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Abstract
Observational learning occurs when privately-informed individuals sequen-

tially choose among finitely many actions, after seeing predecessors’ choices. We

summarize the general theory of this paradigm:Belief convergence forcesaction

convergence, specifically, copycat “herds” arise. Also, beliefs converge to a point

mass on the truth exactly when the private information is notuniformly bounded.

This subsumes two key findings of the original herding literature: With multi-

nomial signals,cascades occur, where individuals rationally ignore their private

signals, and incorrect herds start with positive probability. The framework is flex-

ible — some individuals may be committed to an action, or individuals may have

divergent cardinal or even ordinal preferences.

Keywords
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cess; martingale; information aggregation; stochastic difference equation; infor-

mational cascade; limit cascade; action herd; experimentation

Article
Observational Learning. Suppose that an infinite number of individuals each

must make an irreversible choice among finitely many actions— encumbered

solely by uncertainty about the state of the world. If preferences are identical,

there are no congestion effects or network externalities, and information is com-

plete and symmetric, then all ideally wish to make the same decision.

Observational learning occurs specifically when the individuals must decide

sequentially, all in some preordained order. Each may condition his decision both

on his endowed private signal about the state of the world andon all his prede-

cessors’ decisions, butnot their hidden private signals. This article summarizes
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the general framework for the herding model that subsumes all signals, and estab-

lishes the correct conclusions. The framework is flexible — eg. some individuals

may be committed to an action, or individuals may have divergent preferences.

Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992) (hereafter,

BHW) both introduced this framework. Ottaviani and Sørensen (2006) later noted

that the same mechanism drives expert herding behavior in the earlier model of

Scharfstein and Stein (1990), after dropping their assumption that private signals

are conditionally correlated. In BHW’s logic,cascades eventually start, in which

individuals rationally ignore their private signals. Copycat action herds therefore

ariseipso facto. Also, despite the surfeit of available information, a herddevelops

on an incorrect action with positive probability: After some point, everyone might

just settle on the identical less profitable decision. This result sparked a welcome

renaissance in informational economics. Observational learning explains correla-

tion of human behavior in environments without network externalities where one

might otherwise expect greater independence. Various twists on the herding phe-

nomenon have been applied in a host of settings from finance toorganizational

theory, and even lately into experimental and behavioral work.

In this article, we develop and flesh out the general theory ofhow Bayes-

rational individuals sequentially learn from the actions of posterity, as developed

in Smith and Sørensen (2000). Our logical structure is to deduce that almost sure

belief convergence occurs, which in turn forcesaction convergence, or the action

herds. Also, beliefs converge to a point mass on the correct state exactly when the

private signal likelihood ratios are not uniformly bounded. For instance, incor-

rect herds arose in the original herding papers since they assumed finite multino-

mial signals. We hereby correct a claim by Bikhchandani, Hirshleifer, and Welch

(2008), which unfortunately concludes “In other words, in acontinuous signals

setting herds tend to form in which an individual follows thebehaviour of his pre-

decessor with high probability, even though this action is not necessarily correct.

Thus, the welfare inefficiencies of the discrete cascades model are also present in

continuous settings.”
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Multinomial signals also violate a log-concavity condition, and for this reason

yield the rather strong form of belief convergence that a cascade is. One recent

lesson is the extent to which cascades are the exception rather than rule.

The Model. Assume a completely ordered sequence of individuals1, 2, . . ..

Each faces an identical binary-choice decision problem, choosing an actiona ∈

{1, 2}. Individualn’s payoffu(a
n
, ω) depends on the realization of a state of the

world, ω ∈ {H,L}, common acrossn. The high action pays more in the high

state: u(1, L) > u(2, L) andu(1, H) < u(2, H). Individuals act as Bayesian

expected utility maximizers, choosing actiona = 2 above a threshold posterior

belief r̄, and otherwise actiona = 1. All share a common priorq0 = P (ω=H),

and for simplicity,q0 = 1/2.

The decision-making here is partially informed. For exogenous reasons, each

individualn privately observes the realization of a noisy signalσ
n
, whose distri-

bution depends on the stateω. Conditional onω, signals are independently and

identically distributed. Observational learning is modeled via the assumption that

individual i can observe the full history of actionsh
n
= (a1, . . . , an−1). While

predecessors’ private signals cannot be observed directly, they may be partially

inferred. The interesting properties of observational learning follow because the

private signals are coarsely filtered by coarse public action observations.

The private observation of signal realizationσ
n
, with no other information,

yields an updatedprivate belief p
n
∈ [0, 1] in the state of the worldω = H.

The private beliefp
n

is a sufficient statistic for the private signalσ
n

in then’th

individual’s decision problem. Its cumulative distribution F (p|ω) in stateω is

a key primitive of the model. Define the unconditional cumulative distribution

F (p) = [F (p|H) + F (p|L)]/2. The theory is valid for arbitrary signal distribu-

tions, having a combination of discrete and continuous portions. But to simplify

the exposition, we assume a continuous distribution, with densityf . The state-

conditional densitiesf(p|ω) obey the Bayesian relationp = (1/2)f(p|H)/f(p)

with f(p) = [f(p|H) + f(p|L)]/2, implying f(p|H) = 2pf(p) andf(p|L) =

2(1 − p)f(p). The equalityf(p|H)/f(p|L) = p/(1 − p) can be usefully reinter-
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Figure 1:Private Belief Distributions. At left are generic private belief distribu-
tions in the statesL,H, illustrating the stochastic dominance ofF (·|H) ≻ F (·|L).
The three other panels depict the specific densities for the unbounded and bounded
private belief signal distributions discussed in the text.

preted as ano introspection condition: Understanding the model likelihood ratio

of one’s private beliefp does not allow any further inference. This special ratio

ordering implies that the conditional distributions sharethe same support, but that

F (p|H) < F (p|L) for all private beliefs strictly inside the support (Figure1).

Private beliefs are said to bebounded if there existp′, p′′ ∈ (0, 1) with F (p′) =

0 andF (p′′) = 1, andunbounded if F (p) ∈ (0, 1) for all p ∈ (0, 1). For instance,

a uniform densityf(p) ≡ 1 results in the unbounded private belief distributions

F (p|H) = p2 < 2p − p2 = F (p|L). But if f(p) ≡ 3 on the support[1/3, 2/3],

then the bounded private belief distributions areF (p|H) = (3p− 1)(1+ 3p)/3 <

(3p− 1)(5− 3p)/3 = F (p|L).

Analysis via Stochastic Processes.Because only the actions are publicly

observed with observational learning, thepublic belief q
n

in stateH is based on

the observed history of the firstn−1 actions alone. The associatedlikelihood ratio

of stateL to stateH is thenℓ
n
= (1 − q

n
)/q

n
. And if so desired, we can recover

public beliefs from the likelihood ratios usingq
n
= 1/(1 + ℓ

n
). Incorporating the

most recent private beliefp
n

yields the posterior beliefr
n
= p

n
/(p

n
+ ℓ

n
(1−p

n
))

in stateH. So indifference prevails at theprivate belief threshold p̄(ℓ) defined by

r̄ ≡
p̄(ℓ)

p̄(ℓ) + ℓ(1− p̄(ℓ))
(1)

Individualn chooses actiona = 1 for all private beliefsp
n
≤ p̄(ℓ), and otherwise
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picksa = 2. Since higher public beliefs (i.e. lower likelihood ratios) compensate

for lower private beliefs in Bayes Rule, the threshold is monotonep̄′(ℓ) > 0.

We now construct the public stochastic process. Given the likelihood ratioℓ,

actiona = 1, 2 happens with chanceρ(a|ℓ, ω) in stateω ∈ {H,L}, where

ρ(1|ℓ, ω) ≡ F (p̄(ℓ)|ω) ≡ 1− ρ(2|ℓ, ω) (2)

When individualn takes actiona
n
, the updated public likelihood ratio is

ℓ
n+1 = ϕ(a

n
, ℓ

n
) ≡ ℓ

n

ρ(a
n
|ℓ

n
, L)

ρ(a
n
|ℓ

n
, H)

(3)

since Bayes’ Rule reduces to multiplication in likelihood ratio space due to the

conditional independence of private signals. But in light of our stochastic order-

ing, the binary action choices are informative of the state of the world:

ρ(1|ℓ
n
, L) > ρ(1|ℓ

n
, H) and ρ(2|ℓ

n
, L) < ρ(2|ℓ

n
, H)

Observe what has just happened. Choices have been automated, and what

remains is a stochastic process(ℓ
n
) that is amartingale, conditional on stateH.

E[ℓ
n+1 | ℓ1, . . . ℓn, H ] =

∑

m

ρ(m|ℓ
n
, H)ℓ

n

ρ(m|ℓ
n
, L)

ρ(m|ℓ
n
, H)

= ℓ
n

Because the stochastic process(ℓ
n
) is a non-negative martingale in stateH, the

Martingale Convergence Theorem applies. Namely,(ℓ
n
) converges almost surely

to the (random variable) limitℓ∞ = lim
n→∞ ℓ

n
, namely having (finite) values in

[0,∞). The support ofℓ∞ contains all candidate limit likelihood ratios. Among

the most immediate of implications,learning cannot result in a fully erroneous

belief ℓ = ∞ with positive probability. Just as well, this follows from Fatou’s

Lemma in measure theory, forE[lim inf
n→∞ ℓ

n
|H ] ≤ lim inf

n→∞E[ℓ
n
|H ] = ℓ0.

Let’s continue to trace this logic, by next observing that the sequence of pairs

of actions and likelihood ratios(a
n
, ℓ

n
) is also aMarkov process on the domain
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{1, 2} × [0,∞). For we can see that each new pair only depends on the last:

(a
n
, ℓ

n
) 7→ (a

n+1, ϕ(an+1, ℓn)) with chance ρ(a
n+1|ℓn, H)

The big gun for Markov processes is the stationarity condition. While our two-

dimensional process(a
n
, ℓ

n
) is clearly nonstandard, Smith and Sørensen (2000)

prove the following version of the Markov stationarity condition: If the transition

functions ρ and ϕ are continuous in ℓ, then for any ℓ̂ in the support of ℓ∞ and for

all m, we have either ρ(m|H, ℓ̂) = 0 or ϕ(m, ℓ̂) = ℓ̂. In other words, either an

action does not occur, or it yields no new information, or both.

The stationary points of the(a
n
, ℓ

n
) process are therefore thecascade sets,

namely, those sets of likelihood ratiosℓ indexed by actionsm that almost surely

repeat actionm, namely,J̄
m

= {ℓ | ρ(m|ℓ,H) = 1}. With bounded private be-

liefs, there must exist some high (low) enough likelihood ratiosℓ that pull all

private beliefs below (above) the threshold posterior belief r̄. In this case, the

cascade sets̄J1, J̄2 for the two actions are both non-empty. When private beliefs

are unbounded, the cascade sets collapse to the extreme points, J̄1 = {∞} and

J̄2 = {0}. And since we have seen thatℓ = ∞ cannot arise with positive proba-

bility, we must converge to a point mass on the truth (orℓ = 0).

Next, we claim that convergence of beliefs implies convergence of actions.

Whenever someone optimally chooses actionm, any successor must optimally

follow suit if he bases his decision just on public information. For individual

n − 1 solves the same decision problem asn faces, but with more information,

(a1, . . . , an−2) andσ
n−1. Contrary actions completely “overturn” the weight of the

entire action history, howsoever long. By thisOverturning Principle, an infinite

subsequence of contrary actions precludes belief convergence. By the Martingale

Convergence Theorem, this almost surely cannot happen. By the last paragraph,

we conclude thatwith unbounded private beliefs, a correct herd eventually arises.

When Only Correct Herds Arise. Consider an illustrative example, with

individuals deciding whether to ‘invest’ in or ‘decline’ aninvestment project of
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uncertain value. Investing (action2) is risky, payingu > 1 in stateH and−1

in stateL; declining (action1) is a neutral action with zero payoff in both states.

Indifference prevails at the posterior beliefr̄ = 1/(1 + u). Then equation (1)

yields the private belief threshold̄p(ℓ) = ℓ/(u+ ℓ).

Assume first the earlier unbounded private beliefs example. Then transition

chances areρ(1|ℓ,H) = ℓ2/(u + ℓ)2 andρ(2|ℓ, L) = ℓ(ℓ + 2u)/(u + ℓ)2, and

continuations

ϕ( , ℓ) =
uℓ

u+ 2ℓ
< ℓ < ℓ+ 2u ≡ ϕ( , ℓ)

by equations (2)–(3). In other words, the likelihood ratio sequence constitutes a

stochastic difference equation. Figure 2 shows howJ̄2 = {0} is the only stationary

finite likelihood ratio in stateH: The limit ℓ∞ is thus concentrated on0, the truth.

Whenever action2 is taken, the new likelihood ratio isℓ
n
≥ 2u. This can only

happen finitely many times. So belief convergence implies action convergence,

namely, a herd. This example precisely illustrates the logic for one main result:

Interestingly, a herd arises despite the fact that a cascade never does, since at each

and every stage, a contrary action was possible. Since convergence occurs towards

the cascade set but forever lies outside, this is called alimit cascade.

When Incorrect Herds Must Sometimes Arise. When private beliefs are

bounded, public beliefs still converge, and they result in copycat herds. The main

difference now is the positive probability of incorrect herds. Indeed, adjust the

last example for the bounded beliefs family. Given the private belief threshold

p̄(ℓ) = ℓ/(u+ ℓ), the laws of motion (2)–(3) yield transitions

ϕ( , ℓ) ≡ ℓ
ℓ+ 4u

5ℓ+ 2u
< ℓ < ℓ

2ℓ+ 5u

4ℓ+ u
≡ ϕ( , ℓ)

with probabilities

ρ(1|H, ℓ) =
(4ℓ+ u)(2ℓ− u)

3(u+ ℓ)2
and ρ(2|L, ℓ) =

(ℓ+ 4u)(2u− ℓ)

3(u+ ℓ)2

for likelihood ratiosℓ ∈ (u/2, 2u). As seen in Figure 2 (left panel), a cascade can
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Figure 2:Transitions and Cascade Sets.Transition functions for the examples:
unbounded private beliefs (left), and bounded private beliefs (right). By the mar-
tingale property, the expected continuation in stateH lies on the diagonal. The
stationary points are where both arms hit the diagonal, or where one arm is taken
with zero chance (ℓ = 0 in the left panel;ℓ ≤ 2u/3 or ℓ ≥ 2u in the right panel).

never start after the first individual decides. But since thelikelihood ratio must

converge, a limit cascade starts, towards one of the cascadesetsJ̄1 or J̄2. A herd

on the corresponding action must then start eventually, lest beliefs fail to converge.

We now explore the easy logic for whyan incorrect herd occurs with strictly

positive probability given bounded beliefs. Again, we appeal to a big gun from

measure theory. For if we start at some public likelihood ratio ℓ0 ∈ (u/2, 2u), then

by Figure 2, dynamics are trapped in(u/2, 2u). Since0 ≤ ℓ
n
≤ 2u, Lebesgue’s

Dominated Convergence Theorem allows us to swap the expectation and limit

operations, and thus conclude thatE[ℓ∞ |H ] = lim
n→∞E[ℓ

n
|H ] = ℓ0. Write

ℓ0 = π(u/2)+(1−π)(2u), where0 < π < 1 wheneveru/2 < ℓ0 < 2u. Then the

random variableℓ∞ places weightπ onu/2 and weight1 − π on 2u. So in state

H, a herd arises with chanceπ on action2, and with chance1− π on action1.

Herds Without Cascades.For an interesting contrast to the discrete signal

world of BHW, observe that in Figure 2 (right panel), if we do not begin in a cas-

cade, we never enter one — even though a herd eventually starts. Indeed, visually,

it is clear thatℓ
n
∈ (u/2, 2u) for all n, provided that initiallyℓ0 ∈ (u/2, 2u). So

while the analysis in BHW explicitly depended on cascades ending the dynamics
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in finite time, a somewhat subtler dynamic story emerges here: Herds must arise

even though a contrarian has positive probability at every stage.

This no-cascades result is robust to changes both in the signal distribution

and payoffs. For it arises whenever the continuation functionsϕ(1, ℓ), ϕ(2, ℓ) are

monotone increasing inℓ. Monotonicity asserts the seemingly plausible condition

that a higher prior public belief implies a higher posteriorpublic belief after every

action. Yet, despite how intuitive this property may seem, it is violated by any

multinomial signal distribution (loosely, because it is “lumpy”).

We have shown in Smith and Sørensen (2008) that the continuation functions

are monotone under an easily verifiable regularity condition — namely, that the

unconditional density of the log-likelihood ratiolog(p/(1 − p)) be log-concave.

Most popular continuous distributions satisfy this condition, for instance, the

Gaussian, uniform, or generalized exponential. But the analysis in BHW and a

vast number of successor papers was based on the multinomialfamily — namely,

the one main signal family for which the regularity condition fails. This discussion

hereby corrects the claim by Bikhchandani, Hirshleifer, and Welch (2008), that

“In some continuous signal settings cascades do not form (Smith and Sørensen,

2000)”. On the contrary, one really must view cascades as theinformationally

rare outcome, a case where a tractable example class proved misleading. The true

touchstone of this literature is simply the observed phenomenon of action herding.

Cascades with Smooth Signals.To fully flesh out this picture, we offer an

example of a continuous signal distribution that violates the monotonicity result.

(This example is based on one included in the original working paper of Smith

and Sørensen (2000) found in Sørensen (1996)). To this end, we construct a suf-

ficiently heroic violation our log-concavity condition. Suppose that private be-

liefs p have a quadratic densityf(p) = 324(p− 1/2)2 over the bounded support

[1/3, 2/3]. Then the conditional private belief densities aref(p|H) = 2pf(p) and

f(p|L) = 2(1 − p)f(p), as depicted in the right panel of Figure 1. Integration

yields the (suppressed) polynomial expressions forF (p|L), F (p|H).

Returning to the running investment payoff example, for alllikelihood ratios
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Figure 3:Modified Transitions. Transition functions for bounded beliefs with a
quadratic density (left panel) and uniform bounded beliefswith and without 20%
crazy types (solid and dashed lines in right panel). The non-monotonicities of
transition functions (left panel) imply that a cascade ona starts whena is taken
whereℓ

n
is sufficiently close tōJ

a
. The transition function discontinuity vanishes

with the addition of crazy types (right panel), corresponding to the failure of the
overturning principle.

ℓ ∈ (u/2, 2u), we find the likelihood ratio transitions (left panel of Figure 3):

ϕ(1, ℓ) = ℓ
23(u+ ℓ)3 − 93ℓ(u+ ℓ)2 + 126ℓ2(u+ ℓ)− 54ℓ3

3(u+ ℓ)3 + 9ℓ(u+ ℓ)2 − 54ℓ2(u+ ℓ) + 54ℓ3
,

ϕ(2, ℓ) = ℓ
12(u+ ℓ)3 − 63ℓ(u+ ℓ)2 + 108ℓ2(u+ ℓ)− 54ℓ3

2(u+ ℓ)3 + 3ℓ(u+ ℓ)2 − 36ℓ2(u+ ℓ) + 54ℓ3
.

A More General Observational Learning Framework. The Overturning

Principle may not sound very realistic, a priori. Should we expect that a sin-

gle deviator from an action herd of one million individuals entirely can by him-

self change the course of subsequent play? Is the excessive reliance on the as-

sumption of common knowledge of rationality implicit in theoverturning prin-

ciple reasonable? Experimental results on the informational herding model, e.g.,

Çelen and Kariv (2004), has cast doubt on this. (The review by Anderson and Holt

(2008) speaks more broadly to such experimental evidence.)

It turns out that our reduction of the model to a stochastic difference equation

in the likelihood ratio obeying a martingale property is robust to a wide array of
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economically-inspired modifications that can accommodatedeviations from the

overturning principle. For instance, suppose that a fraction of ‘crazy’ individuals

randomly choose actions. Figure 3 depicts the modified continuation functions in

the right panel, for a case where 10% of individuals are committed to action1 and

10% are committed to action2. The remaining population is rational. Since all ac-

tions occur with a non-vanishing frequency, none can have drastic effects. Yet, the

limit beliefs are unaffected by the noise, contrary actionsbeing deemed irrational

(and ignored) inside the cascade sets. Of course, the failure of the overturning

principle invalidates the argument that limit cascades force herds. But because

actions are still informative of beliefs, social learning is productive.

We show more strongly in Smith and Sørensen (2000) that herdsnonetheless

do arise among all rational (non-crazy) individuals, when beliefs are bounded and

have non-zero density near the bounds. Essentially, the public likelihood ratios

(ℓ
n
) converges so fast that the chance of an infinite string of rational contrarians

is zero. (Of course, an outside observer of the action history would hardly be able

to detect infrequent rational non-herders, should they occur.)

Alternatively, we may relax the assumption that all individuals solve the same

decision problem. Individuals may well have different rational preference types.

First, if ordinal preferences are aligned, so that everyonetakes action2 for stronger

beliefs in stateH, then the limit likelihood ratioℓ∞ is focused on the intersection

of their respective cascade sets.

Suppose instead that the ordinal preferences differ for some pair of types.

Then there arises the possibility of aconfounded learning point. This is a non-

cascade likelihood ratioℓ∗ such that ifℓ
n−1 = ℓ∗, then individualn’s obser-

vation of actiona
n

is non-informative — the probabilities satisfyρ(1|H, ℓ∗) =

ρ(1|L, ℓ∗). In this case,ℓ
n+1 = ℓ

n
following either action of individualn. If such

a confounding outcomeℓ∗ exists, then it islocally stochastically stable: there is

positive probability thatℓ∞ = ℓ∗ provided someℓ
n

is ever sufficiently close toℓ∗.

Conclusion.This model of observational learning explores a modeling frame-

work to analyze imitation of observed behavior. The model isquite tractable.
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Public beliefs based on the ever lengthening action historymust converge to a

limit, which is among the fixed points of a stochastic difference equation. As long

as all ordinal preferences coincide, we eventually settle on an action herd, even

though beliefs might never settle down. When private signals sufficiently violate

a log-concavity condition, a cascade can arise.

Lee (1993) noted that beliefs can be perfectly revealed whenthe action space

is continuous just like the belief space. The social learning paradigm instead

by and large explores when a coarse action set communicates the private beliefs

of decision makers. It may sufficiently frustrates the learning dynamics that an

incorrect action herd occurs. If individuals seek to help each other by taking more

informative actions, and if this signaling is understood bysuccessors, then any

cascade sets shrink, and the welfare of later individuals generally rises. As we

show in Smith and Sørensen (2008), the analysis is qualitatively similar to that

outlined here, although solving for the new, forward-looking transition chances

requires dynamic programming.

A greater message of social learning is the self-defeating nature of learning

from others. Moving outside the finite action, sequential entry model into a Gaus-

sian world, Vives (1993) found that social learning is slower than private learning

in a market setting where individual decisions are obscuredby Gaussian noise.

If observations are not made of an ever expanding history, such as simply

knowing the number but not order of past action choices, thenour approach is

less useful. The survey by Gale and Kariv (2008) discuss the problem of learning

in networks. In Smith and Sørensen (1994), and chapter 3 of Sørensen (1996),

we identified a case where the stochastic difference equation is a useful tool, even

when public beliefs do not follow a martingale.
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