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PATHOLOGICAL OUTCOMES OF
OBSERVATIONAL LEARNING

BY LONES SMITH AND PETER SøRENSEN1

This paper explores how Bayes-rational individuals learn sequentially from the discrete
actions of others. Unlike earlier informational herding papers, we admit heterogeneous
preferences. Not only may type-specific ‘‘herds’’ eventually arise, but a new robust
possibility emerges: confounded learning. Beliefs may converge to a limit point where
history offers no decisive lessons for anyone, and each type’s actions forever nontrivially
split between two actions.

To verify that our identified limit outcomes do arise, we exploit the Markov-martingale
character of beliefs. Learning dynamics are stochastically stable near a fixed point in many
Bayesian learning models like this one.

KEYWORDS: Informational herding, cascades, martingale, Markov process, stochastic
stability.

1. INTRODUCTION

SUPPOSE THAT A COUNTABLE NUMBER OF INDIVIDUALS each must make a
once-in-a-lifetime binary decision�encumbered solely by uncertainty about the
state of the world. If preferences are identical, there are no congestion effects or
network externalities, and information is complete and symmetric, then all
ideally wish to make the same decision.

But life is more complicated than that. Assume instead that the individuals
must decide sequentially, all in some preordained order. Suppose that each may
condition his decision both on his endowed private signal about the state of the
world and on all his predecessors’ decisions, but not their hidden private signals.

Ž .The above framework was independently introduced in Banerjee 1992 and
Ž . Ž .Bikhchandani, Hirshleifer, and Welch 1992 hereafter, simply BHW . Their

common conclusion was that with positive probability an ‘‘incorrect herd’’ would
arise: Despite the wealth of available information, after some point, everyone
might just settle on the identical less profitable decision.

In this paper, we study more generally how Bayes-rational individuals sequen-
tially learn from the actions of others. This leads to a greater understanding of

1 This second revision is based on numerous suggestions from three referees and the Editor. We
have also benefited from seminars at MIT, Yale, IDEI Toulouse, CEPREMAP, IEA Barcelona,
Pompeu Fabra, Copenhagen, IIES Stockholm, Stockholm School of Economics, Nuffield College,
LSE, CentER, Free University of Brussels, Western Ontario, Brown, Pittsburgh, Berkeley, UC San
Diego, UCLA, UCL, Edinburgh, Cambridge, Essex, and IGIER. We wish also to specifically
acknowledge Abhijit Banerjee, Kong-Pin Chen, Glenn Ellison, John Geanakoplos, David Hirsh-
leifer, David Levine, Preston McAfee, Gerhard Orosel, Thomas Piketty, Ben Polak, and Jorgen¨
Weibull for useful comments, and Chris Avery for early discussions on this project. All errors remain
our responsibility. Smith and Sørensen respectively acknowledge financial support for this work from
the National Science Foundation and the Danish Social Sciences Research Council.
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herding, and why and when it occurs. It also leads to the discovery of a co-equal
robust rival phenomenon to herding that has so far been missed, and that is
economically important.

To motivate our point of departure from Banerjee and BHW, consider the
following counterfactual. Assume that we are in a potential herd in which one
million consecutive individuals have acted alike, but suppose that the next
individual deviates. What then could Mr. one million and two conclude? First,
he could decide that his predecessor had a more powerful signal than everyone
else. To capture this, we generalize the private information beyond discrete
signals, and admit the possibility that there is no uniformly most powerful yet
nonrevealing signal. Second, he might believe that the action was irrational or
an accident. We thus add noise to the herding model. Third, he might decide
that different preferences provoked the contrary choice. On this score, we
consider the model with multiple types, and find that herding is not the only
possible ‘‘pathological’’ longrun outcome: We may converge to an informational
pooling equilibrium where history offers no decisive lessons for anyone, and
everyone must forever rely on his private signal.

Ž .The paper is unified by two natural questions: i What are the robust
long-run outcomes of learning in a sequential entry model with observed

Ž .actions? ii Do we in fact settle on any one? Our inquiry is focused through the
two analytic lenses of convergence of beliefs and convergence of actions�either
in frequency or, more strongly, with herds. BHW introduced the terminology of
a cascade for an infinite train of individuals acting irrespective of the content of
their signals. With a single rational type and no noise�henceforth, the herding
model�individuals always settle on an action, starting a herd. Yet the label
‘‘cascades literature’’ is appropriate outside BHW’s discrete signal world. Among
our simplest findings is that barring discrete signals, cascades need not arise: No
decision need ever be a foregone conclusion even during a herd. With these two
notions decoupled, the analysis is richer, and it suggests why we must admit a
general signal space, and adopt a stochastic process approach. For instance,
Theorem 1 shows that learning is incomplete exactly when private signals are
uniformly bounded in strength. By Theorem 3, then and only then can bad herds
possibly arise in the herding model.

Absent cascades, the explanation we provide for herding is that the standard
belief convergence implies action convergence: The action frequency settles
down, and is consistent with the limit belief. Perfect conformity arises in the
pure herding model because any rational desire to deviate must then be shared
by all successors. Hence, contrary actions radically swing beliefs. But identical
preferences is neither a realistic nor general assumption. Assuming that some
individuals are randomly committed to different actions is a useful interim step.
Yet this form of statistical noise is equivalent to rational agents with different
dominant preference types and strategies, and thus falls far short of our main
contribution. For it washes out in the long run, and does not affect convergence.

In this paper, we more generally assume that individuals entertain possibly
different preferences over actions; further, types are unobserved, so that only
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statistical inferences may be drawn about any given individual. Taste diversity
with hidden preferences describes numerous cited motivating examples of herd-
ing in the literature, such as restaurant choice, or investment decisions. This
twist yields our principal new economic findings. The standard herding outcome

Žis robust to individuals having identical ordinal but differing cardinal von
.Neumann Morgenstern preferences. With multiple rational preference types,

not all ordinally alike, an interior rational expectation dynamic steady-state
robustly emerges: It may be impossible to draw any clear inference from history
even while it continues to accumulate privately-informed decisions. Further, this
incomplete learning informational pooling outcome exists even with unbounded
beliefs, when an incorrect herd is impossible.

Let us fix ideas and illustrate this confounded learning outcome with a possibly
familiar example. Suppose that on a highway under construction, depending on
how detours are arranged, those going to Houston should take either the high or

Ž .low off-ramps in states H and L , with the opposite for those headed toward
Dallas. If 70% are headed toward Houston, then absent any strong signal to the
contrary, Dallas-bound drivers should take the lane ‘‘less traveled by.’’ This
yields two separating herding outcomes: 70% high or 70% low, as predicted by
armchair application of the herding logic. But another possibility may arise. As
the chance q that observed history accords state H rises from 0 to 1, the
probability that a Houston driver takes the high road gradually rises from 0 to 1,

Ž . Ž .and conversely for Dallas drivers. Thus, the fraction � q and � q in theH L
right lane in states H, L each rise from 0.3 to 0.7, perhaps nonmonotonically so.
If for some q, a random car is equilikely in states H and L to go high, or

Ž . Ž .� q �� q , then no inference can be drawn from additional decisions:H L
Learning then stops. While existence of such a fixed point is not clear, Theorems
1 and 2 prove that confounding outcomes co-exist with the cascade possibilities,
for nondegenerate models.

Our confounded learning outcome is generic when two types have opposed
preferences, assuming uniformly bounded private signals. With unbounded
signals, it emerges for sufficiently strongly opposed von Neumann Morgenstern

Ž .preferences, and not too unequal population frequencies. In either case, � qH
Ž . Ž . Ž .�� q for small enough q, and � q �� q for large enough q.L H L

Two stochastic processes constitute the building blocks for our theory: the
Žpublic likelihood ratio is a conditional martingale, and the vector action taken,

.likelihood ratio a Markov chain. Martingale and Markovian methods are
standard methods for ruling out potential limit outcomes of learning. But our
major technical contribution concerns their stability: Given multiple limit be-
liefs, must we converge upon any given one? How can we rule in any limit? For
instance, even if our highway driving confounding outcome robustly exists, must
we converge upon it? Theorem 4 gives a simple easily checked condition for the
local stochastic stability of a Markov-martingale process near a fixed point. This
yields a new general property of Bayesian learning dynamics. In our herding
context, assume that near any fixed point, posterior beliefs are not equally
responsive to priors for every action taken, but are monotonely so; that is, a
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higher prior yields a higher posterior belief. Then the belief process tends with
positive chance and exponentially fast to that fixed point it starts nearby. As an

Ž .application, Theorem 5 asserts that i an action that can be herded upon, will
Ž .then be herded upon for nearby beliefs, while ii convergence to the confound-

ing outcome occurs with positive chance, and necessarily rapidly.
Ž .The conclusion relates our confounded learning to McLennan 1984 , its first

Ž .published instance. More recently, Piketty 1995 has found confounded learning
outcomes in a model where individuals passively learn about social mobility
parameters.

Section 2 gives a common framework for the paper. Section 3 illustrates our
findings in three examples. We then proceed along two technical themes. First,
via Markov-martingale means, Section 4 describes the action and belief limits;
the confounding outcome is the key finding here. Next, Section 5 motivates and
states the stability result, and as an application, shows when a long-run outcome
arises. Extension to finitely many states is addressed in the conclusion; there we
also describe extensions of the paper, as well as some related literature. More
detailed proofs and some essential math results are appendicized.

2. THE COMMON FRAMEWORK

2.1. The Model

States. There are S�2 payoff-relevant states of the world, the high state
s�H and the low state s�L. As is standard, there is a common prior

Ž . Ž .belief�without loss of generality, a flat prior Pr H �Pr L �1�2. Our results
extend to any finite number S of states, but at significant algebraic cost, and so

Ž .this extension is addressed in the conclusion §6.1 .
Pri�ate Beliefs. An infinite sequence of individuals n�1, 2, . . . enters in an

exogenous order. Individual n receives a random pri�ate signal about the state
Ž .of the world, and then computes via Bayes’ rule his pri�ate belief p � 0, 1 thatn

� 4the state is H. Given the state s� H, L , the private belief stochastic process
² : sp is i.i.d, with conditional c.d.f. F . These distributions are sufficient for then
state signal distribution, and obey a joint restriction implicit below. The curious
reader may jump immediately to Appendix A, which summarizes this develop-
ment, and explores the results we need.

We assume that no private signal, and thus no private belief, perfectly reveals
the state of the world: This ensures that F H, F L are mutually absolutely

Ž .continuous, with common support, say supp F . Thus, there exists a positive,
L H Ž . Ž .finite Radon-Nikodym derivative f�dF �dF : 0, 1 � 0, � . And to avoid

trivialities, we assume that some signals are informative: This rules out f�1
almost surely, so that F H and F L do not coincide. When F s is differentiable
Ž . ss�L, H , we shall denote its derivative by f .

Ž Ž .. � � � �The convex hull co supp F � b, b � 0, 1 plays a major role in the paper.
Note that b�1�2�b as some signals are informative. We call the private

Ž Ž .. � �beliefs bounded if 0�b�b�1, and unbounded if co supp F � 0, 1 .
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Indi�idual Types and Actions. Every individual makes one choice from a finite
� 4action menu MM� 1, . . . , M , with M�2 actions. We allow for heterogeneous

preferences of successive individuals�the only other random element. A model
with multiple but observable types is informationally equivalent to a single
preference world. So assume instead that all types are private information.
There are finitely many rational types t�1, . . . , T with different preferences. Let
�t be the known proportion of type t.

We also introduce M crazy types. Crazy type m arrives with chance � �0,m
and always chooses action m. One could view these as rational types with state
independent preferences, and unlike everyone else, a single dominant action.

Ž .We assume a positive fraction ��1	 � 
 ��� 
� �0 of payoff-motivated1 M
rational individuals. Rational and crazy types are spread i.i.d. in sequence, and

² :independently of the belief sequence p .n
� 4 sŽ .Payoffs. In state s� H, L , each rational type t earns payoff u m fromt

Ž t .action m for precision, sometimes a , and seeks to maximize his expectedm
Ž .payoff. For each rational type, M� M �2 actions are not weakly dominated,t

and generically no one action is optimal at just one belief, and no pair of actions
Ž .provides identical payoffs in all states. Each type t thus has S� 2 extreme

actions, each strictly optimal in some state. The other M 	2 insurance actionst
are each taken at distinct intervals of unfocused beliefs.

� �Given a posterior belief r� 0, 1 that the state is H, the expected payoff to
H Ž . Ž . LŽ .type t of choosing action m is ru m 
 1	 r u m . Figure 1 depicts the nextt t

summary result.

� � t tLEMMA 1: For each rational type t, 0, 1 partitions into subinter�als I , . . . , I1 Mt

touching at endpoints only, with undominated action m� MM � MM optimal exactlyt
for beliefs r�I t .m

With multiple types, we must introduce T labels for every action. Permuting
MM , we order rational type t ’s actions at , . . . , at by relative preference in statet 1 Mt

H, with at most preferred. So to be clear, if we order actions from least to mostM
preferred by type t in state H, then action m has rank ��� t if m�at . Bym �

FIGURE 1.�Expected payoff frontier. The diagram depicts the expected payoff of each of three
actions as a function of the posterior belief r that the state is H. A rational individual simply
chooses the action yielding the highest payoff. Here 2 is an insurance action, and 1 and 3 are
extreme actions.
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t � t t �Lemma 1, type t ’s mth action basin is I � r , r , with ordered boundariesm m	1 m
0� r t � r t � ��� � r t �1; thus, extreme actions at and at are optimal for type0 1 M 1 Mt t

t in states L and H, and insurance actions at , . . . , at are each best for some2 M 	1t

interior beliefs. The tie-breaking rule is without loss of generality that type t
chooses at over at at belief r t . Type t has a stronger preference for actionsm m
1 m
at the larger is the basin I t . Rational types t and t	 have opposed preferencesm m

Ž t t .Ž t 	 t 	 .over actions m and m	 if � 	� � 	� �0�i.e. their ordinal prefer-m m	 m m	

ences for them in state H, and thus in state L, are reversed. With just a single
rational type, we suppress t superscripts, and likewise strictly order belief
thresholds as 0� r � r � ��� � r �1.0 1 M

2.2. The Indi�idual Bayesian Decision Problem

Before acting, every rational individual observes his type t, his private belief
p, and the entire ordered action history h. His decision rule then maps p and h
into an action. We look for a Bayesian equilibrium, where everyone knows all

sŽ .decision rules, and can compute the chance 
 h of any history h in each state
Ž . H Ž . Ž H Ž . LŽ ..s. This yields a public belief q h �
 h � 
 h 

 h that the state is H,

i.e. the posterior given h and a neutral private belief p�1�2. Applying Bayes
rule again yields the posterior belief r in terms of q and p:

H Ž .p
 h pq
Ž . Ž .1 r� r p , q � � .H L Ž .Ž .Ž . Ž . Ž . pq
 1	p 1	qp
 h 
 1	p 
 h

As belief q is informationally sufficient for the underlying history data h, we
now suppress h.

Ž .Since the right hand side of 1 is increasing in p, there are pri�ate belief
t Ž . tŽ . t Ž .thresholds 0�p q �p q � ��� �p q �1, such that type t optimally chooses0 1 M

t Ž t Ž . t Ž .�action a iff his private belief satisfies p� p q , p q , given the earlierm m	1 m
t Ž .tie-break rule. Furthermore, each threshold p q is decreasing in q. A type-tm

t � Ž . � t Ž . t Ž .�4cascade set is the set of public beliefs J � q�supp F � p q , p q . Som m	1 m
t Ž t . Ž . ttype t a.s. takes action a for any q� int J , since the posterior r p, q �Im m m

for all p. It follows that any cascade set lies inside the corresponding action
t Ž t . tbasin, so that J � int I . For if all private beliefs yield action a , then so mustm m m

the neutral belief.
Ž .As is standard, call a property generic resp. nondegenerate or robust if the

Žsubset of parameters for which it holds is open and dense resp. open and
.nonempty .

LEMMA 2: For each action at and type t, J t is a possibly empty inter�al. Also,m m
t t t t tŽ . � � � �a with bounded pri�ate beliefs, J � 0, q and J � q , 1 for some 0�q �1 Mttq �1;

Ž . t � 4 t � 4 tb with unbounded pri�ate beliefs, J � 0 , J � 1 , and all other J are1 M mt

empty;
Ž . s tc for generic payoffs u , no interior cascade set J is a single point;m
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tŽ . � �d each J is larger the smaller is the support b, b , and the larger is the actionm
� t t � t tbasin r , r . Only extreme cascade sets J and J are nonempty for largem	 1 m 1 Mt

� �enough b, b .

Ž .The appendicized proofs of Lemma 2 a, b are also intuitive: With bounded
private beliefs, posteriors are not far from the public belief q; so for q near
enough 0 or 1, or well inside an insurance action basin, all private beliefs lead to

Ž .the same action. With unbounded beliefs, every public belief q� 0, 1 is
swamped by some private beliefs. Next, given the continuous map from payoffs

² sŽ .: ² t : Ž . Ž .to thresholds u m � r , Lemma 2 c, d follows from 1 :t m

bq bq
t t tŽ .2 q�J � r � and � r .m m	1 mŽ .Ž . Ž . Ž .bq
 1	b 1	q bq
 1	b 1	q

The paper requires some more notation. Define J t �J t J t  ��� J t . A type t1 2 Mt

is acti�e when choosing at least two actions with positive probability. A cascade
arises�each type’s action choice is independent of private beliefs�for public
beliefs strictly inside J�J 1 �J 2 � ��� �J T: however, with unbounded beliefs,

� 4 � 4 H tthere are two cascade beliefs: q�J� 0  1 . We put J �� J , namelyt Mt

where each type t cascades on the action at , which is optimal in state H.Mt

Similarly, we define J L for state L.

2.3. Learning Dynamics

Let q be the public belief after Mr. n chooses action m . It is well-knownn n
² :� Ž � .that q obeys an unconditional martingale, EE q q �q , and hencen�1n n
1 n n

almost surely converges to a limit random variable. While we could in principle
employ this posterior belief process, we care about the conditional stochastic

Ž .properties in a given state H. Thus, the public likelihood ratio l � 1	q �qn n n
that the state is L versus H offers distinct conceptual advantages, and saves

² :time, as it conditions on the assumed true state. The likelihood process ln
similarly will be a convergent conditional martingale on state H.

We then have likelihood analogues of previous notation, now barred: private
t t t tŽŽ . . Ž .belief thresholds p 1	q �q �p q ; action basins I , where r�I if andm m m m
t t tŽ . Ž .only if 1	 r �r�I ; and cascade sets J , where q�J if and only if 1	q �qm m m

t t H t H tŽ . Ž .�J ; as well as J , J, J for J , J, J . With bounded private beliefs, J �m 1
t t t t t� � � � Žl , � and J � 0, l for some 0� l � l ��. Note: this natural notationMt t t t t t tŽ . Ž . .implies a reverse correspondence: l � 1	q �q and l � 1	q �q . With

t t� 4 � 4unbounded private beliefs, J � � , J � 0 , and all other cascade sets are1 Mt

empty.
² :� ŽLikelihood ratios l are a stochastic process, described by l �1 asn�1n 0

.q �1�2 and transitions0

t t s t s tŽ . Ž � . Ž Ž .. Ž Ž ..3 � a s, l �F p l 	F p l ,m m m	1
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FIGURE 2.�Individual black box. Everyone bases his decision on both the public likelihood ratio
t Ž t � .l and his private belief p, resulting in his action choice a with chance � a L, l , and a likelihoodm m

Ž t . tratio � a , l to confront successors. Type t takes action a if and only if his posterior likelihoodm m
t t tŽ . � �l 1	p �p lies in the interval I , where I , . . . , I partition 0, � .m 1 M t

T
t tŽ . Ž � . Ž � .4 � m s, l �� 
� �� m s, l ,Ým

t�1

Ž . Ž . Ž � . Ž � .5 � m , l � l� m L, l �� m H , l .

tŽ � .Here, � m s, l is the chance that a rational type t takes action m, given l, and
t� 4the true state s� H, L . So the cascade set J is the interval of likelihoods lm

tŽ t � . tŽ t � .yielding � a H, l �� a L, l �1. Faced with l , Mr. n takes action mm m n n
Ž � . Ž .with chance � m s, l in state s, whereupon we move to l �� m , l .n n n
1 n n

Ž . Ž .Figure 2 summarizes 3 � 5 .
² :Our insights are best expressed by considering the pair m , l as a discrete-n n

� .time, time-homogeneous Marko� process on the state space MM� 0, � . Given
² : ² Ž .: Ž � .m , l , the next state is m , � m , l with probability � m s, l inn n n
1 n
1 n n
1 n

² :state s. Since l is a martingale, convergence to any dead wrong belief almostn
surely cannot occur, since the odds against the truth cannot explode. In
summary we have the following lemma.

Ž . ² :LEMMA 3: a The likelihood ratio process l is a martingale conditional onn
state H.
Ž . ² :b Assume state H. The process l con�erges almost surely to a r.� ., l �n �

Ž . � . Ž .lim l , with supp l � 0, � . So fully incorrect learning l �� almost surelyn�� n � n
cannot occur.

Ž . ² :PROOF: See Doob 1953 for the martingale character of l . Convergencen
follows from the Martingale Convergence Theorem for nonnegative, perhaps

Ž Ž . .unbounded, random variables Breiman 1968 , Theorem 5.14 ; Bray and Kreps
Ž .1987 prove this with public beliefs. Q.E.D.

Ž .Learning is complete if ‘‘beliefs’’ likelihoods converge to the truth: l �0 inn
state H. Otherwise, learning is incomplete: Beliefs are not eventually focused on
the true state H.
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² :Belief convergence then forces action con�ergence: m settles down inn
Ž . Ž . �frequency, or lim N m �n exists for all m, where N m �� m �m,n�� n n k

4k�n .

COROLLARY: Action con�ergence almost surely obtains, if F s has no atoms.

Ž .PROOF: Let �0. Given belief convergence Lemma 3 , continuity of
Ž . Ž . Ž .� m�s, l , and the law of motion 4 , the chance � n that action m is chosenm

Ž . Ž .almost surely converges, say � n �� . Thus, � n �� 
 for large n, andm m m m
Ž . Ž .so lim sup N n �n�� 
 . Similarly, lim inf N n �n�� 	 . Sincen�� m m n�� m m

Ž .�0 is arbitrary, lim N n �n�� . Q.E.D.n�� m m

The literature has so far focused on two more powerful convergence notions.
As noted, a cascade means l �J, or finite time belief convergence. Since everyn
later rational type’s action is dictated by history, this forces a herd, where
rational individuals of the same type all act alike. By corollary, the weaker
action convergence obtains. We also need the weaker notion of a limit cascade,
or eventual belief convergence to the cascade set: l �J.�

3. EXAMPLES

3.1. Single Rational Type

Consider a simple example, with individuals deciding whether to ‘‘invest’’ in or
Ž .‘‘decline’’ an investment project of uncertain value. Investing action m�2 is
Ž .risky, paying off u�0 in state H and 	1 in state L; declining action m�1 is

a neutral action with zero payoff in both states. Indifference prevails when
Ž . Ž . Ž .0� ru	 1	 r , so that r�1� 1
u . Thus, equation 1 defines the private

Ž . Ž .belief threshold p l � l� u
 l .
Ž .A. Unbounded Beliefs Example. Let the private signal �� 0, 1 have state-

H Ž . LŽ . Ž .contingent densities g � �2� and g � �2 1	� �as in the left panel of
Ž . Ž .Figure 3. With a flat prior, the private belief p�p � then satisfies 1	p �p�

LŽ . H Ž . Ž .g � �g � � 1	� �� by Bayes’ rule, and has the same conditional densi-
H Ž . LŽ . Ž . H Ž . 2 LŽ .ties f p �2 p and f p �2 1	p , and c.d.f.’s F p �p and F p �2 p

2 Ž . � �	p . So supp F � 0, 1 , and private beliefs are unbounded; the cascade sets
� 4 � 4collapse to the extreme points, J � � , J � 0 .1 2

Ž . Ž .FIGURE 3.�Signal densities. Graphs for the unbounded left and bounded right beliefs
examples. Observe how, in the left panel, signals near 0 are very strongly in favor of state L.
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FIGURE 4.�Continuation and cascade sets. Continuation functions for the examples: unbounded
Ž . Ž . Ž .private beliefs left , and bounded private beliefs right with � �� �1�10 and without noise1 2

Ž . Ž .dashed and solid lines . The stationary points are where both arms hit the diagonal as with noise ,
Žor where one arm is taken with zero chance l�0 or l�� in the left panel; l�2u�3 or l�u in the

.right panel without noise . With crazy types the discontinuity vanishes, and isolated deviations no
longer have drastic consequences. Graphs here and in Figure 5 were generated analytically with
PostScript.

H L Ž . Ž .Given private belief c.d.f.’s F , F and threshold p l � l� u
 l , transition
Ž � . 2 Ž .2 Ž � . Ž . Ž .2 Ž .chances are � 1 H, l � l � u
 l and � 1 L, l � l l
2u � u
 l by 3 .

Ž . Ž . Ž . Ž . Ž .Continuations are � 1, l � l
2u and � 2, l �ul� u
2 l by 4 , 5 . As in
Ž .Figure 4 left panel , the only stationary finite likelihood ratio in state H is 0;

the limit l of Lemma 3 is focused on the truth. As the suboptimal action 1 lifts�

l �2u, an infinite subsequence of such choices would preclude belief conver-n
Ž .gence. Hence, there must be action convergence i.e. a herd .

LŽ .B. Bounded Beliefs Example. Let private signals have density g � �3�2	�
Ž . Ž .on 0, 1 in state L, and uniform on 0, 1 in state H. Given a flat prior, Bayes’

Ž . Ž LŽ . . Ž . Ž .rule yields the private belief p � �1� g � 
1 �2� 5	2� , i.e. p � �p
Ž . Ž . H Ž . Ž .�2� 5	2� �p� 5p	2 �2 p�� . Thus, F p � 5p	2 �2 p in state H

LŽ . LŽ . Ž .Ž . Ž 2 .and F p �H g � d�� 5p	2 p
2 � 8 p in state L. Each thuspŽ� .� p
� � � �has bounded support b, b � 2�5, 2�3 .

Ž . Ž . Ž .Since p l � l� u
 l , active dynamics occur when l� 2u�3, 2u , where
H L Ž . Ž . Ž � . Ž . Ž � .equations for F , F , and 3 � 5 yield � 1 H, l � 3l	2u �2 l and � 1 L, l �

Ž .Ž . 2 Ž . Ž .3l	2u 3l
2u �8 l , as well as � 1, l �u�2
3l�4 and � 2, l �u�2
 l�4.
The likelihood ratio converges by Lemma 3, so that J J contains all possible1 2

Ž .stationary limits, as in Figure 4 right panel . A herd on action 1 or 2 must then
Ž � .start eventually�again, lest beliefs not converge. If l �2u�3, then � 1 H, l �0

Ž � . ² :� 1 L, l �0, i.e. action 2 is always taken, and thus l is absorbed in the setn
� � � �J � 0, 2u�3 . For l �2u, we similarly find J � 2u, � .2 0 1

Here, we may strongly conclude that each limit outcome 2u�3 and 2u arises
Ž . Ž .with positive chance for any l � 2u�3, 2u . As in Figure 4 right , dynamics are0

Ž . � �forever trapped in 2u�3, 2u . Since l �2u, the Dominated Convergencen
� � � Ž . Ž .Ž .Theorem yields E l H � l . Since l �
 2u�3 
 1	
 2u for some 0�
� 0 0

�1 whenever 2u�3� l �2u, in state H, a herd on action 2 arises with chance0

 , and one on action 1 with chance 1	
 .
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In contrast to BHW, if public beliefs are not initially in a cascade set, they
never enter one. This holds even though a herd always eventually starts.

Ž . Ž .Visually, it is clear that l � 2u�3, 2u for all n if l � 2u�3, 2u . This alson 0
Ž .follows analytically: If l �2u, then l �� 1, l �u�2
3l�4�u�2
3u�2n n
1 n

�2u too. So herds must arise even though a contrarian is never ruled out. This
Ž .result obtains whenever continuation functions � i, � are always increasing. For

² :then l never jumps into the closed set J J , starting a cascade. Monotonic-n 1 2
ity is crucially violated in BHW’s discrete signal world.

C. Bounded Beliefs Example with Noise. Suppose that a fraction of individuals
randomly chooses actions. This introduction of a small amount of noise radically
affects dynamics, as seen in the right panel of Figure 4. For since all actions are

Ž .expected to occur, none can have drastic effects. Namely, each � i, � is now
continuous near the cascade sets at l�2u�3 and l�2u. Yet, the limit beliefs

Žare unaffected by the noise, contrary actions being deemed irrational and
.ignored inside the cascade sets.

3.2. Multiple Rational Types

With multiple types, one can still learn from history by comparing proportions
choosing each action with the known type frequencies. This inference intuitively
should be fruitful, barring nongenericities. A new twist arises: Dynamics may
lead to each action being taken with the same positive chance in all states,
choking off learning. This incomplete learning outcome is economically different
than herding�informational pooling, where actions do not reveal types, rather
than the perfect separation that occurs with a type specific informational herd.
Mathematically it is a robust interior sink to the dynamics.

Let us consider the driving example from the introduction. Posit that Houston
Ž . Ž .type U, our ‘‘usual’’ preferences drivers should go high action 2 in state H,

Ž . Ž .low action 1 in state L, with the reverse true for Dallas type V drivers. Going
to the wrong city always yields zero, without loss of generality. The payoff vector

Ž . Ž .of the Houston-bound is 0, u in state H and 1, 0 in state L; for Dallas drivers,
Ž . Ž .it is 1, 0 and 0, � , where without loss of generality � �u�0. So the prefer-

ences are opposed, but not exact mirror images if � �u. Types U, V then
UŽ . Ž .respectively choose action 1 for private beliefs below p l � l� u
 l , and

V Ž . Ž .above p l � l� � 
 l .
Assume the same bounded beliefs structure introduced earlier. Assume we

Ž .start at l � 2��3, 2u . The transition probabilities for type U are then just as0
UŽ � . Ž . UŽ � . Ž .Žin Section 3.1.B: � 1 H, l � 3l	2u �2 l and � 1 L, l � 3l	2u 3l


. 2 Ž . V Ž � . Ž2u �8 l , where l� 2u�3, 2u ; for type V, we likewise have � 1 H, l � 2� 	
. V Ž � . Ž .Ž . 2 Ž .l �2 l and � 1 L, l � 2� 
 l 2� 	 l �8 l by applying 3 . The two types take

U V� � � �action 2 with certainty in the intervals J � 0, 2u�3 and J � 2� , � , respec-2 2
U V� � � �tively. If either these sets or J � 2u, � and J � 0, 2��3 overlap, as happens1 1

with 2��3�2u or 2u�3�2� , then only one type ever makes an informative
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choice for any l, and the resulting analysis for the other type is similar to the
single rational type model: just limit cascades, and therefore herds, arise.

Ž .Assume no cascade sets overlap. Consider dynamics for l� 2��3, 2u given
Ž .by 4 :

3l	2u 2� 	 l
U VŽ � .� 1 H , l �� 
� and

2 l 2 l

Ž .Ž . Ž .Ž .3l	2u 3l
2u 2� 	 l 2� 
 l
U VŽ � .� 1 L, l �� 
� .2 28 l 8 l

We are interested in a different fixed point depicted in Figure 5, where neither
rational type takes any action for sure, and decisions always critically depend on

Ž . Ž � . Ž � .private signals. The two continuations 5 then coincide: � 1 H, l* �� 1 L, l*
Ž .� 0, 1 , and actions convey no information:

U Ž .Ž .� 2� 	 l 3l	2�
Ž .� �h l .V Ž .Ž .2u	 l 3l	2u�

Ž . Ž . Ž . U �If � �u then h maps 2��3, 2u onto 0, � , and h l* �� �� is solvable for
any �U, �V.

² :For this example, we can argue that with positive chance, the process ln
� � � �tends to l* if it does not start in a cascade, i.e. in 0, 2u�3 or 2� , � . Since each

Ž . � �likelihood continuation � i, � is increasing, if dynamics start in 2u�3, l* or
� � Ž . ² :l*, 2� , they are forever trapped there. Assume l � 2u�3, l* . Then l is a0 n
bounded martingale that tends to the end-points; therefore, the limit l places�

positive probability weight on both a limit cascade on l�2u�3 and convergence

FIGURE 5.�Confounded learning. Based on our Bounded Beliefs Example, with �U �4�5,
Ž � . Ž � .u���2. In the left graph, the curves � 1 H, l and � 1 L, l cross at the confounding outcome

l*�8��9, where no additional decisions are informative. At l*, 7�8 choose action 1, and strangely
7�8 lies outside the convex hull of �V and �U�e.g., in the introductory driving example, more than
70% of cars may take the high ramp in a confounding outcome. The right graph depicts continuation
likelihood dynamics.
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to l� l*. This example verifies that the latter fixed point robustly exists and is
stable, but does not yet explain why.

4. LONG RUN LEARNING

4.1. Belief Con�ergence: Limit Cascades and Confounded Learning

² :A. Characterization of Limit Beliefs. That l is a martingale in state H rulesn
Ž .out nonstationary limit beliefs such as cycles , and convergence to incorrect

point beliefs. Markovian methods then prove that with a single rational type, as
in Section 3.1, limit cascades arise, or l �J. But with multiple rational types,n

² :the example in Section 3.2 exhibits another possibility: l may converge ton
where each action is equilikely in all states. Then define the set K of confound-
ing outcomes as those likelihood ratios l*�J satisfying

Ž . Ž � . Ž � .6 � m s, l* �� m H , l* for all actions m and states s.

Observe that since l*�J, decisions generically depend on private beliefs. Yet
decisions are not informative of beliefs, given the pooling across types. Also,
history is still of consequence, or otherwise decisions would then generically be
informative. Rather history is precisely so informative as to choke off any new
inferences. The distinction with a cascade is compelling: Decisions reflect own
private beliefs and history at a confounding outcome, whereas in a limit cascade,
history becomes totally decisive, and private beliefs irrelevant.

Markovian and martingale methods together imply that with bounded private
beliefs, fully correct learning is impossible. Only a confounding outcome or limit
cascade on the wrong action are possible incomplete learning outcomes. Theo-
rem 1 summarizes.

THEOREM 1: Suppose without loss of generality that the state is H.
Ž . Ž .a With a single rational type, a not fully wrong limit cascade occurs: supp l ��

� 4J� � .
Ž .b With a single rational type, and unbounded pri�ate beliefs, l �0 almostn

surely.
Ž .c With T�2 rational types with different preferences, only a limit cascade that

Ž . � 4is not fully wrong or a confounding outcome may arise: supp l �JK� � .�
HŽ .d With bounded pri�ate beliefs, l �J�J with positi�e chance pro�ided�

Hl �J . Likewise, if l � l*, no single confounding outcome l* arises almost surely.0 0
Ž .e Fix payoff functions for all types, and a sequence of pri�ate belief distributions

� � Ž . Ž .with supports b , b k�1, 2, . . . . If b �1 or b �0 in state L , then thek k k k
Hchance of an incorrect limit cascade l �J�J �anishes as k��.�

Ž . � .PROOF: First, Lemma 3 asserts supp l � 0, � in state H, i.e. l �� a.s.� �



L. SMITH AND P. SøRENSEN384

ˆ Ž .Theorems B.1, 2 tightly prescribe l : Any l�supp l is stationary for the� �

Markov process, i.e. either an action doesn’t occur, or it teaches us nothing:
ˆŽ � .Absent signal atoms, with continuous transitions, this means that � m s, l �0

ˆ ˆŽ .or � m, l � l for all m� MM.
Ž .Proof of a : Assume � continuous in l. A single rational type must take

ˆ ˆ ˆŽ .some action m with positive chance in the limit l, and thus � m, l � l. Since
Ž � . Ž � .� m s, l �� 
�� m s, l ,m

ˆŽ � .� 
�� m L, lmˆ ˆ ˆŽ .l�� m , l � l ˆŽ � .� 
�� m H , lm

ˆ ˆŽ � . Ž � .and so � m H, l �� m L, l �0. Intuitively, statistically constant noisy behav-
ior does not affect long run learning by rational individuals, as it is filtered out.
Next, pick the least action m taken in the limit by the rational type with positive

Ž .chance i.e. for low enough private beliefs . Since private beliefs are informative
Ž Ž ..Lemma A.1 c , m is strictly more likely in state L than H, and is thus

ˆ ˆ ˆŽ � . Ž � .informative�unless � m H, l �� m L, l �1. Hence, l�J . The Appendixm
analyzes the case of a discontinuous function �.

Ž . � 4 Ž .Proof of b : J� 0, � by Lemma 2 with unbounded beliefs. So supp l �J�

and l �� a.s. together jointly imply l �0 a.s.� �
ˆ ˆŽ . Ž � . Ž � .Proof of c : With T�2 types, we now have � m s, l �� 
�� m s, l , andm
ˆ ˆŽ � . Ž � .the previous complete learning deduction fails: � m H, l �� m L, l for all m

t ˆ t ˆŽ � . Ž � .need not imply � m H, l �� m L, l �1 for all t. Instead, we can only assert
ˆ ˆl�J or l�K.

H tŽ . � � � �Proof of d : Recall that J � 0, l where l�min l , and l, � �J wheret
t � �l�max l , across t�1, . . . , T. If l � l, � with positive chance, then we aret �

done. Otherwise l � l�� a.s. for all n. By the Dominated Convergencen
² :Theorem, the mean of the bounded martingale l is preserved in the limit:n

H� � Ž . � �E l � l . So supp l �J � 0, l fails if l � l. Similarly, l � l* with probabil-� 0 � 0 �

ity 1 cannot obtain if l � l*.0
Ž . Ž . � �Proof of e : By Lemma 2 a, d , only the extreme cascade sets J � 0, l k k

� � Ž Ž .. � � Ž .l , � exist for co supp F close enough to 0, 1 i.e. large k . If 
 is thek k k
chance of an incorrect limit cascade�namely, on action 1�then El �
 l .� k k

Ž .But El � l by Fatou’s Lemma, so that 
 � l �l . By 2 , the knife-edge� 0 k 0 k
t tcascade public likelihood ratio l and the highest private belief b yield thek k

t t t t t tŽ . Ž .posterior r , by Bayes rule: 1	 r �r � l 1	b �b . So l �� as b �1, and1 1 1 k k k k k
Ž .thus 
 �0. In state L, 
 �0 as b �0, and l �0. Q.E.D.k k k k

Ž .Observe how Part e makes sense of the bounded versus unbounded beliefs
knife-edge, since there is a continuous transition from incomplete to complete
learning.2

2 Ž .We think it noteworthy that Milgrom’s 1979 auction convergence theorem, which also
concerns information aggregation but in an unrelated context, turns on a bounded-unbounded signal
knife-edge too.
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B. Robustness of Confounding Outcomes. Lemma 2 establishes the robustness
of cascade sets. However, unlike cascade sets, the existence of confounding
outcomes is not foretold by the Bayesian decision problem. They are only
inferred ex post, and are nondegenerate phenomena. Fleshing this out, the

² sŽ .model parameters are the preferences and type�noise proportions u m ,t
t: S M T
M
T� , � , elements of the Euclidean normed space � . Genericity andm

robustness are defined with respect to this parameter set.

THEOREM 2: Assume there are T�2 rational types.
Ž .a Confounding outcomes robustly exist, and are in�ariant to noise.
Ž .b At any confounding outcome, at least two rational types are not in a cascade

set.
Ž .c For generic parameters, at a confounding outcome, at most two actions are

Ž .taken by acti�e rational types i.e. those who are not in a cascade .
Ž .d If belief distributions are discrete, confounded learning is nongeneric.
Ž .e With M�2 actions and unbounded beliefs, generically no confounding

outcome exists.
Ž .f At any confounding outcome, some pair of types has opposed preferences.
Ž .g Assume M�2 and some types with opposed preferences. With atomless

bounded beliefs and T�2, a confounded learning point exists generically, pro�ided
both types are acti�e o�er some public belief range. With atomless unbounded beliefs

H Ž . LŽ .and f 1 , f 0 �0, a confounding point exists if the opposed types ha�e suffi-
ciently different preferences.

Before the proofs, observe that while generically only two actions are active at
Ž Ž ..any given confounding outcome Part c , nondegenerate models with M�2

actions still have confounding outcomes. For with bounded beliefs, only two
actions may well be taken over a range of possible likelihoods l. Second, note
that a confounding outcome is in one sense a more robust failure of complete
learning than is an incorrect limit cascade, since it arises even with unbounded

Ž Ž ..private beliefs Part g .

PROOF:
Ž .Proof of a : This has almost been completely addressed by the third example

in Section 3, which is nondegenerate in the specified sense. Invariance to noise
Ž .follows because shifting � identically affinely transforms both sides of 6 ,m

Ž .given 4 .
Ž . Ž .Proof of b : By the proof of Theorem 1 a , if all but one rational type is in a

Ž .cascade in the limit, then so is that type, given 6 . So at least two rational types
are active.

Ž .Proof of c : Consider the equations that a confounding outcome l* must
solve. First, with bounded beliefs, some actions may never occur at l*. Assume
that M �M actions are taken with positive probability at l*. Next, given the0

M0 Ž � . M0 Ž � . Ž .adding-up identity Ý � m H, l �Ý � m L, l �1, 6 reduces to M 	1i�1 i i�1 i 0
Ž � . Ž � .equations of the form � m H, l �� m L, l , in a single unknown l. As the
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equations generically differ for active rational types, they can only be solved
when M �2.0

Ž . Ž . t tŽ � . t tŽ � . H LProof of d : Rewrite 6 as Ý �� m H, l �Ý �� m L, l . For F , Ft t
tŽ � .discrete, each side assumes only countably many values. As � m H, l 	

tŽ � . Ž .� m L, l generically varies in t, the solution of 6 generically vanishes as the
�t weights are perturbed.

Ž . Ž .Proof of e : With unbounded private beliefs, for any l� 0, � , all M actions
Ž .are taken with positive chance. By Part c , confounding outcomes generically

can’t exist.
Ž .Proof of f : If actions 1 and 2 are taken at l*, and all types prefer m�2 in

state H, then m�2 is good news for state H, whence l* could not be a
confounding outcome.

Ž . � �Proof of g : Consider an interval l, l between any two consecutive portions
Ž � .of the cascade set J. The Appendix proves that under our assumptions, � 1 H, l

Ž � . Ž � . Ž � .exceeds � 1 L, l near l iff � 1 L, l exceeds � 1 H, l near l. Without signal
atoms, both are continuous functions, and therefore must cross at some interior

Ž .point l*� l, l . Q.E.D.

Ž Ž ..For an intuition of why confounding points exist Theorem 2 g , consider our
binary action Texas driving example depicted in Figure 5. By continuity, it

Ž � .suffices to explain when one should expect the antisymmetric ordering � 1 L, l
Ž � . Ž . Ž .�� 1 H, l , respectively, for l small near l and large near l . The critical idea

here is that barring a cascade, a partially-informed individual is more likely to
Žchoose a given course of action when he is right than when he is wrong Lemma

.A.1 .
Since Houston drivers wish to go high in state H, uniformly across public

beliefs, more Houston drivers will go high in state H than in state L. The
reverse is true for Dallas drivers. The required antisymmetric ordering clearly
occurs if and only if most contrarians are of a different type near l than near l.
With bounded beliefs, as in the example of §3.1B, this is true simply because a
different type is active at each extreme, for generic preferences.

With unbounded beliefs, the above shortcut logic fails, as both types are
active for all unfocused beliefs. The key economic ingredients for the existence

Ž .of a confounding point are then i not too unequal population type frequencies,
Ž . Ž .and ii sufficiently strongly opposed preferences by the rational types. To see i ,

assume the extreme case with rather disparate type frequencies, and nearly
everyone Houston-bound. No antisymmetric ordering can then occur, as
Ž � . Ž � . Ž . Ž .� 1 L, l �� 1 H, l for all l� l, l . Next, condition ii ensures that the two

types’ action basins for opposing actions grow, and contrarians of each
type�those whose private beliefs oppose the public belief�increase as we
approach one extreme, and decrease as we approach the other, in opposition.

To illustrate the intuition in an unbounded beliefs variant of the driving
Ž Ž ..example from the Appendix proof of Theorem 2 g , a confounding point exists
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U V Ž U Vfor u�� �� �� ���u. In words, type frequencies are not too far apart � ��
.not too big or small �and given their disparity, preferences are sufficiently

Ž .strongly opposed u�� big or small enough .

4.2. The Traditional Case: Herds with a Single Rational Type
and No Noise

We have already argued that actions converge in frequency. Without noise,
this can be easily strengthened. After any deviation from a potential herd, or
finite string of identical actions, an uninformed successor will necessarily follow
suit. In other words, the public belief has radically shifted. As in Section 3, this
logic proves that herds arise.

THEOREM 3: Assume a single rational type and no noise.
Ž .a A herd on some action will almost surely arise in finite time.
Ž .b With unbounded pri�ate beliefs, indi�iduals almost surely settle on the optimal

action.
Ž .c With bounded pri�ate beliefs, absent a cascade on the most profitable action

from the outset, a herd arises on another action with positi�e probability.

Ž . Ž .PROOF: Part a follows from the convergence result of Theorem 1 a and the
following O�erturning Principle: If Mr. n chooses any action m, then before
n
1 observes his own private signal, he should find it optimal to follow suit
because he knows no more than n, who rationally chose m. To wit, l �In
1 m
after n’s action, and a single individual can overturn any given herd. The

Ž .Appendix analytically verifies this fact. From Lemma 2, J � int I , so thatm m
Ž . Ž .when supp l �J , eventually l � int I , precluding further overturns.� m n m

Ž . Ž . Ž . Ž . Ž .Finally, Parts b and c are corollaries of Part a and Theorem 1 b and d .
Q.E.D.

This characterization result extends the major herding finding in BHW to
Žgeneral signals and noise. BHW also handled several states, addressed here in

.§6.1 . The analysis of BHW�which did not appeal to martingale methods�only
succeeded because their stochastic process necessarily settled down in some
stochastic finite time. Strictly bounded beliefs so happens to be the mainstay for
their bad herds finding. Full learning doesn’t require the perfectly revealing
signals in BHW, ruled out here.

5. STABLE OUTCOMES AND CONVERGENCE

Above, we have identified the candidate limit outcomes. But one question
remains: Are these limits merely possibilities, or probabilities? We address this
with local stability results. Convergence is rapid, and this affords insights into
why herding occurs.
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5.1. Local Stability of Marko�-Martingale Processes

²Ž .:We state this theoretical finding in some generality. Let m , x be an n
� 4discrete-time Markov process on MM��, for some finite set MM� 1, 2, . . . , M ,

with transitions given by

Ž . Ž . Ž � . Ž .7 x �� m , x with probability � m x m�MM .n n	1 n	1

² : M Ž � . Ž .Further assume that x is a martingale: that is, x�Ý � m x � m, x . Letn m�1
Ž . Ž . Ž � .x be a fixed point of 7 , so that for all m: either x�� m, x or � m x �0.ˆ ˆ ˆ ˆ

1 ŽOur focus will be on functions � and � that are C once continuously
	̂n. Ž .differentiable at x. If x �x, then � is a con�ergence rate provided � x 	xˆ ˆ ˆn n

ˆ ² :�0 at all ��� . Observe that if � is a convergence rate of x , then so is anyn
� 	�� . Also, if x �x for some n , then ��0.ˆn 00

Appendix C develops a local stability theory for such Markov processes. For
² :an intuitive overview, recall that near the fixed point x, x is well approxi-ˆ n

mated by the following linearized stochastic difference equation: starting at
Ž . Ž . Ž Ž .Ž ..m , x 	 x , the continuation is m , x 	 x � m, � m, x x 	 xˆ ˆ ˆ ˆn n n
1 n
1 x n

Ž � . ² :with chance � m x . Now, for a linear process y , where y �a y withˆ n n
1 m n
Ž . �1Žn. � mŽn. Ž .chance p m�1, . . . , M , we have y �a ��� a y , where � n countsm n 1 M 0 m

Ž .the m-continuations in the first n steps. Since � n �n�p almost surelym m
by the Strong Law of Large Numbers, the product a p1 ��� a pM fixes the long-run1 M

² :stability of the stochastic system y near 0. Accordingly, the productn
M � Žm � x̂ .Ž .Ł � m, x determines the local stability of the original nonlinearˆm� 1 x

Ž .system 7 near x. Rigorously, we have the following theorem.ˆ

THEOREM 4: Assume that at a fixed point x of the Marko�-martingale processˆ
Ž . Ž � . Ž . 1 Ž 1. Ž .7 , � m � and � m, � are C resp. left or right C , for all m. Assume � m, �

Ž . Ž � .is weakly increasing near x for all m, and � m, x �1 for some m with � m x �0.ˆ ˆ ˆx
Ž .Then x is locally stable: with positi�e chance, x �x resp. x � x or x � x for xˆ ˆ ˆ ˆn n n 0

Ž .near x resp. below or abo�e x . Whene�er x �x, con�ergence is almost surely atˆ ˆ ˆn
M � Žm � x̂ .Ž .the rate ��Ł � m, x �1.ˆm� 1 x

PROOF: For the in-text proof here, we make the simplifying assumption that
Ž .x�� m, x for all m. By Corollary C.1, given a frequency-weighted geometricˆ ˆ

mean ��1 of the continuation derivatives, x �x with positive chance, and atˆn
rate � .

M Ž � . Ž .Differentiate the martingale identity x�Ý � m x � m, x to getm� 1

M M

Ž . Ž � . Ž . Ž � . Ž .8 1� � m x � m , x 
 � m x � m , x .Ý Ýx x
m�1 m�1

M Ž � . M Ž � .Differentiating the probability sum Ý � m x �1 yields Ý � m x �0.m� 1 m�1 x
Ž . Ž .Because � m, x �x for all m at the fixed point x, the second sum in 8ˆ ˆ ˆ

M Ž � . Ž .vanishes at x, and we are left with Ý � m x � m, x �1. The continuationˆ m� 1 x
Ž . Ž .slopes � m, x �0 are not all equal since we have assumed � m, x �1 forˆx x
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Ž .some m. Hence, the arithmetic mean�geometric mean AM�GM inequality
holds strictly. This yields ��1.

Ž . Ž .The proof admitting the event that � m, x �x and � m, x �0 is appendi-ˆ ˆ ˆ
cized. Q.E.D.

5.2. Cascade Sets Attract Herds, and Confounded Learning Arises

² :We now apply Theorem 4 to l , m , and prove that both incompleten n
Ž .learning outcomes do arise. Theorem 5 a, b below shows that a limit cascade

develops with positive chance if beliefs initially lie near a cascade set. Absent
Ž .belief atoms, and with monotonic continuation functions � m, � , this follows

Ž . Ž .from Theorem 4 provided � m , l* �� m , l* , some m �m . A positivel 1 l 2 1 2
private belief tail density guarantees this inequality. The details, as well as

Ž .consideration of nonmonotonic � m, � , are appendicized.
Ž . ² :Next, Part c proves that l tends with positive chance to the confoundingn

outcome l*, even though it is an isolated interior point. The reason for this is
Ž .that l* can be locally stochastically stable. This occurs provided � m , l* �l 1

Ž .� m , l* , where actions m and m are taken with positive probability at l*.l 2 1 2
Not being an identity, this inequality is generically satisfied. For nondegenerate
parameters, both derivatives are positive, as the example shows. We let con-
founded learning denote convergence to the confounding point, namely the event
where l � l*.n

Ž . H L 1THEOREM 5: a Assume bounded pri�ate beliefs and let F , F ha�e C tails,
H L 1ˆŽ . Ž .with f b , f b �0. If l is close enough to the cascade set component J�J0 m1T ˆ ˆ ˆ� ��� �J �J, and J is not a single point, then l � l�J with positi�e chance, andm nT ˆ tat some rate ��1. Whene�er l �J, a herd de�elops: e�entually type t takes a .� m t

Ž . Ž .b Assume unbounded pri�ate beliefs. If inf K�0, then Pr l �0 �1 as�

l �0.0
Ž .c Confounded learning occurs: For nondegenerate data, points l*�K are

locally stable.

With atomic tails of the private belief distributions�as in BHW’s analysis
Ž .with discrete private signals�each active continuation � m, � is discontinuous

² :near its associated cascade set J ; therefore, l might well leap over a smallm n
H L 1enough cascade set J . By graphical reasoning, when F , F have C tails,m

� .dynamics can jump into the cascade set 2u, � in Figure 4 with a left derivative
Ž .� 1, 2u �0. More generally, a single action can toss everyone into a cascadel	

with a nonmonotonic continuation; and a confounding outcome need not be
stable. While we know of no simple sufficient conditions that guarantee mono-
tonic continuation functions, we can show how a nonmonotonicity may arise:

L H L HŽ . Ž Ž .. Ž Ž .. Ž Ž .. Ž Ž ..Since � 1, l � lF p l �F p l , the private belief odds F p l �F p l ,
Ž .decreasing by Lemma A.1 e , might be more than unit-elastic in the prior
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likelihood ratio l. This arises with nonatomic private beliefs having spiked
Ž .densities see our MIT working paper with the same title .

Ž .Finally, part a provides a direct explanation as to why herds arise with a
single type. Our current logic is indirect: Martingale methods force belief
convergence, and a failure to herd precludes belief convergence. Yet a herd
arises if and only if eventually the public belief swamps all private beliefs. Here
we see more directly that belief convergence is exponentially fast, and ipso facto
the sequence of contrarian chances is summable. Namely, if A denotes thek
event that Mr. k deviates once a herd has begun, then on almost surely all

Ž .approach paths to the fixed point, Pr A vanishes geometrically fast given thek
Ž .exponential stability, so that ÝPr A ��. By the first Borel-Cantelli Lemma,k

Ž . � 4Pr A infinitely often �0�even though the events A are not independent.k k
In other words, an infinite sequence of contrarians is impossible, and a herd
must eventually start.

6. CONCLUSION AND EXTENSIONS

6.1. Multiple States

Ž .a The Re�ised Model. We can admit any finite number S of states. Rather
� �than partition 0, 1 into closed subintervals, optimal decision rules instead slice

the unit simplex in �S	1 into closed convex polytopes. Belief thresholds become
hyperplanes. Fixing a reference state, the likelihood ratios l1, . . . , l S	1 are each a
convergent conditional martingale.
Ž .b Re�ised Con�ergence Notions. The extreme interval cascade sets for each

rational type generalize to convex sets around each corner of the belief simplex.
With unbounded beliefs, all cascade sets lie on the boundary of the simplex;
with bounded beliefs, interior public beliefs near the corners lie in cascade sets,
and there can exist insurance action cascade sets away from the boundary. Limit
cascades must arise with a single rational type.

Long-run ties where two or more actions are optimal in a given state may
nongenerically occur, as BHW note. Barring this possibility, a herd occurs
eventually with probability one with a single rational type and no noise. If some
action is optimal in several states of the world, then its cascade set will contain
the simplex face spanned by these states. Even with unbounded beliefs, com-
plete learning need not obtain, as the limit belief may lie on this simplex face
but not at a corner. Yet there is adequate learning, in the terminology of Aghion,

Ž .Bolton, Harris, and Jullien 1991 : Eventually an optimal action is chosen.
Ž .c Robustness of Confounding Outcomes. At a confounding outcome, for

s Žeach ratio l , all M possible continuations must coincide. This produces M	
.Ž .1 S	1 generically independent equations to be solved in the S	1 likelihood

ratios: this is possible for nondegenerate data if M�2, while M�2 yields an
over-identified system. Thus, the existence of confounding outcomes is robust:
Theorem 2 reads exactly as before.
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Ž . Ž . Žd Robustness of Local Stability. The extension of Theorem 5 a stable
.interior cascade sets eludes us as it is unclear on which limit point to focus as

Ž . Žwe near the hyperplane-frontier. The proof of Theorem 5 b stable extreme
.cascade sets is robust to several states, since we may simply consider the

likelihood ratio of all other states to the reference state.
Ž . Ž .For Theorem 5 c stable confounding outcomes , we assume the generic

ˆproperty that in a neighborhood of the confounding outcome l, only two actions
Ž .m , m are active taken by rational types with positive chance . For each1 2

Ž . Ž .inactive action m, we have � m, l � l, and thus the Jacobian D � m, l �I.l
M Ž � . Ž .Differentiating the martingale property yields Ý � m S, l D � m, l �I.m� 1 l

Since inactive actions leave l unchanged in this neighborhood, we may as well
ˆŽ � .focus entirely on the occurrences of m and m , now with chances � m S, l �1 2 i

ˆ ˆŽ � . Ž Ž � . Ž � .. Ž � . Ž .� m S, l � � m S, l 
 � m S, l . Then � m S, l D � m , l 
i 1 2 1 l 1
ˆ ˆ ˆŽ � . Ž .� m S, l D � m , l �I. By Theorem C.2, l is locally stable under the weak2 l 2

ˆŽ .condition that the Jacobians D � m , l both have real, distinct, positive, andl i

non-unit eigenvalues. Since eigenvalues are zeros of the characteristic polyno-
mial, this requirement is nondegenerate. It is the natural generalization of
nonnegative derivatives of �.

6.2. Links to the Experimentation Literature

Ž .Our 1998 companion paper draws a formal parallel between bad herds and
the well-known phenomenon of incomplete learning in optimal experimentation.

ŽIt also shows that even a patient social planner unable to observe private
.signals who controls action choices will with positive probability succumb to bad

herds, assuming bounded private beliefs. The confounded learning that we find
Ž .is formally similar to McLennan’s 1984 confounded learning in experimenta-

tion, in the precise sense that probability density functions of the observables
coincide across all states at an interior belief. McLennan’s finding is not robust
to more than two observable signals, nor is ours to more than two active actions.
Thus, if his buyers desire to buy more than one unit of the good, confounded
learning is a nondegenerate outcome. However, as noted, there may be three or
more actions in our informational herding setting, even though only two are
active at some public belief.

Dept. of Economics, Uni�ersity of Michigan, 611 Tappan Street, Ann Arbor, MI
48109-1220, U.S.A.; econ-theorist@earthling.net; http:��www.umich.edu�� lones,

and
Institute of Economics, Uni�ersity of Copenhagen, Studiestræde 6, DK-1455

Copenhagen,Denmark;peter.sorensen@econ.ku.dk;http:��www.econ.ku.dk�sorensen.

Manuscript recei�ed July, 1996; final re�ision recei�ed January, 1999.
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APPENDIX A: ON BAYESIAN UPDATING OF DIVERSE SIGNALS

Ž .To justify the private belief structure of §2, let �, � be an arbitrary probability measure space.
Ž H L.Partition the signal measure as �� � 
� �2, the average of two state-specific signal measures.

� 4 sConditional on the state, signals � are i.i.d., and drawn according to the probability measure � inn
� 4 H Lstate s� H, L . Assume � , � are mutually absolutely continuous, so that there is a Radon-

L H Ž .Nikodym derivative g�d� �d� : �� 0, � . Given signal ���, Bayes’ rule yields the private
Ž . Ž Ž . . Ž . sbelief p � �1� g � 
1 � 0, 1 that the state is H. The private belief c.d.f. F is the distribution

Ž . s H L Hof p � under the measure � . Then F and F are mutually absolutely continuous, as � and
�L are.

H L Ž .LEMMA A.1: Consider the c.d. f.’s F , F resulting from �, � and a fair prior on H, L.
Ž . L H H L Ž . Ž .a The deri�ati�e f�dF �dF of pri�ate belief c.d. f.’s F , F satisfies f p � 1	p �p almost

Ž . Ž . Ž . H Lsurely in p� 0, 1 . Con�ersely, if f p � 1	p �p, then F , F arise from updating a common prior
with some signal measures �H, �L.

Ž . LŽ . HŽ .b F p 	F p is nondecreasing or nonincreasing as p�1�2.
Ž . HŽ . LŽ .c F p �F p except when both terms are 0 or 1.
Ž . LŽ . HŽ . Ž . Ž . HŽ .d F p �F p � 1	p �p for p� 0, 1 , strictly so if F p �0.
Ž . H L Ž .e The likelihood ratio F �F is weakly increasing, and strictly so on supp F .

PROOF: If the individual further updates his private belief p by asking of its likelihood in the two
� Ž .�states of the world, he must learn nothing more. So, p�1� 1
 f p , as desired. Conversely, given

Ž . Ž . s � 4f p � 1	p �p, let � have distribution F in state s, s� H, L .
Ž . Ž . Ž . � 4 Ž .Part a implies Part b , and is strict when p�supp F � 1�2 . Hence c follows. Since

L H Ž .f�dF �dF is a strictly decreasing function, we can prove Part d :

Ž . L Ž . Ž . H Ž . Ž . H Ž . H Ž . Ž . H Ž .Ž .9 F p � f r dF r � f p dF r �F p f p �F p 1	p �pH H
r�p r�p

HŽ . Ž . LŽ . LŽ . Ž .for any p with F p �0. For e , whenever F p �F q �0, 9 implies

L Ž . L Ž .F p 	F q

p
H H H H H L HŽ . Ž . � Ž . Ž .� Ž . � Ž . Ž .� Ž . Ž .� f r dF r � F p 	F q f q � F p 	F q F q �F q .H

q

HŽ . LŽ . HŽ . LŽ .Expanding the right-hand side, it immediately follows that F p �F p �F q �F q . Q.E.D.

APPENDIX B: FIXED POINTS OF MARKOV-MARTINGALE SYSTEMS

This appendix establishes results needed to understand limiting behavior of the Markov-martingale
process of beliefs and actions. Despite a countable state space, standard convergence results for
discrete Markov chains have no bite, as states are in general transitory.

Ž . Ž � .Given is a finite set MM, and Borel measurable functions � �, � : MM�� �� , and � � � :
 

� �MM�� � 0, 1 satisfying:


� Ž � . Ž � .� � x is a probability measure on MM for all x�� , or Ý � m x �1.
 m � MM

� � and � jointly satisfy the following ‘‘martingale property’’ for all x�� :


Ž . Ž � . Ž .10 � m x � m , x �x .Ý
m�MM

� .For any set B in the Borel �-algebra BB on � � 0, � , define a transition probability P:

� �� �BB� 0, 1 :


Ž . Ž � .P x , B � � m x .Ý
� Ž .m � m , x �B
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² :�Let x be a Markov process with transition from x �x governed by P, and Ex ��.n� 1n n n
1 1
² : Ž .Then x is a martingale, true to the above casual label of 10 :n

� � � � � �E x x , . . . , x �E x xn
 1 1 n n
1 n

Ž . Ž � . Ž .� tP x , dt � � m x � m , x �x .H Ýn n n n
�
 m�MM

By the Martingale Convergence Theorem, there exists a real, nonnegative stochastic variable x�

² :such that x �x a.s. Since x is a Markov chain, the distribution of x is intuitively invariant forn � n �

Ž .the transition P, as in Futia 1982 . The a.s. convergence then suggests that the invariant limit must
be pointwise invariant. While Theorem B.2 below can be proved along these lines, some continuity
assumption will be used. Doing away with continuity, we establish an even stronger result.

THEOREM B.1: Assume that the open inter�al I�� satisfies


Ž . Ž � . Ž .11 ��0 � x�I �m�MM : � m x � and � m , x 	x � .

Then I cannot contain any point from the support of the limit x .�

Ž .PROOF: Let I be an open interval satisfying 11 for �0, and suppose for a contradiction that
Ž . Ž . Ž .there exists x�I�supp x . Let J� x	�2, x
�2 �I. By 11 , for all x�J, there exists�

Ž � . Ž . Ž .m�MM with � m x � and � m, x �J. Since x�supp x , x �J eventually with positive� n
probability. But whenever x �J, x �J with chance at least  . That is, the conditional chancen n
1

² :that the process stays in J in the next period is at most 1	 . So the process x almost surelyn
² :eventually exits J. This contradicts the claim that with positive chance x is eventually in J.n

Hence, x cannot exist. Q.E.D.

Ž . Ž � .THEOREM B.2: If x�� m, x and x�� m x are continuous for all m�MM, then for all x�
Ž . Ž � 4.supp x , stationarity P x, x �1 obtains, i.e.�

Ž . Ž � . Ž .12 � m x �0 or � m , x �x for all m�MM .

Ž . Ž . Ž � .PROOF: If there is an m such that x does not satisfy 12 , and both x�� m, x and x�� m x
Ž � . Ž .are continuous, then there is an open interval I around x in which � m x and � m, x 	x are

Ž .both bounded away from 0. This implies that 11 obtains, and so Theorem B.1 yields an immediate
contradiction. Q.E.D.

APPENDIX C: STABLE STOCHASTIC DIFFERENCE EQUATIONS

This appendix derives results on the local stability of nonlinear stochastic difference equations.
Ž Ž ..There is a very abstract related literature see Kifer 1986 , but Appendix 1 of Ellison and

Ž .Fudenberg 1995 treats a model closer to ours. We generalize their stability result to cover
Ž . Žstate-dependent transition chances below, � may depend on x , and multi-dimensional states x is

Ž . .S	1 -dimensional , and analyze convergence rates.
� 4 Ž .Given is a finite set MM� 1, . . . , M , and Borel measurable functions � �, � : MM�� ��, and


Ž � . � � Ž � . Ž .� � � : MM�� � 0, 1 satisfying Ý � m x �1. Let x ��. Then 7 defines a Markov process
 m � MM 0
² : ² : Ž .x . This can be recast as: Let � be a sequence of i.i.d. uniform- 0, 1 random variables. Letn n
² : Ž m	 1 Ž . m Ž .�y with values in MM be defined by y �m when � � Ý � i, x ,Ý � i, x . Thenn n n i�1 n	1 i�1 n	1

Ž .x �� y , x .n n n	1

Stability of Linear Equations.
Ž . Ž � . Ž .Consider this special case of 7 : � m x �p and � m, x �a x . Here a , . . . , a �� andn m n m n 1 M

� �p , . . . , p � 0, 1 satisfy Ý p �1.1 M m � MM m
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pM m� �LEMMA C.1: Define ��Ł a .m� 1 m
	nŽ .a Almost surely, � x �0 for all ��� . In particular, x �0 almost surely if ��1.n n

Ž .b If ��1 and NN is any open ball around 0, then there is a positi�e probability that x �NN for all0 n 0
n, pro�ided x �NN .0 0

	nŽ . Ž � .c With ��� and NN an open ball around 0, Pr �n��: � x �NN x �NN �0.0 n 0 0 0

Ž . m n � � Ž M � �Y
m
n .n � � mPROOF: a Let Y �Ý 1 , so x � Ł a x . Since Y �n�p a.s. by then k�1 � y �m4 n m�1 m 0 n mk mY � nM n� �Strong Law of Large Numbers, the result follows from Ł a �� a.s.m� 1 m

Ž . Ž � 4. Ž .b Since x �0 a.s., Pr � � x �NN �1. So Pr �n�k, x �NN �0 for some k. Son k � � n� k n 0 n 0
² :with positive chance, x stays inside NN starting at that x . Without loss of generality k�0 sincen 0 k

dynamics are time invariant. With linear dynamics, any x �NN will do.0 0
Ž . Ž . Ž .c Use the result in b on the modification of 7 with constants a �� . Q.E.D.m

Local Stability of Nonlinear Equations.
Ž . Ž .We care about the fixed points x of 7 : namely, where � m, x �x for all m�MM.ˆ ˆ ˆ

Ž . Ž � . Ž .THEOREM C.1: At a fixed point x of 7 , assume that each � m � �0 is continuous and � m, �ˆ
3 M � Žm � x .ˆhas a Lipschitz constant L . If the stability criterion ��Ł L �1 holds, then for allm m�1 m

Ž . Ž . Ž�� � , 1 there exists an open ball NN around 0, such that x 	x�NN �Pr x �x �Pr �n��:ˆ ˆ0 0 0 n
	n � � .� x 	x �NN �0. If x �x, then it con�erges at rate � .ˆ ˆn 0 n

Ž .PROOF: First, we majorize 7 locally around x by a linear system, and then argue that Lemmaˆ
C.1’s conclusion applies to our original nonlinear system.

Ž .Without loss of generality, assume that 0�L � ��� �L . By continuity of � m, � we may1 M
Ž � .choose NN small enough and constants p close enough to � m x so thatˆ0 m

M m m
pm Ž � .L �� , � i x � p , andŁ Ý Ým i

m�1 i�1 i�1

Ž . Ž . � �� m , x 	� m , x �L x	x , �m�MMˆ ˆm

² :for all x	x�NN . Fix x with x 	x�NN . Define a new process x with x �x given, andˆ ˆ ˜ ˜0 0 0 0 n 0 0
Ž . Ž m	 1 m � ² :x 	x�L x 	x when � � Ý p , Ý p where � is our earlier i.i.d. uniform se-˜ ˆ ˜ ˆn m n	1 n i�1 i i�1 i n

	n Ž .quence. Lemma C.1 then asserts � x 	x �NN for all n with positive chance. In any realization˜ ˆn 0
² : 	n Ž . ² :of � yielding � x 	x �NN for all n, the resulting deterministic linear process x majorizes˜ ˆ ˜n n 0 n

² :the nonlinear one x : On NN we have inductively in n,n 0

m	1 m

� � � � � � � �� � p , p � x 	x �L x 	x �L x 	x � x 	x .˜ ˆ ˜ ˆ ˆ ˆÝ Ýn i i n m n	1 m n	1 nž
i�1 i�1

	n Ž .So � x 	x �0, and with positive probability.ˆn
Finally, the rate of convergence is � , since for any ��� , a small enough neighborhood exists for

² :which the linear system converges at a rate less than � . Whenever x �x, x eventually stays inˆn n
² :that neighborhood, wherein it is dominated by x . Q.E.D.˜n

Ž .COROLLARY C1: If each � m, � is also continuously differentiable, then Theorem C.1 is true with
� Žm � x .ˆŽ .��Ł � m , x �1.ˆm � MM x

We must generalize Theorem C.1 for x ��S	 1, S�2. We focus on the Markov-martingalen
context relevant for our model, and restrict attention to M�2. A weaker, more generally applicable,
result could be obtained using the sup-norm of matrices; see our MIT working paper.

3 m k Ž . � Ž . Ž .� � �f : � �� is Lipschitz at x with Lipschitz constant L�0 if � x�NN x : f x 	 f x �L x	xˆ ˆ ˆ ˆ
Ž . 1 � Ž .�for some neighborhood NN x . If f is C at x, then it is Lipschitz with any constant L� Df x .ˆ ˆ ˆ
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Ž . S	 1 Ž � .THEOREM C.2: Let x be a fixed point of 7 in � with M�2. Assume that each � m � isˆ
Ž � . Ž . 1 Ž .continuous at x, with 0�� 1 x �1, and that each � m, � is C at x. Assume that each D � m, xˆ ˆ ˆ ˆx

Ž � . Ž . Ž � . Ž .has distinct, real, positi�e, non-unit eigen�alues, and that � 1 x D � 1, x 
� 2 x D � 2, x �I. Forˆ ˆ ˆ ˆx x
Ž 	n �any open ball OO�x there exists ��1 and an open ball NN�OO around x, such that x �NN�Pr � xˆ ˆ 0 n

� . Ž .	x �0 �Pr �n��: x �OO �0.ˆ n

PROOF: The proof directly extends the methods used in the uni-dimensional case, by considering
Ž . Ž . Ž � . Ž .A�D � 1, x , B�D � 2, x , and ��� 1 x . Thus, � A
 1	� B�I.ˆ ˆ ˆx x

First, by basic linear algebra, if A has distinct real eigenvalues, then it can be diagonalized as
	1 	1 Ž . 	1 ŽJ �QAQ , where Q is an invertible matrix. Likewise, because J �QBQ �Q I	� A Q � 1A B

. Ž . Ž . Ž .	� � I	� J � 1	� , the matrix Q also diagonalizes B. Rearranging terms, � J 
 1	� JA A B
� 1	� Ž .�I. Since all eigenvalues are positive and not one, J J has all diagonal entries inside 0, 1 , byA B

� 1	�the earlier scalar AM-GM inequality. Let ��1 be the maximal element in J J . Put J �A B C
� 4 Ž . 	1max J , J componentwise , and C�Q J Q.A B C

S	 1 ² : � � 2 ² :On � , we use the inner product x, y �x	Q	Qy and the norm x � x, x . For this yields
² : 	 	 ² : � � � �Ax, Ax �x	 A	Q	QAx�x	Q	J J Qx�x	Q	J J Qx� Cx, Cx , and so Ax � Cx . By continu-A A C C

Ž . Ž .ous differentiability of �, for any ��0, there exists an open ball NN � around x such that x�NN �ˆ1 1
Ž . Ž . Ž . � Ž .� � �implies � 1, x 	x�A x	x 
� x	x , where � x �� x . If the maximal eigenvalue of A isˆ ˆ ˆ

�, then we have
2 2 2 22Ž . Ž . � � � �� 1, x 	x � A x	x 
� x	x 
2 �� x	x .ˆ ˆ ˆ ˆ

Ž .Since no eigenvalue of A or B is 0, for any ��1, there exists an open ball NN � around x so smallˆ2
Ž . � Ž . � � Ž .� � Ž . � � Ž .�that x�NN � implies � 1, x 	x � �A x	x and � 2, x 	x � �B x	x . Clearly then,ˆ ˆ ˆ ˆ2

� Ž . � � Ž .� Ž .� i, x 	x � �C x	x for both i�1, 2, for all x�NN � .ˆ ˆ 2
Ž . Ž � . Ž .For any �0, there exists an open ball NN  around x in which � 1 � � �	 , �
 . Whenˆ3

�	1�0 and �0 are both small enough, all diagonal entries of the diagonal matrix
Ž .�	 Ž .1	 �	 Ž .2  Ž . Ž . Ž .� J � J � J lie inside 0, 1 . Put NN �NN � �NN  �OO.A B C 0 2 3

Consider now

Ž .�A x 	x if � ��	 ,˜ ˆ� n	 1 n� Ž .�B x 	x if � ��
 ,x 	x� ˜ ˆ˜ ˆ n	 1 nn � Ž .�C x 	x else.˜ ˆn	 1

Ž . 	1This linear system is stable. Namely, y �Q x 	x Q follows the stochastic difference equation˜ ˆn n
y �� J y or y �� J y or y �� J y with chances �	 , 1	�	 , and 2 . In thisn
 1 A n n
1 B n n
1 C n
diagonal system, each coordinate follows a scalar equation. By Lemma C.1, each individual
coordinate converges a.s. upon zero at rate �� . The intersection of a finite number of probability one
events has probability one, so a.s. y �0. Thus, a.s. x �x at rate �� . Extending the proof of˜ ˆn n

Ž .Lemma C.1 b , there exists an open ball NN�NN around zero, such that x �NN implies x remains in˜0 0 n
NN with positive probability.0

² :We have already shown that the linear system x 	x dominates in norm the nonlinear one˜ ˆn
² :x 	x on NN . Hence, x �x with positive probability, and just as in the proof of Theorem C.1,ˆ ˆn 0 n
the convergence is at rate � . Q.E.D.

APPENDIX D: OMITTED PROOFS

Cascade Set Characterization: Proof of Lemma 2.
t Ž . Ž . � t Ž . t Ž .� tSince p q is increasing in m by 1 , p q , p q is an interval for all q. Then J is them m	1 m m

closed interval of all q that fulfill
t tŽ . Ž . Ž .13 p q �b and p q �b.m	 1 m

Ž t . HŽ t Ž .. HŽ t Ž ..Interior disjointness is immediate. Next, if int J �� then F p q �0 and F p q �1m m	1 m
Ž t .for all q� int J . The individual will choose action m a.s., and so no updating occurs; therefore,m

the continuation belief is a.s. q, as required.
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Ž .With bounded beliefs, one of the inequalities in 13 holds for some q, but no q might
Ž . t Ž . t Ž .simultaneously satisfy both. As 1 yields p q �0 and p q �1 for all q, we must have0 M t

t t t t t t t t t t� � � � Ž . Ž .J � 0, q and J � q , 1 , where p q �b and p q �b define 0�q �q �1.1 M 1 Mt t
t t t t tŽ . Ž . Ž .Finally, let m �m , with q �J and q �J . Then p q �p q �b�b�p q ;2 1 1 m 2 m m 	1 1 m 1 m 	1 21 2 2 1 2

and so q �q because pt is strictly decreasing in q.2 1 m 	12
t t t Ž . Ž .With unbounded beliefs, b�0 and b�1. Hence, p �0 and p �1 for q�J by 13 . By 1 ,m	 1 m m

this only happens for m�1 and q�0, or m�M and q�1.t
With bounded beliefs, type t takes only two actions with positive chance in a neighborhood of the

t Ž . t t Ž . t Ž .nonempty cascade set J . This follows from 13 , since all p are continuous, and p q �p qm m m	1 m
Ž .for all m and q� 0, 1 , absent a weakly dominated action for type t. Q.E.D.

Ž .Limit Cascades Occur: Proof of Theorem 1 a .
We first proceed here under the simplifying assumption that � and � are continuous in l. By

ˆ ˆ ˆ ˆ ˆŽ � . Ž .Theorem B.2, stationarity at the point l yields � m l �0 or � m, l � l. Assume l meets this
H Lˆ ˆ ˆŽ � . Ž Ž .. Ž Ž ..criterion, and consider the smallest m such that � m l �0, so F p l �F p l �0.m	 1 m	1

H L H Lˆ ˆ ˆ ˆŽ . Ž Ž .. Ž Ž .. Ž .Then � m, l � l implies F p l �F p l �0. Since F � F by Lemma A.1 c , thism m FS D
H Lˆ ˆ ˆŽ Ž .. Ž Ž ..equality is only possible if F p l �F p l �1. Thus, l�J , as required.m m m

ˆ Ž .Next abandon continuity. Suppose by way of contradiction that there exists a point l�supp l�
Hˆ ˆŽ Ž . .with l�J. Then for some m we have 0�F p l 	 �1, so that individuals will strictly preferm

ˆŽ .to choose action m for some private beliefs and m
1 for others. Consequently, p l �b, andm
ˆ ˆŽ . Ž .since p l �0�b, the least such m satisfying p l �b is well-defined. So we may assume0 m

H ˆŽ Ž . .F p l 	 �0.m	 1
H ˆŽ Ž ..Next, F p l �0 in a neighborhood of l. There are two possibilities:m

H Hˆ ˆ ˆŽ Ž .. Ž Ž ..CASE 1: F p l �F p l . Here, there will be a neighborhood around l wherem m	1
H HŽ Ž .. Ž Ž .. Ž . Ž � . Ž � .F p l 	F p l � for some �0. From 3 , � m l �� m H, l is bounded away fromm m	1

L HŽ . Ž . Ž Ž .. Ž Ž ..0 in this neighborhood, while 5 reduces to � m, l � lF p l �F p l , which is also boundedm m
ˆ ˆ ˆŽ . Ž Ž ..away from l for l near l. Indeed, p l is in the interior of co supp F , and so Lemma A.1m

L H ˆŽ Ž .. Ž Ž .. Žguarantees us that F p l exceeds and is bounded away from F p l for l near l recall thatm m
ˆ. Ž .p is continuous . By Theorem B.1, l�supp l therefore cannot occur.m �

H H Hˆ ˆ ˆŽ Ž .. Ž Ž .. Ž .CASE 2: F p l �F p l . This can only occur if F has an atom at p l �b, andm m	1 m	1
Hˆ ˆŽ Ž .� Ž Ž . .places no weight on b, p l . It follows from F p l 	 �0 and p �p , thatm m	1 m	2 m	1

H ˆŽ Ž .. Ž � . Ž .F p l �0 for all l in a neighborhood of l. Therefore, � m	1 l and � m	1, l 	 l arem	 2
ˆ ˆ� .bounded away from 0 on an interval l, l
� , for some ��0. On the other hand, the choice of m

ˆ ˆŽ � . Ž . Ž �ensures that � m l and � m, l 	 l are boundedly positive on an interval l	�	, l , for some
ˆŽ . Ž .�	�0. So once again Theorem B.1 observe the order of the quantifiers! proves that l�supp l .�

Q.E.D.

Ž .Confounding Outcomes are Nondegenerate: Rest of Proof of Theorem 2 g .
Ž . Ž .Let types U, i prefer action 1 to 2 in state H, and types V, j prefer action 1 to 2 in state L. By

Ž . Ž U U . Ž .a rescaling, we may assume that the payoff vector of type U, i is b , c in state H and 0, 1 ini i
U U Ž . Ž . Ž V V . V Vstate L, with b �c , type V, j respectively earns 0, 1 and b , c , with b �c . These engenderi i j j j j

Ž . Ž . U U V Vposterior belief thresholds 1� 1
u and 1� 1
� , where u �b 	c and � �b 	c . As in thei j i i i j j j
U VŽ . Ž . Ž . Ž .example of Section 3.1, we have private belief thresholds p l � l� u 
 l and p l � l� � 
 l .i i j j

CASE 1: Bounded Beliefs. Assume T�2. Generically, u�� , so assume without loss of generality
t t t� � � �u�� . The cascade set for type t is J � 0, l  l , � . With u�� and yet a common likelihood

U V U V U V� . Ž � .interval of activity, we have l � l � l � l . For l� l , l only type U is active. Thus � 1 L, l
V V VŽ � . Ž � . Ž � .rises above � 1 H, l in this interval, so � 1 L, l �� 1 H, l . Near l , only type V is active, so

U U V UŽ � . Ž � . Ž � . Ž � . Ž .� 1 L, l �� 1 H, l . By continuity, � 1 L, l* �� 1 H, l* for some l*� l , l .
CASE 2: Unbounded Beliefs. Let �U and �V denote the population weights.i j

Ž � . U sŽ Ž .. V � sŽ Ž ..�� 1 s, l �� 
� � F l� u 
 l 
� � 1	F l� � 
 lÝ Ý1 i i j j
i j

2 2s U VŽ � . Ž . Ž . Ž .�� 1 s, 0 �� f 0 � u � u 
0 	 � � � � 
0 .Ý Ýl i i i j j jž /
i j
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LŽ . HŽ . Ž � . Ž � . U V LŽ .Since f 0 � f 0 by Lemma A.1, � 1 H, 0 �� 1 L, 0 when Ý � �u �Ý � �� . Since f 1 �l l i i i j j j
HŽ . Ž � . Ž � . U Vf 1 , � 1 H, � �� 1 L, � likewise ensues from Ý � u �Ý � � . Finally, both inequalities holdl l i i i j j j
Ž . Ž .or both fail for sufficiently different and opposed preferences�namely u small enough and�ori
� big enough, in the case above; we get the reverse inequality in each case for u big enough and�ori i
� small enough. Q.E.D.i

Proof of O�erturning Principle used in Theorem 3:
If n optimally takes m, his belief p satisfiesn

1	 r 1	p 1	 rm	 1 n mŽ . Ž .14 � l h � .
r p rm	 1 n m

Ž . Ž .Let � h denote the set of all beliefs p that satisfy 14 . Then individual n chooses action m withn
H Ž H . Ž .probability H dF resp. H f dF in state H resp. state L . This yields the continuation�Žh. � Žh.

H f dF H
� Žh.Ž . Ž .l h , m � l h .HH dF�Žh.

Ž . Ž .Cross-multiply and use 14 with Lemma A.1 a to bound the right-hand integral. Q.E.D.

Stability of Marko�-Martingale Processes: Rest of Proof of Theorem 4.
Ž . Ž .Next suppose that for m in some subset MM �MM, � m, x �x and thus � m, x �0. Then0

� Žm � x . ˆŽ � . � Ž . � Ž .MM�MM �� since Ý � m � �1. Note that ��� � m, x �1. Choose �� � , 1 . By0 m m � MM x0 	nˆŽ � �Corollary C.1, there is an open ball NN around 0 such that x 	x�NN �Pr �n��: � x 	x �0 0 0 n
.NN �0 when only actions in MM�MM are taken.0 0

	n nˆ� 4 � � � � �4 Ž .Define events E � m �MM , F � � x 	x � x 	x , G �� E �F , and G �n n 0 n n 0 n k�0 k k �
� Ž .� E �F . Then,k� 0 k k

� �

Ž . Ž . Ž . Ž . Ž � . Ž � .Pr G �Pr G Pr G �G �Pr G Pr F E , G Pr E G .Ł Ł� 0 n
1 n 0 n
1 n
1 n n
1 n
n�0 n�0

� 1Ž � .Corollary C.1 implies 0�Ł Pr F E , G . When x �x exponentially fast and � is C , then� 0 n
1 n
1 n n
Ž � . � Ž � .sequence Ý � m x vanishes exponentially fast; therefore 0�Ł Pr E G . Collectingm � MM n n�1 n
1 n0

Ž . Ž .pieces, 0�Pr G �Pr x converges to x at rate � . Q.E.D.� n

Herds and Confounded Learning Arise: Proof of Theorem 5.
ˆ ˆŽ .Part a : Let l be close to, but just below, the fixed point l� inf J. Generically, only one rational0

ˆtype t is active in a neighborhood of l. The other rational types are then equivalent to noise in this
neighborhood, and we continue without loss of generality as if there is only a single rational type.

ˆLet m denote the action that this rational type takes with probability one on J. Since private beliefs
1 1 ˆŽ � . Ž � . Ž .have C tails, � m � , � m � , and � m, � are C near l.

ˆ ˆ 1Ž . Ž � . Ž � .Suppose that � m, l �0. As l � l, both C functions � m H, l , � m L, l �1, and thusl
ˆ ˆŽ .� m, l 	 l�0. Then l �J for l close enough to l. So after finitely many steps, and thus with an
 1 n

ˆ² :positive probability, l jumps into J, and convergence is at rate ��0.n
ˆŽ . Ž . Ž � . Ž � .Next posit � m, l �0. Let � m, l � l� m L, l �� m H, l be the continuation without noise.l

ˆ ˆ H LŽ . � Ž . Ž .� Ž .Then � m, l �1
 l f b 	 f b �1 by Lemma A.1 a , for bounded and not all uninformativel
ˆ ˆŽ . Ž . Ž Ž .. Ž .beliefs 0�b�1�2 . So � m, l � � 
�� m, l � � 
� �1, and thus ��1 by Theorem 4,l m l m

ˆ ˆŽ . Ž .provided � m	, l �0 for all actions m	. Then � m	, l �1 for l near l for all actions exceptl
ˆŽ .m	�m
1, the only other one rationally taken for l close enough to J . But � m, l �1 impliesm l

ˆ ˆŽ . Ž .� m
1, l �1, and thus � m
1, l �1.l l
ˆFinally, assume l �J, and that the final approach was from the left. Eventually, all but type t�

must be inside their cascade sets, and thus herding. The convergence of l to l is exponentially fast.n �
HŽ . tŽ � .With f b �0, � m H, l then converges exponentially fast to one. By the first Borel-Cantellin

lemma, eventually type t takes action m.
Ž . � �Part b : By Fatou’s lemma, E l � l . Let l*� inf K�0. Since the limit is concentrated on� 0

� 4 Ž .0 K, it must be 0 with probability at least l*	 l �l*.0
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Ž .Part c : We only need robustness to noise, since the example establishes the noiseless case. Let
˜ ˜Ž � . Ž � .�, � denote the analogues of �, � when noise is added. Then � m H, l* �� 
�� m H, l* .˜ m

˜ ˜Ž . Ž � . Ž � .Differentiating � m, l � l� m L, l �� m H, l then yields˜

˜ ˜Ž � . Ž � . Ž � . Ž � .� m L, l* 	� m H , l* � m L, l* 	� m H , l*l l l lŽ .� m , l* �1
 l* �1
� l* .˜l Ž � .˜ �� m H , l* 
�Ž � .� m H , l* m

Ž � . Ž � .If � m H, l* �0, then � approaches � as � �0. If � m H, l* �0, then � does not affect the˜l l m l
˜Ž . Ž . Ž � .stability criterion for l*, but does when � �0. For any �0, � m, l � 1
 �� m H, l* for˜m l

˜ ˜Ž � . Ž . Ž � .small enough noise, since lim � m H, l* � m, l* �1. As � �0, � m H, l* tends to˜� � 0 l mm
�̃ Žm � H , l*. � Žm � H , l*.Ž � . Ž . ŽŽ . Ž � ..� m H, l* �0, and so for all �0, eventually � m, l* � 1
 �� m H, l* �˜l

Ž .� Žm � H , l*.1
 . So if Ł � m, l* �1, then l* remains stable for small enough � . Q.E.D.m l m
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