ − π(x) 

	 = ​ x​​ 2​ − ​∫ 
0
​ 
x
​​ s ds  = ​ ∫ 

0
​ 
x
​​ s ds,​

where the second equality follows from inte-
gration by parts. Hence, ​β(x)  = ​ ∫ 0​ 

x​​ s ds​ for all ​
x​ constitutes the Bayesian equilibrium of the 
game that exhibits PAM. Total welfare is then 

 ​ 2 ​∫ 
0
​ 
1
​​ ​x​​ 2​ g(x) dx − 2 ​∫ 

0
​ 
1
​​ ​(​∫ 

0
​ 
x
​​ s ds)​ g(x) dx 

      = ​ ∫ 
0
​ 
1
​​ ​x​​ 2​ g(x) dx.​

That is, equilibrium signaling costs consume 
half of output. Thus, comparing welfare under 
PAM versus random matching, we obtain 

(30) ​​ ∫ 
0
​ 
1
​​ ​x​​ 2​ g(x) dx − 2 ​​(​∫ 

0
​ 
1
​​ xg(x) dx)​​​ 

2

​ 

	     =  var (x) − E ​[x]​​ 2​ 

	     =  E ​[x]​​ 2​​(CV ​(x)​​ 2​ − 1)​,​

where ​CV(x)  = ​ √ 
_____

 var (x) ​/E [x]​ is the coeffi-
cient of variation of ​x​. Thus, if ​CV(x)  <  1​ 
random matching outperforms PAM, and 
the opposite holds if greater than one. 
It turns out (Barlow and Proschan 1996, 
corollary 4.9) that if the hazard rate ​g(x)/
(1 − G(x))​ is increasing in ​x​, then ​CV(x)  <  1​ 
and thus random matching dominates PAM, 
while the opposite is true if it is decreasing 
in ​x​. Hence, the class of distributions with 
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monotone hazard rate functions yields strong 
predictions regarding the welfare under ran-
dom matching compared to PAM.

5.1.3	 College Student Matching

Gale and Shapley (1962) ignore the wealth 
of search and information frictions that 
afflict the sorting of students into colleges. 
Chade, Lewis, and Smith (2014) explore how 
students and colleges react to these frictions 
and what happens to sorting.

In their model, there are two colleges, 1 
and 2, with capacities ​​κ​ 1​​​ and ​​κ​ 2​​​, and a unit 
mass of students with type ​x​ whose distribu-
tion has a positive density ​g(x)​ over ​[0, ∞)​.  
College capacity cannot accommodate all 
the students, i.e., ​​κ​ 1​​ + ​κ​ 2​​  <  1​. Capturing 
the search friction, students pay a separate 
application cost ​c  >  0​ for each college. 

Students uniformly prefer college 1 to col-
lege 2: Attending college 1 yields a utility 1, 
college 2 yields ​u  ∈  (0, 1)​, and zero is the 
utility for not attending college.47 By fix-
ing the payoffs of colleges, one might thus 
understand this as an accurate short-to- 
medium-run description of the college 
world. Students maximize expected college 
payoff less application costs. Colleges max-
imize the integral quality of their student 
bodies.

The paper largely focuses on the case when 
students know their type, but colleges only 
observe a noisy conditionally independent 
signal of each applicant. Signal outcomes ​σ​ 

47 Enrollment here is obviously deterministic. Che and 
Koh (2015) explore a different model of college admissions 
with stochastic enrollments, instead. 
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Figure 2. Students’ Portfolio Problem

Notes: In the left panel, a student in the blank region ​Φ​ applies nowhere. He applies to college 2 only in the 
vertical shaded region ​​C​ 2​​​; to both in the hashed region ​B​, and to college 1 only in the horizontal shaded region ​​
C​ 1​​​. The right panel depicts the acceptance function ​ψ(​α​ 1​​)  = ​ α​ 1​ 

​​ σ _​​ 2​​   /​​ σ _​​ 1​​​​ , which arises with exponential signals ​
m(σ | x)  =  (1/x)​e​​ −σ/x​​. As their caliber increases, students apply to nowhere (​Φ​), college 2 only (​​C​ 2​​​), both col-
leges (​B​), and finally college 1 only (​​C​ 1​​​). Student behavior is monotone in this case.

Source: Chade, Lewis, and Smith (2014).
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are drawn from a continuous density ​m(σ | x)​ 
with support on an interval of ​핉​ (e.g., ​[0, 1]​),  
and cdf ​M(σ | x)​. The density has the strict 
monotone likelihood ratio property (MLRP): ​
m(τ | x)/m(σ | x)​ is increasing in ​x​ if ​τ  >  σ​.  
To ensure that very high types are almost 
never rejected, and very poor ones are 
almost always rejected, the signals must be 
able to reveal extreme types: So assume that 
M(σ | x)  →  0 as x  →  ∞ and M(σ | x)  →  1 
as x  →  0 for any interior ​σ​.

Students choose a portfolio of college 
applications ​S(x)  ∈  {⌀, {1}, {2}, {1, 2}}​ for 
each ​x​, while colleges set admissions stan-
dards ​​​ σ _​​ i​​​ , such that college ​i​ admits students 
with signal realizations above ​​​ σ _​​ i​​​ . An equi-
librium is a triple ​(​S​​ ∗​ (·), ​​ σ _​​ 1​ ∗​, ​​ σ _​​ 2​ ∗​)​ such that, 
given ​(​​ σ _​​ 1​ ∗​, ​​ σ _​​ 2​ ∗​)​, ​​S​​ ∗​(x)​ is an optimal portfolio 
for each ​x​, and given ​(​S​​ ∗​(·), ​​ σ _​​ j​ ∗​)​, standard ​​​ σ _​​ i​ ∗​​ 
maximizes college ​i​’s payoff.

An equilibrium exhibits sorting if college 
and student strategies are “increasing.” This 
means that the better college is more selec-
tive (​​​ σ _​​ 1​ ∗​  > ​​  σ _​​ 2​ ∗​​) and higher-type students 
are increasingly aggressive in their portfo-
lio choice: the weakest apply nowhere; bet-
ter students apply to college 2; even better 
ones “gamble” by applying also to college 1; 
the next tier up applies to college 1 while 
shooting an “insurance” application to col-
lege 2; finally, the top students just apply to 
college 1. Strategies that are monotone in 
this fashion ensure the intuitive result that 
the distribution of student types accepted at 
college 1 first order stochastically dominates 
that of college 2.

We will exploit a simple graphical anal-
ysis of the student’s problem for given col-
lege thresholds in Chade, Lewis, and Smith 
(2014). Consider a student with respective 
admission chances ​0  ≤ ​ α​ 1​​, ​α​ 2​​  ≤  1​. Using  
the simultaneous-search solution in sec
tion 3.2, we obtain the student’s opti-
mal portfolio choice. His expected payoff  
of applying to both colleges is ​​α​ 1​​ v +  
(1 − ​α​ 1​​) ​α​ 2​​ u​. The marginal benefit ​M​B​ ij​​​ 

of adding college ​i​ to a portfolio of college ​
j​ is given by ​M ​B​ 21​​  =  (1 − ​α​ 1​​) ​α​ 2​​ u​ and  
​M​B​ 12​​  = ​ α​ 1​​ (1 − ​α​ 2​​ u)​. The plot of these two 
curves looks like figure 2 when ​c  <  u(1 − u)​ 
and ​c  <  u/4​, i.e., with applications not too 
costly.

This optimal-decision rule neatly parti-
tions the unit square into four application 
regions, corresponding to the four portfolio 
choices, denoted ​Φ, ​C​ 2​​, B, ​C​ 1​​​, shaded in the 
right panel of figure 2. Region ​B​ consists of 
students who either apply to college 2 and 
send a stretch application to college 1, or 
who apply to college 1 and send a safety 
application to college 2. 

Let us now endogenize the accep-
tance chances by considering the noisy 
admissions process. Notice that not all 
pairs of acceptance chances ​(​α​ 1​​, ​α​ 2​​)​ are 
“feasible,” since these chances are pinned 
down by the student’s type and the college 
thresholds. Fix the thresholds ​​​ σ _​​ 1​​​ and ​​​ σ _​​ 2​​​ 
set by college 1 and college 2. Student ​x​’s  
acceptance chance at college ​i  =  1, 2​ is 
given by ​​α​ i​​ (x)  ≡  1 − M(​​ σ _​​ i​​ | x)​. Since a  
higher-type student generates stochasti-
cally higher signals, ​​α​ i​​ (x)​ increases in ​x​. 
We can then invert ​​α​ 1​​​ and define the fol-
lowing acceptance function that links accep-
tance chances for each type ​x​ given colleges 
thresholds: 

	​ ​α​ 2​​  =  ψ(​α​ 1​​, ​​ σ _​​ 1​​, ​​ σ _​​ 2​​) 

	 =  1 − M(​​ σ _​​ 2​​ | ξ(​α​ 1​​, ​​ σ _​​ 1​​))​.

Although the acceptance function need not 
in general be concave as in figure 2, it does 
have a falling secant: ​​α​ 2​​  /​α​ 1​​​ is a decreasing 
function. The acceptance function and the 
application strategy respectively capture 
opportunities and preferences for student 
applications. Superimposing them, figure 2 
(right panel) depicts a monotone application 
strategy, in which higher types apply more 
aggressively to college. And since ​​​ σ _​​ 1​​  > ​​  σ _​​ 2​​​ 
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in the picture, it follows that this strategy pro-
file, if it could be sustained in equilibrium, 
would exhibit the stochastic form of PAM 
described above, as casual intuition suggests. 

Yet there are two possible sorting viola-
tions, both illustrated in figure 3. The first 
occurs when stronger students do not apply 
more aggressively. For relatively high types 
may apply just to college 2, while some 
lower types also send stretch applications 
to college 1. This is depicted in the left 
panel of figure 3, where application sets are  
​Φ, {2}, {1, 2}, {2}, {1, 2}, {1}​ as student type 
rises. This can be an equilibrium if col-
lege 1 is not “sufficiently better” than col-
lege 2, for then one can find signal densities 
with the strict MLRP that engenders this 
non-monotone behavior. 

The second violation occurs when the 
lesser college imposes a higher admissions 

threshold. To see this, assume that both col-
leges set the same thresholds. As seen in the 
right panel of figure 3, the application sets 
transition through ​Φ, {1}, {1, 2}, {1}​ as the 
student type rises. In this case, college 2 
attracts only safety applications. The paper 
shows that this is an equilibrium outcome for 
a small enough capacity of college 2. For the 
paper shows that college 2 imposes a higher 
standard than college 1 if its capacity is 
small enough—thus explaining how a poorly 
ranked small private college can nonetheless 
impose higher standards in equilibrium than 
a much larger public university.48 The paper 

48 The sorting failures can be drastic. For instance, con-
sider the right panel of figure 3. If ​g(x)​ concentrates most 
of its mass on the interval of low calibers who apply just to 
college 1, then the average caliber of students enrolled at 
college 1 will be strictly smaller than that at college 2. 
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Figure 3. Non-Monotone Behavior 

Notes: In the left panel, student behavior is non-monotone, since there are both low and high types who 
apply to college 2 only (​​C​ 2​​​), while intermediate ones insure by applying to both. In the right panel, equal 
thresholds at both colleges induce an acceptance function along the diagonal, ​​α​ 1​​  = ​ α​ 2​​​. Student behavior 
is non-monotone, as both low and high types apply to college 1 only (​​C​ 1​​​), while middle types apply to both.

Source: Chade, Lewis, and Smith (2014).
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also shows that all equilibria exhibit sorting if 
college 2 is sufficiently worse than college 1 
(specifically, ​u  ≤  0.5​), and college 1 is small 
enough in capacity relative to college 2: 
Graphically, in this case the acceptance func-
tion traverses the unit square high enough as 
to preclude the case in the right panel of fig-
ure 3. 

The paper also conducts equilibrium anal-
ysis in the spirit of supply and demand, where 
the supply is the college capacity, and the 
demand is the derived enrollment function 
at each school. In this metaphor, the accep-
tance thresholds act like prices that equili-
brate the two college markets. Comparative 
statics reflect not only a “standards effect” 
by existing applicants, but also a “portfo-
lio effect,” as relaxed standards encourage 
applications. The latter yields surprising 
results: for example, a capacity increase at 
the worse college can reduce admission stan-
dards at the better college, via portfolio real-
location effects triggered by the students’ 
applications. 

5.2	 Sorting in Dynamic Models

5.2.1	 Sorting with Evolving Reputations

Anderson and Smith (2010) ask whether 
Becker’s assortative matching of types 
extends to reputations. For in many eco-
nomic settings, parties to a match do not 
know their characteristics and learn them 
over time as they observe the output pro-
duced in a match.49 Matching then solves 
two distinct objectives. On the one hand, it 
serves to exploit complementarities in pro-
duction between the partners. On the other 
hand, it provides information about agents’ 
attributes that may allow them to improve 

49 Early examples of matching models with learn-
ing about the match are Jovanovic (1978) and Jovanovic 
(1984). Although these papers derive very useful insights 
on the dynamics of turnover, they do not include ex ante 
heterogeneity and thus they do not shed light on comple-
mentarities and sorting patterns. 

their continuation payoffs in future matches. 
Anderson and Smith (2010) explore the 
trade-off between these two goals. They 
show that despite production complemen-
tarities, PAM generally fails at high discount 
factors due to the importance of information. 
They argue that it is neither an equilibrium 
nor an optimum that agents with identical 
current reputations always match. 

The paper presents a general matching 
model with evolving human capital. They 
first show that a Pareto optimal steady state 
and a Walrasian equilibrium exist, and prove 
the welfare theorems. We illustrate this find-
ing in their simpler motivational two-period 
partnership model. 

Anderson and Smith (2010) assume a 
continuum of agents of two underlying true 
types, high or low, i.e., ​θ  ∈  { ​θ​ℓ​​, ​θ​ h​​ }​. No one 
knows his own type, but merely the proba-
bility ​x  ∈  [0, 1]​ of a high true type—called 
his reputation. Output is stochastic, and can 
assume a finite number of positive values  
​​q​ 1​​, … , ​q​ N​​​. The chance of each output ​​q​ i​​​ 
is ​​h​ i​​ , ​m​ i​​​ , and ​​ℓ​ i​​​ , respectively, from a match 
between two high types, a low and high type, 
and two low types. Then the chance of pro-
duction ​​q​ i​​​ from a match between two agents 
with reputations ​x​ and ​y​ is 

 ​ ​p​ i​​ (x, y)  =  xy ​h​ i​​ + [x(1 − y) + y(1 − x)]​m​ i​​ 

	 + (1 − x)(1 − y) ​ℓ​i​​ .​

Let ​H  = ​ ∑ i​   ​​ ​q​ i​​ ​h​ i​​​, ​M  = ​ ∑ i​   ​​ ​q​ i​​ ​m​ i​​​, and  
​L  = ​ ∑ i​   ​​ ​q​ i​​ ​ℓ​ i​​​. Then the expected output is 

   ​f (x, y) = ​∑ 
i
​ 
 

  ​​ ​q​ i​​ ​p​ i​​ (x, y) 

	 = xyH + [x(1 − y) + y(1 − x)] M

	 + (1 − x)(1 − y) L.​

Assuming ​H + L − 2M  >  0​, production is 
strictly supermodular in reputations, since ​​
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f​ xy​​  =  H + L − 2M  >  0​. In a one-shot 
model with transferable utility, PAM arises 
(Becker 1973). 

Consider a two-period matching model. 
Let agents discount future payoffs by a 
common factor ​δ​. In the second and last 
period, output is strictly supermodular, and 
so the matching exhibits PAM. As a result, 
the equilibrium wage of ​x​ is half of the out-
put for the agent, ​w(x)  =  f (x, x)/2​. Easily, ​
w″(x)  =  2  ​f​ xy​​  >  0​, and so the wage is con-
vex in reputation. 

But in the first period, matching plays both 
a production and an information role. To 
pin down the expected continuation payoff 
for an agent with current type ​x​, Anderson 
and Smith (2010) notice that if he matches 
with ​y​, then after observing output ​​q​ i​​​ in the 
first period ​x​, he updates his belief that his 
type is high to ​​z​ i​​ (x, y)  = ​ p​ i​​ (1, y)x/​p​ i​​ (x, y)​.50  
Since the expected continuation payoff for ​x​ 
is ​ψ(x | y)  = ​ ∑ i​   ​​ ​p​ i​​ (x, y)w(​z​ i​​ (x, y))​, the pres-
ent value of a match between agents ​x​ and ​
y​ is 

  ​  v(x, y)  =  (1 − δ) f (x, y) 

	 + δ(ψ(x | y) + ψ(y | x))​.

If ​ψ​ were supermodular in ​(x, y)​, then ​v​ 
would be supermodular, and PAM would 
ensue, per Becker (1973). We will next show 
that PAM fails with sufficient patience, or 
large enough ​δ  <  1​. 

Anderson and Smith (2010) then make 
a key preliminary observation. If ​δ  =  1​,  
then ​v(x, y)  =  ψ(x | y) + ψ(y | x)​ and only 
the continuation payoff matters for match-
ing. They show that ​ψ​ is strictly convex 
in ​x​ and in ​y​.51 We now ask whether the 

50 This is just an application of Bayes’s rule: the denom-
inator is the probability of ​​q​i​​​ while the numerator is the 
prior probability ​x​ that his type is high times the probability 
of ​​q​i​​​ if his type is indeed high and he matches with ​y​. 

51 For any information about one’s own or one’s part-
ner’s type is intuitively productively valuable to the social 

matching exhibits PAM. To see this, con-
sider three pairs ​(0, 0)​, ​(1, 1)​, and ​(x, x)​, 
where ​x  ∈  (0, 1)​. Strict convexity of ​ψ(x | y)​ 
in ​y​ implies that either ​ψ(x | 0)  >  ψ(x | x)​ or ​
ψ(x | 1)  >  ψ(x | x)​. Easily, ​ψ(0 | x)  =  ψ(0 | 0)​ 
and ​ψ(1 | x)  =  ψ(1 | 1)​, for there is no 
Bayesian updating when either of these 
extreme types match with anyone. So either ​
ψ(x | 0)  +  ψ(0 | x)  >  ψ(x | x)  +  ψ(0 | 0)​ or  
​ψ(x |  1) +  ψ(1 |  x)  >   ψ(x |  x) +  ψ(1 |  1)​. 
Hence, PAM fails since rematching ​x​ agents 
with either 0 or 1 raises total payoffs. Since 
this holds for ​δ  =  1​, by continuity PAM 
fails for a high enough discount factor ​δ​.  
Intuitively, the learning value of matching 
outweighs the productive complementarities 
in this case. Since any nonproductive vari-
ability in a match with an extreme type (0 
or 1) reflects uncertainty about the uncer-
tain ​x  ∈  (0, 1)​, assortatively matching ​x​ is 
intuitively informationally dominated by 
cross-matching them with type 0 or 1. 

So sufficiently forward-thinking behavior 
leads to a failure of PAM. Unfortunately, 
as the discount factor rises to one in an 
infinite-horizon model, the continuation 
value tends to linear. For intuitively, in the 
perfect patience limit, almost all produc-
tion arises when one perfectly knows all  
types: this means that output of type ​x​ is the 
linear weighted average ​xH + (1 − x)L​ that 
results from PAM, given the true types. In 
the infinite-horizon version, Anderson and 
Smith (2010) find a robust PAM failure: as 
the number ​N​ of output levels explodes, PAM 
fails near both high enough and low enough 
types with probability tending to one. The 
proof turns on the asymptotic behavior of the 
continuation value function, that the second 
derivative explodes near 0 and 1. 

planner in assigning matches, and also induces mean zero 
noise in the posterior reputation. Since all zero-mean gam-
bles have positive expected value, both strict convexity 
claims follow from Pratt (1964). 

02_Chade_552.indd   43 5/15/17   2:59 PM



Journal of Economic Literature, Vol. LV (June 2017)44

A key implication is that partnerships of 
identical types (either both ​​θ​ ℓ​​​ or both ​​θ​ h​​​) 
eventually break up. Intuitively, as informa-
tion accumulates over time, the probability 
that anyone is a high type approaches 0 or 
1, and at that point, the above PAM failure 
kicks in, the match dissolves. 

5.2.2	 Sorting and Evolving Types

Inspired by the changing reputational 
types in Anderson and Smith (2010), 
Anderson (2015) explores the dynamics 
that arise when individuals are changed by 
the association with their match partners. 
Assume an initial distribution over human 
capital ​G​.52 A matching ​μ​ is feasible when 
the measure of all matched types weakly 
below ​x​ equals ​G(x)​. For a taste of his con-
clusions, assume a two-period model with 
types changing after period one: specifically, 
if types ​(x, y)​ match in period one, then  
type ​x​ transitions to a new type ​z  ≤  s​ with 
probability ​ (s | x, y)​. Given any feasible 
matching ​μ​ in period one, the distribution 
over human capital in the final period ​H(x | μ)​ 
can be naturally defined, given ​​. Assume 
symmetric, supermodular output ​f (x, y)​, so 
that PAM is optimal in the final period.53 
Given the final wage ​w(x)  ≡  f (x, x)/2​, the 
period-one continuation value is: 

(31)	​ V(μ)  ≡ ​ ∫ 
​
​ 
 

​​ w(x) dH(x | μ)​.

For a high enough discount factor, PAM 
is initially optimal when it maximizes (31) 
across all feasible matchings. Since the wage ​
w(x)​ is increasing, PAM maximizes (31) if and 
only if the continuation distribution under 

52 Jovanovic (2014b) explores a related idea in an over-
lapping-generations setup with two-period lives to study 
assortative matching and growth in the presence of mis-
match due to shocks. 

53 Anderson and Smith (2010) establish the welfare 
theorems for this dynamic matching model. In particular, 
PAM is optimal if and only if PAM is a market outcome. 

PAM first order stochastically dominates 
the continuation distribution ​H(x | μ)​ (i.e., 
minimizes ​H(x | μ)​) across all feasible 
matchings ​μ​. Lorentz (1953) argues that 
this holds when ​ (s | x, y)​ is submodular in ​
(x, y)​ for all ​s​. With deterministic transitions, 
where ​(x, y)​ matched implies ​x​ updates to ​
τ (x, y)​, we can write ​ (s | x, y)  = ​ 1​ s≥τ (x, y)​​​.  
A salient special case in which ​​ is submod-
ular is ​τ (x, y)  =  min {x, y}​. This is the “bad 
apples” case in the peer effects literature, in 
which the greater type is pulled down to the 
lesser one. 

In the two-period model, the continuation 
value is exogenous. In order to extend these 
PAM results to the infinite-horizon model, 
Anderson (2015) first analyzes the planner’s 
preferences over human capital distributions. 
These analytical results require additional 
assumptions on the transition distribution. 
For example, the planner’s value rises in the 
increasing convex order over human capital 
distributions when ​f (x, y)​ is individually con-
vex in ​x​ and in ​y​ and ​​∫ z​ 1​​   (s | x, y) ds​ is indi-
vidually concave in ​x​ and in ​y​. 

In a related model, Jovanovic (2014a) 
explores a dynamic matching model with 
imperfect information, where agents do 
not know their types and are randomly 
matched in the first period. (This precludes 
any matching role for information in the 
first period.) They then observe the out-
put produced, equal to the product of their 
true types. Finally, they decide whether to 
rematch (“recombine”) in the second period. 
He shows that if the output produced is 
publicly observed, as in Anderson and Smith 
(2010), then all agents recombine in a PAM 
way in the second period. For signals enter 
in a complementary fashion in the expected 
product of the second period. But if output 
is only observed by the pair, then only those 
with low output recombine in the second 
period (adverse selection), and the over-
all matching exhibits negative correlation 
among pairs. 
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5.2.3	 Marriage Markets and Age Gaps

Bergstrom and Bagnoli (1993) may be the 
first paper to incorporate incomplete informa-
tion into a dynamic matching market. To shed 
light on the empirical regularity observed in 
most countries and across time that women 
on average marry older men, they develop 
an infinite-horizon overlapping-generations  
marriage market model with heterogeneous 
types, incomplete information about men’s 
types, in which men and women time their 
entry into the marriage market. In equilib-
rium, males use their entry date into the 
matching market to signal their type, and men 
with higher types tend to marry later in life. 

Assume a heterogeneous continuum of 
men and women. The type of a man is ​x  ∼  G​  
on ​[0, 1]​ and of a woman is ​y  ∼  H​ on ​[0, 1]​.  
In an important novelty for the matching 
literature, this paper introduces the assump-
tion of log concavity, a property satisfied by 
many common distributions.54 The cdf ​H​ is  
log concave in ​y​. Utility is nontransferable:  
if man ​x​ ever marries woman ​y​, then he 
enjoys a positive flash utility ​​f​ 1​​ (x) ​f​ 2​​ (y)​,  
where ​​f​

1
​    ′ ​ (x)  ≥  0​ for all ​x​, ​​f​

2
​    ′ ​ (y)  >  0​,  

​​f​
2
​    ″​(y)   ≥   0​, and additionally ​​f​

2
​    ‴​(y)   ≤   0​ for all  

​y​. In turn, a woman of type ​y​ enjoys a 
match utility ​​β​ 1​​ (y) ​β​ 2​​ (x)​ if she ever mar-
ries a man of type ​x​, with ​​β​1​  ′ ​ (y)  ≥  0​ 
and ​​β​2​  ′ ​ (x)  >  0​. Bergstrom and Bagnoli 
(1993) analyzed the simpler case with ​​f​ 1​​ (x)  
= ​ β​ 1​​ (y)  =  1​, ​​f​ 2​​ (y)  =  y​, and ​​β​ 2​​ (x)  =  x​. 

An equal number of men and women are 
born in each period. Everyone lives for two 
periods and their only decision is whether 
to enter the marriage market in period 1 or 
period 2. Delaying marriage entails a fixed 
cost ​​c​ 1​​  >  0​ for men and ​​c​ 2​​  >  0​ for women. 

54 In an underground classic that was published more 
than a decade later, they then authored the log-concavity 
encomium Bergstrom and Bagnoli (2005). The importance 
of this property generally in economics had previously 
been introduced in proposition 1 of Heckman and Honore 
(1990). 

A woman’s type is publicly observable, while 
a man’s type is his private information in 
period 1, and publicly observable in period 2. 
As a result, the period that a man chooses to 
marry signals his type. Divorce is ignored, 
since the match payoff is one-time only. 

A centralized matchmaker matches agents 
as follows—which also delivers the unique 
stable assignment. In each period, the planner 
positively assortatively matches men of age 2 
and the best women who choose to marry, 
until exhausting the supply of women, or of 
men of age 2 whose types exceed the expected 
value of the type of men of age 1. Since the 
type of every age 2 man ​x​ is revealed, he will 
be assigned to marry woman ​μ(x)​, where ​
μ′(x)  >  0​ and ​μ(1)  =  1​. The remaining 
lesser women are randomly assigned to age 1 
males who opt to enter the marriage market 
when young, whose true types are as yet hid-
den. Any unmatched age 1 men or women 
remain in the marriage market when they 
reach age 2. The population has constant size, 
with men and women of age 1 and 2 always 
present in the market and the same mass 
of each entering period 2, so that everyone 
eventually matches. We now explore which 
men choose to marry when young. 

An equilibrium must specify the agents’ 
marrying strategies (age 1 or age 2). First of 
all, observe that women have no incentive to 
delay. Given the demographic stationarity, 
they secure the same expected payoff from 
marriage, but incur a fixed search cost ​​c​ 2​​​ only 
in period 2. But men solve a timing problem: 
in the spirit of a reservation wage, there is 
a cutoff value for men: high types wait until 
age 2, and low types enter at age 1. To see 
this, let women of types ​C  ⊂  [0, 1]​ seek to 
marry age 1 men. Then a type ​x​ man strictly 
prefers to delay marriage until age 2 when 

(32)  ​  − ​c​ 1​​ + ​f​ 1​​ (x) ​f​ 2​​ (μ(x)) 

	     ≥ ​ 
​∫ 

C
​ 

 

 ​​  ​f​ 1​​ (x) ​f​ 2​​ (s) dH(s)
  ________________  

​∫ 
C
​ 

 

 ​​ dH(s)
 ​ ​ .
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Easily, if this inequality holds for any type ​x​, 
then it also holds for any higher type, thereby 
confirming the cutoff value property. Hence, 
there is a threshold ​​ 

_
 x ​​ such that men with ​

x  ≤ ​ 
_
 x ​​ choose to marry at age 1 and those 

with types ​x  > ​ 
_
 x ​​ choose to marry at age 2. 

When interior, the threshold solves indiffer-
ence equation, namely (32) with equality, 
namely: 

(33) ​ ​f​ 1​​ (​ 
_
 x ​)​(​f​ 2​​ (μ(​ 

_
 x ​)) − ​ 

​∫ 
0
​ 
μ(​ 

_
 x ​)
​​ ​f​ 2​​ (s) dH(s)

  ______________ 
H(μ(​ 

_
 x ​))

 ​ )​ 

          = ​ c​ 1​​ .​

In the purported equilibrium, in every 
period, age 1 women with high types marry 
age 2 men with high types, assortatively, 
whereas age 1 women with low types marry 
age 1 men with low types, but randomly. 
This is their story of the marriage age gap 
between men and women. 

Does this equilibrium exist and is it 
unique? The answer is yes if (33) has a 
unique solution. First, the left side of (33) 
vanishes in the limit ​​ 

_
 x ​  ↓  0​ by l’Hopital’s 

rule. Since ​​f​ 2​​​ is increasing, the left side of 
(33) exceeds ​​c​ 1​​​ at ​​ 

_
 x ​  =  1​, for small enough ​​

c​ 1​​  >  0​. Existence follows by continuity. 
Uniqueness follows if the left side of (33) is 
strictly increasing in ​​ 

_
 x ​​. For this, Bergstrom 

and Bagnoli (1993) introduce a log-concavity 
assumption. Since ​​f​

1
​    ′ ​ (​ _ x ​)  ≥  0​, it suffices to 

show that the term in parenthesis is increas-
ing in ​z  =  μ(​ 

_
 x ​)​. Now, integration by parts 

reveals that 

 ​ ​f​ 2​​ (z) − ​ 
​∫ 

0
​ 
 z
​​  ​f​ 2​​ (s) dH(s)

  ____________ 
H(z)

 ​ 

      = ​ 
​∫ 

0
​ 
 z
​​  ​f​

2
​    ′ ​ (s)H(s) ds

  _____________ 
H(z)

 ​   = ​ f​
2
​    ′ ​ (z) ​ ξ(z) ____ ξ′(z)

 ​​ ,

where ​ξ(z)  = ​ ∫ 0​ 
z​​ ​f​

2
​    ′ ​ (s) H(s) ds​. So it suffices 

that ​​f​
2
​    ′ ​ (z)ξ(z)/ξ′(z)​ is increasing in ​z​, and 

since ​​f​
2
​    ″​(z)  ≥  0​, it suffices that ​ξ/ξ′​ strictly 

increases in ​z​. This holds when ​ξ″ξ − ξ​′​​ 2​  
<  0​ or, equivalently, when ​ξ​ is strictly log 
concave in ​z​. Since ​​f​

2
​    ‴​  ≤  0​, we have ​​f​

2
​    ′ ​​ is 

concave and thus log concave. If we assume a 
strictly log-concave distribution ​H​, then ​​f​

2
​    ′ ​ H​ 

is strictly log concave, and so too is the inte-
gral, as log concavity is preserved by integra-
tion. All told, there is a unique equilibrium. 

5.2.4	 Matching and the Acceptance Curse

In many matching applications, such as 
the college admissions problem or mar-
riage, the characteristics of agents on one or 
both sides of the market are only observed 
with noise prior to matching. Chade (2006) 
considers an NTU matching market with 
random search, where agents know their 
types but they only observe a noisy signal of 
potential partners they meet. After observ-
ing the signal, an agent updates his belief 
about the partner’s type and then chooses 
whether to accept or reject. Intuitively, 
agents set a threshold for the signal reali-
zation and accept a partner when the sig-
nal observed exceeds a threshold. If both 
accept, they marry and leave the market, 
while in any other case they continue the 
search. Under the standard MLRP condi-
tion on the signal distribution, higher sig-
nal realizations convey better news about a 
partner’s type. The twist here is that agents 
must also account for the information in the 
event that the partner agrees to match. And 
if agents on the other side of the market 
grow more choosy as their types increase, 
then being accepted leads one to down-
grade the posterior estimate of the potential 
partner’s type. Chade suggestively called 
this the acceptance curse, since it is akin to 
the winner’s curse effect in auction theory 
(Milgrom and Weber 1982). 

The model is in steady state over an 
horizon infinite in discrete time, with 
matched agents replaced by clones. Using 
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the marriage market metaphor, there are 
continuum populations of men and women. 
The density of women’s types ​x  ∈  [0, 1]​ is ​
g(x)​, and of men’s types ​y  ∈  [0, 1]​ is ​h(y)​.  
The per period utility of each agent is 0 if 
single, and the type of the spouse if matched 
(NTU). Every period, men and women ran-
domly meet. When a woman ​x​ meets a man ​
y​, he observes a signal ​σ  ∈  [0, 1]​ drawn 
from ​m(σ | x)​, and she observes a signal ​
τ  ∈  [0, 1]​ drawn from a conditional den-
sity ​n(τ | y)​, where ​m​ and ​n​ satisfy the strict 
MLRP. After observing the signals, both 
announce simultaneously accept or reject; 
if they both accept, they marry and exit the 
market, otherwise they continue searching 
next period. Agents discount the future by ​
δ  ∈  (0, 1)​. 

A stationary strategy for a man of type ​y​ or 
a woman with type ​x​ is a fixed set of signals 
that led either to accept. Intuitively, these 
are upper intervals of signals, ​σ  ≥ ​  σ _​(y)​  
and ​τ  ≥ ​  τ _​ (x)​, by the MLRP. Focus on a 
man of type ​y​ facing a population of women. 
Let ​m(σ)  = ​ ∫ 0​ 1​​ m(σ | x) g(x) dx​ be the 
unconditional density of signal ​σ​, and ​k(x | σ)  
=  m(σ | x) g(x)/m(σ)​ the posterior density 
on ​x​, given the signal realization ​σ​. Then 
the chance ​a(y | σ)​ that ​y​’s current partner 
accepts, conditional on ​σ​, equals: 

	​ a(y | σ)  = ​ ∫ 
0
​ 
1
​​ ​∫ ​ τ _​  (x)​ 

1
  ​​ n(τ | y)k(x | σ) dτ dx.​

Next, let ​f (y | σ)​ be the expected discounted 
utility from marriage, given the signal real-
ization ​σ​ and the information contained in 
the event that he is accepted by the current 
partner. Formally, 

 ​ f (y | σ) 

= E​
[

​∫​ 
0

​ 
1
​ x/1 − δ ​ 

​(​∫ τ (x)​ 1 ​​  n(τ | y) dτ)​ k(x | σ)
  _________________  

a(σ, y)
  ​ dx

]
​​.

Consider a man ​y​ seeing a signal ​σ​. That 
woman accepts with probability ​a(y | σ)​.  
In this event, the man decides whether to 
accept and leave the market, securing a dis-
counted expected payoff ​f (y | σ)​, or reject 
and continue searching, and thereby earn 
expected discounted payoff ​δΨ(y)​. If the 
woman does not accept, which occurs with 
probability ​1 − a(y | σ)​, then the man con-
tinues to search. His Bellman equation is 
thus: 

(34) ​ v(y | σ)  =  a(y | σ) max {  f(y | σ), δΨ(y)} 

	 + (1 − a(y | σ))δΨ(y)​,

where ​Ψ(y)​  = ​ ∫ 0​ 1​​ v(y | σ) m(σ) dσ​ is the 
optimal continuation value, and ​​ σ _​​ solves  
​f ​(​ y​ | σ 

‾
 ​​(y))​​  =  δΨ(y)​. 

Similarly, the optimal strategy of a woman 
of type ​x​ is a threshold ​​ τ _​ (x)​. Thus, the 
search for a stationary equilibrium reduces 
to finding a pair of functions ​(​ σ _​(·), ​ τ _​ (·))​ that 
are mutual best responses. The downward 
recursive construction in section 4 under 
complete information is inapplicable here, 
since any type may be accepted by any other, 
owing to signal noise. Chade (2006) shows 
that the model can be reinterpreted as a two-
player game with incomplete information 
with a continuum of types and actions, and 
then one can appeal to a theorem in Athey 
(2001) to show that there exists a equilibrium 
in increasing strategies. 

Finally, observe that the accep-
tance curse emerges: For since ​f (y | σ)  
≤  E [X/(1 − δ) | σ]​, the event of being 
accepted is a discouraging signal for a man 
of type ​y​. Nevertheless, stochastic sorting 
still emerges: the distribution of types an 
agent can end up matched is ordered in the 
sense of first order stochastic dominance as 
a function of the agent’s type. As a result, in 
equilibrium one’s expected partner’s type is 
increasing in the agent’s type. 
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6.  Conclusion

We have reviewed the main frameworks 
used in micro models of search and match-
ing, focusing on the conditions for sorting 
(either positive or negative) both with and 
without search or information frictions. We 
have started from the benchmark frictionless 
assignment model both with TU and NTU. 
Despite its simplicity, the model explains 
many interesting economic phenomena 
ranging from the labor market to corpo-
rate finance to marriage markets. The many 
variations of the model allow for a simple 
relation between technology and the result-
ing sorting pattern. 

We have also explored sorting with both 
search and information frictions. While 
this duly complicates many aspects of 
the analysis, it renders the setting more 
realistic. We have carefully reviewed the 
most important sorting results in this 
area, explaining in a unified way the logic  
underlying them, and we have also dis-
cussed the emerging applied literature on 
the subject. 

We think these models can be a build-
ing block for further theory and a spark for 
empirical work. This literature is at best 
in its infancy, and many open questions 
remain. These include a better understand-
ing of many-to-one matching models, the 
role of externalities in matching, stochas-
tic types, nonstationary models, the role of 
on-the-job search, and multidimensional 
models. Of course, there are also trade- 
theoretic models of search. That side is less 
well-explored, and has so far focused on 
low levels of search frictions. The search 
and matching framework naturally captures 
heterogeneity, which is the hallmark of eco-
nomic exchange and the source of gains from 
trade. Formally modeling the choice of with 
whom to trade should prove useful in all 
fields of economics. 

References

Acemoglu, Daron, and Robert Shimer. 1999. “Holdups 
and Efficiency with Search Frictions.” International 
Economic Review 40 (4): 827–49.

Ackerberg, Daniel A., and Maristella Botticini. 2002. 
“Endogenous Matching and the Empirical Determi-
nants of Contract Form.” Journal of Political Econ-
omy 110 (3): 564–91.

Adachi, Hiroyuki. 2003. “A Search Model of Two-Sided 
Matching under Nontransferable Utility.” Journal of 
Economic Theory 113 (2): 182–98.

Adam, Klaus. 2001. “Learning While Searching for the 
Best Alternative.” Journal of Economic Theory 101 
(1): 252–80.

Albrecht, James, Axel Anderson, and Susan Vroman. 
2010. “Search by Committee.” Journal of Economic 
Theory 145 (4): 1386–407.

Albrecht, James, Pieter A. Gautier, and Susan Vroman. 
2006. “Equilibrium Directed Search with Multiple 
Applications.” Review of Economic Studies 73 (4): 
869–91.

Anderson, Axel. 2015. “A Dynamic Generalization of 
Becker’s Assortative Matching Result.” Journal of 
Economic Theory 159 (Part A): 290–310.

Anderson, Axel, and Lones Smith. 2010. “Dynamic 
Matching and Evolving Reputations.” Review of Eco-
nomic Studies 77 (1): 3–29.

Antràs, Pol, Luis Garicano, and Esteban 
Rossi-Hansberg. 2006. “Offshoring in a Knowledge 
Economy.” Quarterly Journal of Economics 121 (1): 
31–77.

Ashlagi, Itai, Yash Kanoria, and Jacob D. Leshno. 2017. 
“Unbalanced Random Matching Markets: The Stark 
Effect of Competition.” Journal of Political Economy 
125 (1): 69–98.

Atakan, Alp E. 2006. “Assortative Matching with 
Explicit Search Costs.” Econometrica 74 (3): 667–80.

Athey, Susan. 2001. “Single Crossing Properties and 
the Existence of Pure Strategy Equilibria in Games 
of Incomplete Information.” Econometrica 69 (4): 
861–89.

Athey, Susan, Paul R. Milgrom, and John Roberts. 
1998. “Robust Comparative Statics.” Unpublished.

Bagger, Jesper, and Rasmus Lentz. 2014. “An Empir-
ical Model of Wage Dispersion with Sorting.” 
National Bureau of Economic Research Working 
Paper 20031.

Bagnoli, Mark, and Ted Bergstrom. 2005. “Log-Concave 
Probability and Its Applications.” Economic Theory 
26 (2): 445–69.

Barlow, Richard E., and Frank Proschan. 1996. Math-
ematical Theory of Reliability. Philadelphia: Society 
for Industrial and Applied Mathematics.

Bartolucci, Cristian, and Francesco Devicienti. 2013. 
“Better Workers Move to Better Firms: A Simple 
Test to Identify Sorting.” Institute for the Study of 
Labor Discussion Paper 7601.

Becker, Gary S. 1973. “A Theory of Marriage: Part I.” 
Journal of Political Economy 81 (4): 813–46.

Bergstrom, Theodore C., and Mark Bagnoli. 1993. 

02_Chade_552.indd   48 5/15/17   2:59 PM



49Chade, Eeckhout, and Smith: Sorting Through Search and Matching Models

“Courtship as a Waiting Game.” Journal of Political 
Economy 101 (1): 185–202.

Bhaskar, V., and Ed Hopkins. 2016. “Marriage as a Rat 
Race: Noisy Premarital Investments with Assortative 
Matching.” Journal of Political Economy 124 (4): 
992–1045.

Bloch, Francis, and Harl Ryder. 2000. “Two-Sided 
Search, Marriages, and Matchmakers.” International 
Economic Review 41 (1): 93–115.

Browning, Martin, Pierre-André Chiappori, and Yoram 
Weiss. 2014. Economics of the Family. Cambridge 
and New York: Cambridge University Press.

Burdett, Kenneth, and Melvyn G. Coles. 1997. “Mar-
riage and Class.” Quarterly Journal of Economics 112 
(1): 141–68.

Burdett, Kenneth, and Kenneth L. Judd. 1983. “Equi-
librium Price Dispersion.” Econometrica 51 (4): 
955–69.

Burdett, Kenneth, and Dale T. Mortensen. 1998. 
“Wage Differentials, Employer Size, and Unem-
ployment.” International Economic Review 39 (2): 
257–73.

Burdett, Kenneth, Shouyong Shi, and Randall Wright. 
2001. “Pricing and Matching with Frictions.” Journal 
of Political Economy 109 (5): 1060–85.

Butters, Gerard R. 1977. “Equilibrium Distributions of 
Sales and Advertising Prices.” Review of Economic 
Studies 44 (3): 465–91.

Chade, Hector. 2001. “Two-Sided Search and Perfect 
Segregation with Fixed Search Costs.” Mathematical 
Social Sciences 42 (1): 31–51.

Chade, Hector. 2006. “Matching with Noise and the 
Acceptance Curse.” Journal of Economic Theory 129 
(1): 81–113.

Chade, Hector, and Jan Eeckhout. 2016. “Stochastic 
Sorting.” Unpublished.

Chade, Hector, and Jan Eeckhout. 2015. “Competing 
Teams.” Unpublished.

Chade, Hector, and Jan Eeckhout. Forthcoming. 
“Matching Information.” Theoretical Economics. 

Chade, Hector, Gregory Lewis, and Lones Smith. 
2014. “Student Portfolios and the College Admis-
sions Problem.” Review of Economic Studies 81 (3): 
971–1002.

Chade, Hector, and Isle Lindenlaub. 2015. “Risky 
Matching.” Unpublished.

Chade, Hector, and Lones Smith. 2006. “Simultaneous 
Search.” Econometrica 74 (5): 1293–307.

Chakraborty, Archisman, Alessandro Citanna, and 
Michael Ostrovsky. 2010. “Two-Sided Matching with 
Interdependent Values.” Journal of Economic The-
ory 145 (1): 85–105.

Che, Yeon-Koo, and Youngwoo Koh. 2016. “Decentral-
ized College Admissions.” Journal of Political Econ-
omy 124 (5): 1295–338.

Chiappori, Pierre-André, Robert J. McCann, and 
Lars P. Nesheim. 2010. “Hedonic Price Equilibria,  
Stable Matching, and Optimal Transport: Equiva-
lence, Topology, and Uniqueness.” Economic Theory 
42 (2): 317–54.

Chiappori, Pierre-André, and Philip J. Reny. 2016. 

“Matching to Share Risk.” Theoretical Economics 11 
(1): 227–51.

Choi, Michael, and Lones Smith. 2016. “Optimal 
Sequential Search among Alternatives.” University of 
Wisconsin PhD. Thesis.

Chow, Yuan Shih, Herbert Robbins, and David Sieg-
mund. 1971. Great Expectations: The Theory of 
Optimal Stopping. Boston: Houghton Mifflin.

Chvátal, Vašek. 1983. Linear Programming. New York: 
W. H. Freeman and Company.

Cole, Harold L., George J. Mailath, and Andrew  
Postlewaite. 2001. “Efficient Non-contractible 
Investments in Large Economies.” Journal of Eco-
nomic Theory 101 (2): 333–73.

Compte, Olivier, and Philippe Jehiel. 2010. “Bargain-
ing and Majority Rules: A Collective Search Perspec-
tive.” Journal of Political Economy 118 (2): 189–221.

Crowe, J. A., J. A. Zweibel, and P. C. Rosenbloom. 
1986. “Rearrangements of Functions.” Journal of 
Functional Analysis 66 (3): 432–38.

Damiano, Ettore, Hao Li, and Wing Suen. 2005. 
“Unraveling of Dynamic Sorting.” Review of Eco-
nomic Studies 72 (4): 1057–76.

DeGroot, Morris H. 1970. Optimal Statistical Deci-
sions. Hoboken, NJ: Wiley.

Diamond, Peter A. 1982. “Aggregate Demand Man-
agement in Search Equilibrium.” Journal of Political 
Economy 90 (5): 881–94.

Diamond, Peter A., and Eric Maskin. 1979. “An Equi-
librium Analysis of Search and Breach of Contract, 
I: Steady States.” Bell Journal of Economics 10 (1): 
282–316.

Edlin, Aaron S., and Chris Shannon. 1998. “Strict 
Single Crossing and the Strict Spence–Mirrlees 
Condition: A Comment on Monotone Comparative 
Statics.” Econometrica 66 (6): 1417–25.

Eeckhout, Jan. 1999. “Bilateral Search and Vertical 
Heterogeneity.” International Economic Review 40 
(4): 869–87.

Eeckhout, Jan, and Philipp Kircher. 2010a. “Sorting 
and Decentralized Price Competition.” Economet-
rica 78 (2): 539–74.

Eeckhout, Jan, and Philipp Kircher. 2010b. “Sorting 
versus Screening: Search Frictions and Competing 
Mechanisms.” Journal of Economic Theory 145 (4): 
1354–85.

Eeckhout, Jan, and Philipp Kircher. 2011. “Identifying 
Sorting-In Theory.” Review of Economic Studies 78 
(3): 872–906.

Eeckhout, Jan, and Philipp Kircher. 2012. “Assortative 
Matching with Large Firms: Span of Control over 
More versus Better Workers.” Unpublished.

Felli, Leonardo, and Kevin Roberts. 2016. “Does Com-
petition Solve the Hold-Up Problem?” Economica 83 
(329): 172–200.

Ferguson, Thomas S. 2016. “Optimal Stopping  
and Applications.” http://www.math.ucla.edu/~tom/
Stopping/Contents.html.

Fudenberg, Drew, and Jean Tirole. 1991. Game The-
ory. Cambridge, MA and London: MIT Press.

Gabaix, Xavier, and Augustin Landier. 2008. “Why Has 

02_Chade_552.indd   49 5/15/17   2:59 PM



Journal of Economic Literature, Vol. LV (June 2017)50

CEO Pay Increased So Much?” Quarterly Journal of 
Economics 123 (1): 49–100.

Gale, D., and L. S. Shapley. 1962. “College Admissions 
and the Stability of Marriage.” American Mathemati-
cal Monthly 69 (1): 9–15.

Galenianos, Manolis, and Philipp Kircher. 2009. 
“Directed Search with Multiple Job Applications.” 
Journal of Economic Theory 144 (2): 445–71.

Garicano, Luis. 2000. “Hierarchies and the Organiza-
tion of Knowledge in Production.” Journal of Politi-
cal Economy 108 (5): 874–904.

Gershkov, Alex, and Benny Moldovanu. 2012. “Opti-
mal Search, Learning and Implementation.” Jour-
nal of Economic Theory 147 (3): 881–909.

Gittins, J. C. 1979. “Bandit Processes and Dynamic 
Allocation Indices.” Journal of the Royal Statistical 
Society, Series B 41 (2): 148–77.

Gittins, J. C., and D. M. Jones. 1974. “A Dynamical 
Allocation Index for the Sequential Design of Exper-
iments.” In Progress in Statistics, edited by Joseph 
Mark Gani, et al. Amsterdam: North-Holland.

Gretsky, Neil E., Joseph M. Ostroy, and William R. 
Zame. 1992. “The Nonatomic Assignment Model.” 
Economic Theory 2 (1): 103–27.

Gretsky, Neil E., Joseph M. Ostroy, and William R. 
Zame. 1999. “Perfect Competition in the Continuous 
Assignment Model.” Journal of Economic Theory 88 
(1): 60–118.

Grossman, Gene M., Elhanan Helpman, and Philipp 
Kircher. 2013. “Matching and Sorting in a Global 
Economy.” National Bureau of Economic Research 
Working Paper 19513.

Grossman, Gene M., and Giovanni Maggi. 2000. 
“Diversity and Trade.” American Economic Review 
90 (5): 1255–75.

Guadalupe, Maria, Veronica Rappoport, Bernard Sal-
anie, and Catherine Thomas. 2014. “The Perfect 
Match: Assortative Matching in International Acqui-
sitions.” Unpublished.

Hagedorn, Marcus, Tzuo Hann Law, and Iourii 
Manovskii. 2012. “Identifying Equilibrium Models 
of Labor Market Sorting.” Unpublished.

Hardy, G. H., J. E. Littlewood, and G. Polya. 1952. 
Inequalities, Second edition. Cambridge and New 
York: Cambridge University Press.

Hatfield, John William, and Fuhito Kojima. 2008. 
“Matching with Contracts: Comment.” American 
Economic Review 98 (3): 1189–94.

Hatfield, John William, and Paul R. Milgrom. 2005. 
“Matching with Contracts.” American Economic 
Review 95 (4): 913–35.

Heckman, James J., and Bo E. Honore. 1990. “The 
Empirical Content of the Roy Model.” Economet-
rica 58 (5): 1121–49.

Holmstrom, Bengt, and Paul R. Milgrom. 1987. 
“Aggregation and Linearity in the Provision of Inter-
temporal Incentives.” Econometrica 55 (2): 303–28.

Hoppe, Heidrun C., Benny Moldovanu, and Aner Sela. 
2009. “The Theory of Assortative Matching Based on 
Costly Signals.” Review of Economic Studies 76 (1): 
253–81.

Jacquet, Nicolas L., and Serene Tan. 2007. “On the 
Segmentation of Markets.” Journal of Political Econ-
omy 115 (4): 639–64.

Jerez, Belen. 2014. “Competitive Equilibrium with 
Search Frictions: A General Equilibrium Approach.” 
Journal of Economic Theory 153: 252–86.

Jovanovic, Boyan. 1979. “Job Matching and the The-
ory of Turnover.” Journal of Political Economy 87 
(5 Part 1): 972–90.

Jovanovic, Boyan. 1984. “Matching, Turnover, and 
Unemployment.” Journal of Political Economy 92 
(1): 108–22.

Jovanovic, Boyan. 2014a. “Learning and Recombina-
tion.” Unpublished.

Jovanovic, Boyan. 2014b. “Misallocation and Growth.” 
American Economic Review 104 (4): 1149–71.

Kaas, Leo, and Philipp Kircher. 2015. “Efficient Firm 
Dynamics in a Frictional Labor Market.” American 
Economic Review 105 (10): 3030–60.

Kantorovich, L. V. 1942. “On the Translocation of 
Masses.” Dokl. Akad. Nauk SSSR 37 (7–8): 227–29. 

Kelso, Alexander S, Jr., and Vincent P. Crawford. 1982. 
“Job Matching, Coalition Formation, and Gross Sub-
stitutes.” Econometrica 50 (6): 1483–504.

Kircher, Philipp. 2009. “Efficiency of Simultane-
ous Search.” Journal of Political Economy 117 (5): 
861–913.

Koopmans, Tjalling C., and Martin Beckmann. 1957. 
“Assignment Problems and the Location of Eco-
nomic Activities.” Econometrica 25 (1): 53–76.

Kremer, Michael. 1993. “The O-Ring Theory of 
Economic Development.” Quarterly Journal of 
Economics 108 (3): 551–75.

Kremer, Michael, and Eric Maskin. 1996. “Wage 
Inequality and Segregation by Skill.” Unpublished.

Lamadon, Thibaut. 2014. “Productivity Shocks, 
Dynamic Contracts and Income Uncertainty.” 
Unpublished.

Lamadon, Thibaut, Jeremy Lise, Costas Meghir, and 
Jean-Marc Robin. 2013. “Matching, Sorting, and 
Wages.” Unpublished.

Lauermann, Stephan, and Georg Noldeke. 2014. “Sta-
ble Marriages and Search Frictions.” Journal of Eco-
nomic Theory 151: 163–95.

Legros, Patrick, and Andrew F. Newman. 2007. 
“Beauty Is a Beast, Frog Is a Prince: Assortative 
Matching with Nontransferabilities.” Econometrica 
75 (4): 1073–102.

Legros, Patrick, and Andrew F. Newman. 2010. 
“Co-ranking Mates: Assortative Matching in Mar-
riage Markets.” Economics Letters 106 (3): 177–79.

Lester, Benjamin, Ludo Visschers, and Ronald 
Wolthoff. 2015. “Meeting Technologies and Optimal 
Trading Mechanisms in Competitive Search Mar-
kets.” Journal of Economic Theory 155: 1–15.

Lindenlaub, Ilse. 2017. “Sorting Multidimensional 
Types: Theory and Application.” Review of Economic 
Studies 84 (2): 718–89.

Lise, Jeremy, Costas Meghir, and Jean-Marc Robin. 
2013. “Mismatch, Sorting and Wage Dynamics.” 
National Bureau of Economic Research Working 

02_Chade_552.indd   50 5/15/17   2:59 PM



51Chade, Eeckhout, and Smith: Sorting Through Search and Matching Models

Paper 18719.
Lise, Jeremy, and Jean-Marc Robin. 2017. “The Mac-

rodynamics of Sorting between Workers and Firms.” 
American Economic Review 107 (4): 1104–35.

Liu, Qingmin, George J. Mailath, Andrew Postlewaite,  
and Larry Samuelson. 2014. “Stable Matching  
with Incomplete Information.” Econometrica 82 
(2): 541–87.

Lopes de Melo, Rafael. 2009. “Sorting in the Labor 
Market: Theory and Measurement.” Yale University 
PhD. Thesis.

Lorentz, G. G. 1953. “An Inequality for Rearranage-
ments.” American Mathematical Monthly 60 (3): 
176–79.

Lucas, Robert E., Jr. 1978. “On the Size Distribution 
of Business Firms.” Bell Journal of Economics 9 (2): 
508–23.

Makowski, Louis, and Joseph M. Ostroy. 1995. “Appro-
priation and Efficiency: A Revision of the First The-
orem of Welfare Economics.” American Economic 
Review 85 (4): 808–27.

Manea, Mihai. 2017. “Steady States in Matching and 
Bargaining.” Journal of Economic Theory 167: 
206–28.

McAfee, R. Preston. 1993. “Mechanism Design By 
Competing Sellers.” Econometrica 61 (6): 1281–312.

McCall, John J. 1965. “The Economics of Information 
and Optimal Stopping Rules.” Journal of Business 38 
(3): 300–317.

McCall, John J. 1970. “Economics of Information and 
Job Search.” Quarterly Journal of Economics 84 (1): 
113–26.

McNamara, J. M., and E. J. Collins. 1990. “The Job 
Search Problem as an Employer–Candidate Game.” 
Journal of Applied Probability 28: 815–27.

Milgrom, Paul R., and Chris Shannon. 1994. “Mono-
tone Comparative Statics.” Econometrica 62 (1): 
157–80.

Milgrom, Paul R., and Robert J. Weber. 1982. “A The-
ory of Auctions and Competitive Bidding.” Econo-
metrica 50 (5): 1089–122.

Moen, Espen R. 1997. “Competitive Search Equilib-
rium.” Journal of Political Economy 105 (2): 385–411.

Monge, Gaspard. 1781. “Memoire sur la Theorie des 
Deblais et des Remblais.” Histoire de l’Academie 
Royale des Sciences 666–704. 

Morgan, Peter. 1996. “Two-Sided Search and Match-
ing.” Unpublished.

Morgan, Peter, and Richard Manning. 1985. “Optimal 
Search.” Econometrica 53 (4): 923–44.

Mortensen, Dale T., and Randall Wright. 2002. “Com-
petitive Pricing and Efficiency in Search Equilib-
rium.” International Economic Review 43 (1): 1–20.

Noldeke, Georg, and Larry Samuelson. 2015. “Invest-
ment and Competitive Matching.” Econometrica 83 
(3): 835–96.

Noldeke, Georg, and T. Troger. 2009. “Matching Het-
erogeneous Agents with a Linear Search Technol-
ogy.” Unpublished.

Olszewski, Wojciech, and Richard Weber. 2015. “A 
More General Pandora Rule?” Journal of Economic 

Theory 160: 429–37.
Osborne, Martin J., and Ariel Rubinstein. 1990. Bar-

gaining and Markets. Bingley, UK: Emerald.
Peskir, Goran, and Albert Shiryaev. 2006. Optimal 

Stopping and Free-Boundary Problems. Basel and 
Boston: Birkhauser Verlag.

Peters, Michael. 1984. “Bertrand Equilibrium with 
Capacity Constraints and Restricted Mobility.” 
Econometrica 52 (5): 1117–27.

Peters, Michael. 1997. “A Competitive Distribution of 
Auctions.” Review of Economic Studies 64 (1): 97–123.

Peters, Michael, and Sergei Severinov. 1997. “Compe-
tition among Sellers Who Offer Auctions Instead of 
Prices.” Journal of Economic Theory 75 (1): 141–79.

Petrongolo, Barbara, and Christopher A. Pissarides. 
2001. “Looking into the Black Box: A Survey of the 
Matching Function.” Journal of Economic Literature 
39 (2): 390–431.

Pinheiro, Roberto. 2012. “Venture Capital and Under-
pricing: Capacity Constraints and Early Sales.” 
Unpublished.

Postel-Vinay, Fabien, and Jean-Marc Robin. 2002. 
“Equilibrium Wage Dispersion with Worker and 
Employer Heterogeneity.” Econometrica 70 (6): 
2295–350.

Pratt, John W. 1964. “Risk Aversion in the Small and in 
the Large.” Econometrica 32 (1–2): 122–36.

Pycia, Marek, and M. Bumin Yenmez. 2015. “Matching 
with Externalities.” Unpublished.

Rogerson, Richard, Robert Shimer, and Randall 
Wright. 2005. “Search-Theoretic Models of the 
Labor Market: A Survey.” Journal of Economic Lit-
erature 43 (4): 959–88.

Rosen, Sherwin. 1981. “The Economics of Superstars.” 
American Economic Review 71 (5): 845–58.

Ross, Sheldon M. 1983. Introduction to Stochastic 
Dynamic Programming. London: Academic Press.

Roth, Alvin E. 1989. “Two-Sided Matching with 
Incomplete Information about Others’ Preferences.” 
Games and Economic Behavior 1 (2): 191–209.

Roth, Alvin E., and Marilda A. Oliveira Sotomayor. 1990. 
Two-Sided Matching: A Study in Game-Theoretic 
Modeling and Analysis. Cambridge and New York: 
Cambridge University Press.

Rothschild, Michael. 1974. “Searching for the Lowest 
Price When the Distribution of Prices Is Unknown.” 
Journal of Political Economy 82 (4): 689–711.

Sasaki, Hiroo, and Manabu Toda. 1996. “Two-Sided 
Matching Problems with Externalities.” Journal of 
Economic Theory 70 (1): 93–108.

Sattinger, Michael. 1993. “Assignment Models of the 
Distribution of Earnings.” Journal of Economic Lit-
erature 31 (2): 831–80.

Schaal, Edouard. Forthcoming. “Uncertainty and 
Unemployment.” Econometrica.

Schulhofer-Wohl, Sam. 2006. “Negative Assortative 
Matching of Risk-Averse Agents with Transfer-
able Expected Utility.” Economics Letters 92 (3):  
383–88.

Sepahsalari, Alireza. 2016. “Financial Market Imperfec-
tions and Labour Market Outcomes.” Unpublished.

02_Chade_552.indd   51 5/15/17   2:59 PM



Journal of Economic Literature, Vol. LV (June 2017)52

Serfes, Konstantinos. 2005. “Risk Sharing vs. Incen-
tives: Contract Design under Two-Sided Heteroge-
neity.” Economics Letters 88 (3): 343–49.

Shapley, L. S., and M. Shubik. 1971. “The Assignment 
Game I: The Core.” International Journal of Game 
Theory 1 (1): 111–30.

Shi, Shouyong. 2001. “Frictional Assignment I: Effi-
ciency.” Journal of Economic Theory 98 (2): 232–60.

Shi, Shouyong. 2002. “A Directed Search Model 
of Inequality with Heterogeneous Skills and 
Skill-Biased Technology.” Review of Economic Stud-
ies 69 (2): 467–91.

Shimer, Robert. 2005. “The Assignment of Workers to 
Jobs in an Economy with Coordination Frictions.” 
Journal of Political Economy 113 (5): 996–1025.

Shimer, Robert, and Lones Smith. 2000. “Assorta-
tive Matching and Search.” Econometrica 68 (2): 
343–69.

Shimer, Robert, and Lones Smith. 2001. “Nonstation-
ary Search.” Unpublished.

Shiryaev, A. N. 1978. Optimal Stopping Rules. New 
York and Berlin: Springer.

Smith, Eric. 1999. “Search, Concave Production, and 
Optimal Firm Size.” Review of Economic Dynamics 
2 (2): 456–71.

Smith, Lones. 1992. “Cross-Sectional Dynamics in a 
Two-Sided Matching Model.” Unpublished.

Smith, Lones. 1995. “A Model of Exchange Where 
Beauty Is in the Eye of the Beholder.” Unpublished.

Smith, Lones. 1997. “The Marriage Model with Search 
Frictions.” Unpublished.

Smith, Lones. 2006. “The Marriage Model with Search 
Frictions.” Journal of Political Economy 114 (6): 
1124–44.

Smith, Lones. 2011. “Frictional Matching Models.” 
Annual Review of Economics 3: 319–38.

Sørensen, Morten. 2007. “How Smart Is Smart Money? 
A Two-Sided Matching Model of Venture Capital.” 
Journal of Finance 62 (6): 2725–62.

Stigler, George J. 1961. “The Economics of Informa-
tion.” Journal of Political Economy 69 (3): 213–25.

Stole, Lars A., and Jeffrey Zwiebel. 1996. “Intra-firm 
Bargaining under Non-binding Contacts.” Review of 
Economic Studies 63 (3): 375–410.

Tervio, Marko. 2008. “The Difference that CEOs 
Make: An Assignment Model Approach.” American 
Economic Review 98 (3): 642–68.

Teulings, Coen N., and Pieter A. Gautier. 2004. “The 
Right Man for the Job.” Review of Economic Studies 
71 (2): 553–80.

Topkis, Donald M. 1998. Supermodularity and Com-
plementarity. Princeton and Oxford: Princeton Uni-
versity Press.

Varian, Hal R. 1999. “Economics and Search.” 
Unpublished.

Villani, Cédric. 2009. Optimal Transport: Old and New. 
Berlin: Springer.

Vince, A. 1990. “A Rearrangement Inequality and the 
Permutahedron.” American Mathematical Monthly 
97 (4): 319–23.

Weitzman, Martin L. 1979. “Optimal Search for the 
Best Alternative.” Econometrica 47 (3): 641–54.

02_Chade_552.indd   52 5/15/17   2:59 PM


