
Econometrica, Vol. 74, No. 5 (September, 2006), 1293–1307

SIMULTANEOUS SEARCH

BY HECTOR CHADE AND LONES SMITH1

We introduce and solve a new class of “downward-recursive” static portfolio choice
problems. An individual simultaneously chooses among ranked stochastic options, and
each choice is costly. In the motivational application, just one may be exercised from
those that succeed. This often emerges in practice, such as when a student applies to
many colleges or when a firm simultaneously tries several technologies.

We show that such portfolio choice problems quite generally entail maximizing a
submodular function of finite sets—which is NP-hard in general. Still, we show that a
greedy algorithm finds the optimal set, finding first the best singleton, then the best
single addition to it, and so on. We show that the optimal choices are “less aggressive”
than the sequentially optimal ones, but “more aggressive” than the best singletons.
Also, the optimal set in general contains gaps. We provide some comparative statics
results on the chosen set.

KEYWORDS: Search, portfolio choice, submodular, greedy algorithm.

1. INTRODUCTION

WE INTRODUCE AND SOLVE a new class of “downward-recursive” portfolio
choice problems. For instance, a decision maker (DM) simultaneously chooses
among ranked stochastic options, each choice is costly, and only the best real-
ized alternative is exercised.

Our paper generalizes Stigler (1961), who analyzes optimal static wage
search. Unlike Stigler, we do not assume a priori identical prizes, and we char-
acterize both the optimal sample size and choice composition. Weitzman (1979)
also explores a problem with a priori distinct prizes, but in the sequential world.
His is a nice application of Gittins’ solution of the bandit problem. Each op-
tion can be assigned an index in isolation of all others; sequentially, one simply
chooses the unexplored option with the highest index.

In our problem, no such simple index rule presents itself. Instead, we
find ourselves faced with the maximization of a submodular function of sets
of alternatives—to be sure, a complex combinatorial optimization problem.
Nevertheless, we show that an economically natural algorithm produces the
optimal set in a quadratic number of steps.

1The usage of the term “search” rather than “choice” here reflects a precedent set by Weitzman
(1979) and the directed search literature. We have benefited from seminars at the 2003 Midwest
Economic Theory Meetings, ITAM, LBS, Penn, Duke, Michigan, Toronto Matching Conference,
2004 Society for Economic Dynamics, 2004 North American Econometric Society Meetings, 2004
Latin American Econometric Society Meetings, Yale, Texas, Stanford, and NYU. We are very
grateful for the research assistance of Kan Takeuchi and the feedback from Miles Kimball, Steve
Salant, Ennio Stacchetti, and two anonymous referees. Lones Smith is grateful for the financial
support of the National Science Foundation. Hector Chade is thankful for the hospitality of the
economics department at Michigan where the bulk of this paper was written.
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We then explore properties of the optimal set. We ask, for instance, how
much risk should one take. We show that the optimal portfolio is more ag-
gressive than the set of best options taken individually, but less aggressive than
Weitzman’s sequential choices.

We also ask how varied should the choices be. We argue in favor of an up-
wardly diverse portfolio: For a rich enough array of possible options and low
enough costs, a connected “interval” of similarly risky prospects is not opti-
mal. We next provide a key comparative static, showing how the choice set
improves when acceptance chances rise and the acceptance chances of better
alternatives rise proportionately more.

We believe that our problem is not without substantive practical value.

EXAMPLE 1: A student must make a costly and simultaneously application
to several colleges, and is accepted with smaller chances by the better schools.

EXAMPLE 2: A large firm wishes to choose a technology: several are avail-
able and all are costly to explore; some will work out and others will not. Fi-
nally, the firm is in a hurry (e.g., it is in a race with other firms) and must
simultaneously choose which to explore.

EXAMPLE 3: An economics department must pay travel expenses for new
Ph.D. job candidates. Each school ranks the candidates; the better ones are
harder to hire.

Our paper may also be more topically viewed as a foundation for the recent
literature on directed search (e.g., allowing employees to choose which jobs to
apply to). We solve this decision problem for multiple applications and hetero-
geneous jobs.2

We first describe the problem. We introduce the algorithm and prove its
optimality. We then explore the properties of the optimal set: Does the DM
insure herself or gamble? Are the optimal choices similar or disparate? What
if success rates increase? The Appendix contains one more algebraic proof. We
also refer the reader to the working paper version (Chade and Smith (2005))
for additional results, examples, and discussion.

2. THE PORTFOLIO PROBLEM

A decision maker (DM) can consume prizes from a finite set N = {1�2�
� � � �N}. Here, N is a natural number, but abusing notation, we denote this
set also by N and denote its subsets by 2N (with the subset inclusion order).
Let f : 2N �→ R+ be a strictly increasing function with f (∅) = 0. Interpret f (S)

2See Burdett, Shi, and Wright (2001) and Albrecht, Gautier, and Vroman (2002). Perhaps the
first equilibrium paper with multiple simultaneous searches is Burdett and Judd (1983).
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as the expected value of subset S and put zi ≡ f (i) > 0.3 Prizes are random and
the prize set S has failure chance ρ(S) ∈ [0�1) for all S �= ∅ (and ρ(∅) = 1).
Because αi ≡ 1 − ρ(i) is the success chance of prize i, the ex post payoff is
ui ≡ f (i)/αi. We assume that prize 1 is ex post the best, prize 2 is the next, and
so forth so that u1 > u2 > · · ·> uN .

Say that U is above L, written U � L, if the worst prize in U beats the best
in L. We assume that the portfolio S is worth less than the sum of its parts.
Specifically, this payoff function is downward recursive (DR), so that for all sets
U � L in N ,

f (U +L) = f (U)+ ρ(U)f (L)�(1)

We observe that ρ is multiplicative in a DR payoff structure, because for all
U � M �L,

f (U +M +L) = f (U +M)+ ρ(U +M)f(L)

= [f (U)+ ρ(U)f (M)] + ρ(U)ρ(M)f(L)

so that ρ(U+M)= ρ(U)ρ(M). Because ρ < 1 and is multiplicative, ρ is strictly
decreasing.

The cost of a portfolio S is given by a function c(|S|), where S has cardinal-
ity |S|, c(0)= 0, and c is increasing and convex on the nonnegative integers. We
assume zi > c(1) for all i, thereby pruning weakly dominated prizes. This paper
studies a one-shot maximization of v(S) = f (S) − c(|S|). Of course, v(∅) = 0.
Our analysis will frequently require consideration of finite subdomains D⊆ N .
For such D⊆ N , let Σ∗(D) solve

max
S⊆D

v(S)(2)

and denote Σ∗ ≡ Σ∗(N).
We also explore two prominent special cases of (2). By a fixed cost per ap-

plication, we mean that c(|S|) = c̄|S| for some c̄ > 0. In the fixed sample size
n case, c(|S|) = 0 if |S| ≤ n and c(|S|) = ∞ if |S| > n. Problem (2) becomes
maxS⊆D&|S|=n f (S) with solution Σn(D). We then define Σn ≡ Σn(N). Notice
that Σ∗ = Σn for some n.

3. APPLICATIONS

A. The College Problem

A student must choose once and for all a portfolio S ⊆N of colleges to which
to apply for admission, at cost c(|S|). The best is 1, the second best is 2, and

3We avoid set notation, writing i = {i}, A+B = A∪B, A−B = A \B, (i� j)= {k ∈N|i < k < j},
etc.
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so on. The student’s cardinal utility (ex post payoff) from attending college i
is ui, where u1 > u2 > · · ·> uN . Her admission chance at college i is αi ∈ (0�1].
Intuitively one might imagine the inverse ordering α1 < α2 < · · · < αN , but this
is inessential, as we shall see. The acceptance decisions by any set of colleges
are independent. For instance, this arises when colleges perceive noisy con-
ditionally independent and identically distributed signals of a student’s cal-
iber and she fully knows her true caliber. The expected payoff of college i
alone is zi = αiui.

Working recursively, either one gets into the best college in S or one does
not; if rejected, one either gets into the next best or not, etc. Because ρ(S) ≡∏

i∈S(1 − αi) is the chance of rejection by all colleges in the set S, the gross
payoff may be decomposed as

f (S)=
|S|∑
i=1

z(i)

i−1∏
�=1

(1 − α(�))=
|S|∑
i=1

z(i)ρ(i−1)(S)�(3)

where (i) is the ith best-ranked college in the set S, so that z(i) ≡ α(i)u(i), and
ρ(i−1)(S)= ∏i−1

�=1(1−α(�)) is the chance of being rejected by the top-ranked i−1
schools in set S.

This college structure contains the generality of the DR payoff structure of Sec-
tion 2 and, for definiteness, we sometimes cast our results in the language of this
application.

B. Other Singleton Prize Models

The technology choice clearly has this structure. Hiring at the economics
department assumes this form after some reworking. Indeed, assume that
(i) interviews are costly, but do not inform the hiring decision; (ii) each depart-
ment needs at most one job candidate; (iii) after the interview stage, the mar-
ket clears top to bottom, so that the better recruits are available with smaller
chance to any school below the top.

C. Correlated Rejection Chances

Modify the college problem so that rejection from school i scales down the
acceptance chance at colleges j > i by a factor βi ∈ [0�1]. Portfolio S then has
value f (S) = ∑|S|

i=1 z(i)
∏i−1

l=1(1 − α(l))β(l). This derives from a consistent proba-
bility distribution over N for large enough βi (all i) and reduces to (2) when
βi ≡ 1. Because of the DR structure, an equivalent college problem exists with
independent admission events: Assume acceptance rates ᾱi = 1 − (1 − αi)βi

and college payoffs ūi = αiui/ᾱi. The ex post payoffs ūi fall in i also when the
βi’s are large enough.
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D. One-Shot Multidecisions for Dynamic Choice with Payoff Discounting

The DM enjoys payoffs from all successful options, but can only consume
one per period. He thus “eats” the best first, etc. Future payoffs are discounted
by the factor δ ∈ [0�1). One can show that the expected payoff of portfolio S

is f (S) = ∑|S|
i=1 z(i)

∏i−1
l=1(1 − α(l) + α(l)δ). Here, an equivalent college problem

requires ᾱi = (1 − δ)αi and ūi = ui/(1 − δ).

4. THE SOLUTION

4.1. Consistency Checks on the Optimal Set

Computing the optimal set is a complex task, but we are able now to provide
two useful tests that it must obey. The DR equality (1) implies a key ordinal
property—downward maximization, that is, optimizations on sets imply opti-
mizations on lower ends of those sets:

LEMMA 1: Let Σn = U + L, where U � L and L has k elements. Then
Σk(D) =L, where D are those options in N not better ranked than the best in L.

Let MBk(S) ≡ f (S + k) − f (S) be the marginal benefit of adding k to S ⊂
N − k. If ex ante and ex post ranks of options agree, their marginal values are
likewise ranked.

LEMMA 2: Assume zi > zj and i < j. Then the marginal benefits of i� j are
ordered MBi(S) ≡ f (S + i)− f (S) > f(S + j)− f (S) = MBj(S) for any set S ⊂
N \ {i� j}.

PROOF: Since i < j, we may write S = U + M + L for sets (upper) U =
[1� i) ∩ S, (middle) M = (i� j) ∩ S, and (lower) L = (j�N] ∩ S. So U �M � L.
Consider the suboptimal implementation policy for S+ i: Accept the best avail-
able option unless it is i, in which case accept the best option in M (if available)
over i. So by (1),

f (S + i) ≥ f (U)+ ρ(U)
(
f (M)+ ρ(M)[zi + (1 − αi)f (L)]

)
> f(U)+ ρ(U)

(
f (M)+ ρ(M)[zj + (1 − αj)f (L)]

)
= f (S + j)�

because zi − αif (L) > zj − αjf (L), given zi = αiui > αjuj = zj and ui > uj >
f(L). Q.E.D.

If j ∈ Σn(N), then setting S = Σn(N)− j and using the inequality f (S + i) >
f(S + j) yields at once a simple insight into Σ∗. For any chosen option, any
better ranked one with greater expected payoff is also chosen:

LEMMA 3: Assume zi > zj and i < j. If j ∈ Σn(N), then i ∈ Σn(N).
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4.2. An Optimal Marginal Improvement Algorithm

A greedy algorithm at each step makes the locally optimal choice in the hope
of finding the global optimum. The following greedy algorithm identifies Σ∗ via
an inductive procedure:

MARGINAL IMPROVEMENT ALGORITHM (MIA): Let Υ0 = ∅.

Step 1: Choose any in ∈ arg maxi∈N\Υn−1 f (Υn−1 + i).

Step 2: If f (Υn−1 + in)− f (Υn−1) < c(n)− c(n− 1), then stop.

Step 3: Set Υn = Υn−1 + in and go to Step 1.

So one first identifies the option i1 whose expected payoff zi is largest.4 At
any stage n, one finds the option in that affords the largest marginal benefit
over the college set constructed so far. The algorithm stops if the net marginal
benefit turns negative.

THEOREM 1: The MIA identifies the optimal set Σ∗ for problem (2) with
D=N .

Standard combinatorial optimization proofs proceed by policy improve-
ment. Our proof by a double induction below on n and N is mostly different,
exploiting two properties of DR functions. We have the ordinal property of
Σn(D) in Lemma 1, and the following cardinal property.

Let Υn(D) be the n options chosen by the MIA from domain D ⊂ N . In
set D, let us suggestively call the best option 0. Let options i� j ∈ N − D be
lower ranked than 0. Then

f (D+ i)− f (D+ j)= ρ(0)[f (D− 0 + i)− f (D− 0 + j)]�(4)

Thus, if the marginal benefit of i exceeds j given D−0, then it does so given D.
So:

LEMMA 4: We have |Υn(D−0)∩Υn(D)| ≥ n−1 and |Υn−1(D−0)∩Υn(D)| =
n− 1.

4The proof actually ignores the nongeneric possibility of tied values of multiple arg max. With
tied values, there exists a vanishing sequence of ε payoff perturbations that renders Σn uniquely
optimal along the ε sequence. By the Theorem of the Maximum, this constant solution corre-
spondence of the ε-perturbed problems gives the solution of the unperturbed limit problem. So
the choice Σn is optimal.
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PROOF: To see both claims, observe that if 0 /∈ Υn(D), then Υn(D) =
Υn(D − 0) ⊃ Υn−1(D − 0), but if 0 ∈ Υn(D), then Υn(D) = 0 + Υn−1(D − 0)
by (4). Q.E.D.

To show Σn(D) = Υn(D), we find (a) downward maximization (Lemma 1)
links Σn(D) and Σn−1(D), as well as Σn(D) and Σn(D − 0); (b) the mar-
ginal benefit property (Lemma 4) and the MIA likewise link Υn(D) as well
as Υn−1(D), and Υn(D) and Υn(D − 0); and (c) Σn−1(D) = Υn−1(D) and
Σn(D− 0)= Υn(D− 0), by induction assumption.

PROOF OF THEOREM 1: We first show that Υn(D) = Σn(D) if D ⊆ N and
n ≤ |D|. This is trivial for |D| = 1. Assume it for D̂ ≤ D, n̂ ≤ n, not both with
equality. If i /∈ Υn(D) ∪Σn(D), then Σn(D) = Σn(D− i) = Υn(D− i) = Υn(D)
by induction. So let Υn(D)∪Σn(D) =D.

CASE 1—0 ∈ Σn(D): By Lemma 1, Σn(D) = 0+Σn−1(D−0), so that 0 yields
the greatest marginal improvement to Σn−1(D − 0) = Υn−1(D − 0) by the in-
duction assumption. If 0 /∈ Υn−1(D), then Υn−1(D − 0) = Υn−1(D) and hence
Υn(D) = 0 + Υn−1(D) = Σn(D). If 0 ∈ Υn−1(D) ⊂ Υn(D), then Lemma 4 yields
Υn(D) = 0 +Υn−1(D− 0)= Σn(D).

CASE 2 —0 /∈ Σn(D): By induction and the case premise, Υn(D − 0) =
Σn(D− 0)= Σn(D). Also, Υn(D) and Υn(D− 0) overlap on n− 1 or n schools
by Lemma 4. Because Υn(D) ∪ Σn(D) = D, we have Σn(D) = D − 0 and
Υn(D) = D − k for some k. Assume k �= 0 or we are done. Thus, Σn−1(D) =
Υn−1(D) = D − j − k for some j �= k by the induction assumption and the
MIA. If j = 0, then the best addition to Υn−1(D) = D − 0 − k is 0 and so
Σn(D) = D − k. Contradiction. Assume j �= 0 and without loss of generality
let k < j. Write D = U + L, where U = D ∩ [1�k] and L = D − U , so U � L.
If α0 >αj , then easily z0 > zj and so f (D− j) > f(D− 0) by Lemma 2. Hence,
Σn(D)= D− 0 is suboptimal, a contradiction. In addition, when α0 <αj ,

f (D− j) = f (U − j − k)+ ρ(U − j − k)[f (k)+ ρ(k)f (L)](5)

= f (D− j − k)+ ρ(U − j − k)
[
f (k)− (1 − ρ(k))f (L)

]

exceeds f (D−0−k)+ρ(U−0−k)[f (k)−(1−ρ(k))f (L)] = f (D−0), given
f (D − j − k) > f(D − 0 − k), ρ(U − j − k) > ρ(U − 0 − k), and f (k)/(1 −
ρ(k))= uk > f(L).

Because the cost of a portfolio depends only on its size, Σ∗(N) = Σn(N) for
some n. The stopping rule is optimal because the cost c(n) is convex in n and
because f has diminishing returns—f (S + k)− f (S) is decreasing in S for any
k /∈ S ⊆N—as we see below. Q.E.D.
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To see diminishing returns, let us write the marginal benefit of adding col-
lege k to a set S as follows. Partition S = Uk + Lk, where Uk = [1�k) ∩ S and
Lk = (k�N] ∩ S. Then (5) yields

MBk(S) = f (S + k)− f (S)= ρ(Uk)[zk − αkf (Lk)]�(6)

Because uk > f(Lk), and ρ is decreasing and f increasing, we have the follow-
ing result:

LEMMA 5: Any DR function f : 2N �→ R has diminishing returns.

Intuitively, additions to the current portfolio grow less valuable as more
options are added. Note that, by Lemma 5, v(S + i) − v(S) < v(i) − v(∅) =
zi − c(1) whenever S �= ∅. So choosing all options with zi > c(1) yields a sub-
optimally large portfolio.

4.3. Submodular Optimization

As noted, the value of a portfolio is less than the sum of its parts, because
each option exerts a negative externality on the others. To cleanly capture this
notion, call a function f on 2N submodular if f (S∩T)+f (S∪T) ≤ f (S)+f (T)
for any two subsets S and T of N .

LEMMA 6: Any DR function f is submodular and thus so is v : 2N �→ R in (2).

PROOF: First, f is submodular because it has diminishing returns (Proposi-
tion 1.1 in Lovász (1982)).5 Next, −c(|S|) is a concave function and, therefore,
is a submodular function (Proposition 5.1 in Lovász (1982)).6 Q.E.D.

It is well known that the maximization of a general submodular set function
is NP-hard and thus computationally intractable. Indeed, no polynomial algo-
rithm exists for it—this is independent of the P �= NP problem; see Lovász
(1982, p. 252). By exploiting the special functional form of our objective func-
tion v, the MIA quickly finds the optimal set Σ∗ for all DR submodular func-
tions. One must, in principle, calculate the values of all 2N college application
patterns. Yet our algorithm succeeds in polynomial time: Initially, one exam-
ines N options and finds the best one. One then examines the next N − 1
and finds the second best, etc. This amounts to

∑N−1
i=0 (N − i)=N(N + 1)/2 =

O(N2) steps.
Let us step back and ask whether the MIA’s success was predestined in light

of the recent theory of combinatorial optimization. One can show that f (S)

5Gul and Stacchetti (1999) recently used this property in the economics literature. See related
work by Kelso and Crawford (1982) on the gross substitutes condition.
6Observe that a sum of submodular functions, like f + (−c), is submodular.
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is (what is known as) semistrictly quasiconcave.7 As with standard quasiconcav-
ity, local then implies global optimization. It does not, however, imply that a
“steepest ascent” algorithm like the MIA will succeed, as we prove it does for
the class of DR payoff functions.8

5. PROPERTIES OF THE OPTIMAL SET

5.1. Aggressiveness of the Optimal Choices

How “risk-taking” should the portfolio be? To flesh this out, we employ vec-
tor first order stochastic dominance (FSD). The set S ⊆ N is more aggressive
than the same-size set S′ ⊆ N in the sense of FSD when s(i) ≤ s′

(i) for all i,
where s(i) is the ith best school in S and s′

(i) in S′. Write this as S � S′ and as
S � S′ if also S �= S′. Thus, {1�2} � {2�3}.

We now compare the best set Σ∗ against two easily computed benchmarks.

A. Portfolio choices are more aggressive than top singletons

Consider the set Z|Σ∗| ⊆ N of options with the |Σ∗| highest expected pay-
offs zi = αiui. Unlike the portfolio Σ∗, this set ignores the web of cross-college
external effects, as captured by (3).

THEOREM 2: The best portfolio Σ∗ is more aggressive than the best single-
tons Z|Σ∗|.

PROOF: It suffices to show that if i < j and zi > zj , then the MIA picks i
before j. By Lemma 2, for any portfolio S excluding i� j, we have MBi(S) >
MBj(S). Q.E.D.

For an intuition, consider expression (3) for expected payoffs, written as∑
i z(i)ρi−1(S). If options in Σ∗ do not have the highest zi’s, then they must com-

pensate with a higher ρi−1(S). Thus acceptance chances are lower and these
options must be better ranked.

To see that the order can be strict, assume three colleges with α1 = 0�1,
α2 = 0�9, α3 = 1, u1 = 1, u2 = 0�5, and u3 = 0�48. Notice that z3 = 0�48 > z2 =
0�45 > z1 = 0�1. One can show that Σ2(3) = {1�3}, which is strictly more ag-
gressive than Z2 = {2�3}.

Static portfolio maximization thus precludes “safety schools.” One never ap-
plies to a school for its high admissions rate, when not otherwise justified by its
expected payoff. However, one might apply to a high-ranked “stretch school,”
despite the low expected payoff.

7See Murota and Shioura (2003). Precisely, f (S) only satisfies their property (SSQMw) on
page 472. See Chade and Smith (2005).
8In Chade and Smith (2005), we show that the MIA works for some non-DR functions too.
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The “no safety school” substance of Theorem 2 is undermined with arbi-
trary correlation (not of the form in Section 3C). For an extreme example
with perfect correlation, assume three colleges with payoffs u1 = 1, u2 = u < 1,
α1 = α2 = α, u3 = v < u, α3 = α′ > α, and αu > α′v. Suppose that the student
is either accepted in both 1 and 2 (chance α) or rejected in both. Exhaustive
checking reveals that Σ2(2)= {1�3}, whereas Z2 = {1�2}.
B. Portfolio choices are less aggressive than sequential choices

Consider the case where a student can apply to the colleges sequentially,
observing whether one accepts her before she applies to the next. For a fair
comparison, let us restrict to constant marginal costs c(|S|) = c̄|S|, c̄ > 0.
The optimal policy in Weitzman (1979) is derived as follows. To each col-
lege i, associate an intrinsic index or reservation value Ii; this leaves the stu-
dent indifferent between a final payoff Ii, and first applying to college i and
then earning payoff Ii if rejected. Then Ii = zi − c̄ + (1 − αi)Ii and thus
Ii = (zi − c̄)/αi = ui − c̄/αi. The optimal policy orders the colleges by their
indices Ii; the student proceeds down the list, stopping when a college accepts
him (because ui > Ii).

The solution of our static problem substantially differs from the sequential
approach. For instance, we have shown that one must apply to the college with
the largest expected payoff zi. Easily, this need not coincide with the college
that has the highest Gittins index Ii.

In general, the sequential decision maker employs a more aggressive strategy
than does our optimal portfolio strategy. Let W be the list of colleges for which
it is sequentially optimal to search, given continued failure, and let W|Σ∗| be the
set with the |Σ∗| highest indices Ii.

THEOREM 3: The best portfolio Σ∗ is not larger than W� and is less aggressive
than W|Σ∗|.

PROOF: For the size comparison, consider that the sequential rule continues
as long as Ii ≥ 0 or zi ≥ c̄. The static decision maker, by contrast, stops when
the marginal value of the last college i—which is at most zi − c̄, due to the
externalities—turns negative.

We now show that W|Σ∗| � Σ∗. It suffices to show that if i < j and S is any port-
folio for which MIA picks i over j, then the Gittins indices are likewise ranked
Ii > Ij . This is obvious if αi > αj , because Ii = ui − c̄/αi > uj − c̄/αj = Ij . Other-
wise, using the marginal benefit expression MBk(S)= ρ(Uk)[zk−αkf (Lk)] > 0
from (6), we find that

Ii − Ij = zi − c̄

αi

− zj − c̄

αj

= 1
αi

(
MBi(S)

ρ(Ui)
− c̄

)
− 1

αj

(
MBj(S)

ρ(Uj)
− c̄

)
+ [f (Li)− f (Lj)]�
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If MBi(S) ≥ MBj(S), then Ii > Ij because ρ(Ui) < ρ(Uj), αi < αj , and f (Li) >
f(Lj). Q.E.D.

To see that the order can be strict, assume three colleges, again with α1 = 0�1,
α2 = 0�9, α3 = 1, u1 = 1, u2 = 0�5, and u3 = 0�48, but now c̄ = 0�05. One can
show that W|Σ∗| = {1�2}, which is strictly more aggressive than Σ∗ = {1�3}.

5.2. Portfolio Choice Sets Are Upwardly Diverse

We turn to another key characteristic of the statically optimal set. How sim-
ilar should the chosen options be? Is the optimal set an “interval,” say [i� j]?

Assume first z1 > z2 > · · · > zn. It follows from Theorem 2 that the students
should just apply to an interval of top schools. Indeed, Σ∗ � Z|Σ∗| = [1� |Σ∗| ]
implies Σ∗ = [1� |Σ∗| ].

Apart from this case, a force to gamble upward emerges and the optimal
portfolio is not, in general, an interval. To see this, consider a stylized world
with constant marginal cost c̄ > 0, one college i, and N − 1 copies of college
j > i with zj > zi. The algorithm starts with j. We claim that for N large enough
and c̄ small enough, the algorithm chooses college i before exhausting college j
copies. Indeed, suppose the algorithm has chosen n− 1 copies of college j, but
not yet college i. The marginal benefit of choosing another college j copy is
(1 − αj)

n−1αjuj − c̄. While this vanishes geometrically fast in n, the marginal
benefit of choosing college i, namely αiui − αiuj(1 − (1 − αj)

n−1) − c̄, tends
to αi(ui − uj) − c̄. For small c̄, this is positive. Thus, for large n, it is optimal
to choose i over another copy of j. By continuity, this result obviously holds
even when all copies of j are not literally identical and there is a sufficiently
dense and diverse collection of colleges. So for low enough application costs,
one always has an incentive to gamble upward and apply to a discretely higher
college than the rest.

6. COMPARATIVE STATICS

We finally consider some natural comparative statics. Obviously, with greater
costs c(·), the size of Σ∗ decreases, because the algorithm stops sooner.

More interestingly, how will choices adjust when acceptance chances
(α1� � � � �αN) change? The answer is far from obvious, because the submodular
character of f precludes any direct application of the monotone comparative
statics results (see Topkis (1998)).

THEOREM 4: Assume β = (β1� � � � �βN) is higher than α and proportionately
favors better options more than α. Namely, βi ≥ αi for all i and βi/αi > βi+1/αi+1,
for all i < N :

(a) The best n-portfolio Σβ
n is more aggressive than Σα

n , or Σβ
n � Σα

n .
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(b) Let zα
i = αiui and zβ

i = βiui for all i, and let zα
1 > · · ·> zα

N and zβ
1 > · · ·>

zβ
N . The optimal sets are thus [1� nα] and [1� nβ]. If also (1 −α1)α2 > (1 −β1)β2,

then nβ ≤ nα.

PROOF OF (a): The proof is another double induction on n and N . Let
Σα

n(N) be the optimal n-choice set from N for acceptance chances α. The re-
sult holds for n = 1 and all N by the MIA. Otherwise, if j = arg maxi βiui >
arg maxi αiui = k, then βjuj ≥ βkuk and αkuk ≥ αjuj imply βj/βk ≥ uk/uj ≥
αj/αk, contrary to our premise.

Assume the result holds for all n̂ ≤ n and N̂ ≤ N , with one inequality strict.
If some j /∈ Σα

n(N) ∪Σβ
n(N), then the result holds by induction on the domain

N − j. Assume there are no omitted options j. Thus, 1 ∈ Σα
n(N) ∪ Σβ

n(N). If
1 ∈ Σα

n(N)∩Σβ
n(N), then

Σβ
n(N) = 1 +Σβ

n(N − 1)� 1 +Σα
n(N − 1)= Σα

n(N)

by Lemma 1. If 1 /∈ Σα
n(N), pick the least k /∈ Σβ

n(N). Putting M = [2�k − 1],
we have

Σβ
n(N) = 1 +M +Lβ �M + k+Lα = Σα

n(N)�

where Lα = Σα
n(N) ∩ [k�N] and Lβ ≡ Σβ

n(N) ∩ [k�N] by Lemma 1. Because
|Lα| = |Lβ|, we have Lβ � Lα by the induction assumption. If 1 /∈ Σβ

n(N), then
we can likewise decompose

Σα
n(N)= 1 +M +Lα and Σβ

n(N) =M + k+Lβ�

where Lβ � Lα. The Appendix proves f β(1 + M + Lβ) > fβ(Σβ
n(N)), contra-

dicting Σβ(N) optimal. This case cannot therefore arise. Q.E.D.

7. CONCLUSION

Static optimization is rapidly becoming yesterday’s struggle in economics. In
this paper, we have identified a common and yet unsolved class of downward-
recursive static portfolio choice problems—typically, where one earns only the
best prize from a portfolio. Such portfolio choices are intriguing, insofar as the
value of a portfolio is subtly less than the sum of its parts. Such problems are also
practically important, being faced by millions of college applicants, thousands
of employers competing to hire in student-driven job markets, as well as firms
that choose among uncertain technologies to explore.

We have shown that a greedy algorithm finds the optimal portfolio and we
have identified the key properties that account for its success. This defines a
useful class of submodular functions that can be efficiently maximized. We have
also provided some interesting properties that the optimal set possesses.
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Chade and Smith (2005) proved that the MIA also works with non-DR func-
tions on a richer set of prizes that satisfy a “second-order stochastic domi-
nance” condition. Examples of the failure of the MIA are given, such as with
different option costs or general binary prizes. It is an exciting open problem to
find an algorithm that works efficiently in these cases: future research beckons.
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APPENDIX: PROOF OF THEOREM 4 FINISHED

Part (a). We need f β(1 + M + Lβ) > fβ(Σβ
n(N)). If α1 > αk, then z1 > zk

and the claim follows from Lemma 2. Assume hereafter α1 < αk. Then
f α(Σα

n(N)) ≥ f α(M + k+Lα), because Σα
n(N) is optimal for f α. Hence,

α1u1 + (1 − α1)[f α(M)+ ρα(M)f α(Lα)]
≥ f α(M)+ ρα(M)[αkuk + (1 − αk)f

α(Lα)]�
This holds if and only if

α1

αk

(
u1 − f α(M)

ρα(M)

)
+

(
1 − α1

αk

)
f α(Lα)≥ uk�(7)

We now argue that replacing α by β yields a strict inequality in (7), which
is likewise equivalent to f β(1 + M + Lβ) > fβ(Σβ

n(N)). We now justify this
assertion:
• Because 1 dominates every option in M + Lα and M + Lβ, we have u1 >
fα(M +Lα) and u1 > fβ(M +Lβ). Using (1), these are equivalent to

u1 − f α(M)

ρα(M)
> fα(Lα) and

u1 − f β(M)

ρβ(M)
> fβ(Lβ)�

• Since β1/βk > α1/αk, the weight on the first term of (7) strictly increases.
• We have f β(Lβ) ≥ f β(Lα) > f α(Lα), respectively, by Lemma 1, and because
βi ≥ αi for all i and βi > αi for some i (because the ratio ordering βi/αi >
βi+1/αi+1 is strict).

• Finally, the first term in (7) increases as well, because

∂

∂α�

(
u1 − f α(M)

ρα(M)

)
> 0 ∀� ∈ M(8)

⇒ u1 − f β(M)

ρβ(M)
>

u1 − f α(M)

ρα(M)
�
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To see (8), write f α(M) = f α(U) + ρα(U)[α�u� + (1 − α�)f
α(L)] using (1),

where L= (��N] ∩M and U = [1� �)∩M . Thus,

u1 − f α(M) = u1 − (
f α(U)+ ρα(U)[α�u� + (1 − α�)f

α(L)])
= [u1 − f α(U)− ρα(U)f α(L)] − ρα(U)[u� − f α(L)]α�

≡ A−Bα��

thereby implicitly defining A and B. We have

∂

∂α�

A−Bα�

ρα(M − �)(1 − α�)
= A−B

ρα(M − �)(1 − α�)2

because ρα(M) = ρα(M − �)(1 − α�). However, this is positive given

A−B = [u1 − f α(U)− ρα(U)f α(L)] − ρα(U)[u� − f α(L)]
= u1 − f α(U)− ρα(U)u� > 0

because option 1 strictly dominates options in [1� �] ∩M .

Part (b). Parameterize θ = α�β, where α = θL and β = θH . When zθ
1 >

zθ
2 > · · · > zθ

N , the restriction to C = {S ⊆ N|S = [1� n]� n ≤ N} is without loss
of generality. So consider maxS⊆C v(S�θ).

Observe that C is a chain (i.e., a totally ordered set), and hence v(S�θ)
is quasi-supermodular in S. Thus, to show that the maximizer is increasing
in θ, we require that the single crossing property holds (Milgrom and Shan-
non (1994)), namely

v(SH�θL)− v(SL�θL)
{≥ 0
> 0

⇒ v(SH�θH)− v(SL�θH)
{≥ 0
> 0

�

where SH = [1� nH], SL = [1� nL], and nL > nH . Rewrite these as

ρθL([1� nH])f θL((nH�nL])
{≤
<

c(nL)− c(nH)

⇒ ρθH([1� nH])f θH ((nH�nL])
{≤
<

c(nL)− c(nH)

for which a sufficient condition is

ρθH([1� nH])f θH ((nH�nL]) < ρθL([1� nH])f θL((nH�nL])�
Algebra reveals that this holds if β2(1 − β1) ≤ α2(1 − α1) and βi/αi >
βi+1/αi+1. Q.E.D.
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