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Abstract

This paper produces a theory of value for Gaussian information with two states and two actions, tracing
the solution of the option pricing formula, but for the process of beliefs. We derive explicit formulas for the
value of information. The marginal value is convex and rising, concave and peaking, and finally convex and
falling. As the price falls, demand is initially zero, and eventually logarithmic. Its elasticity exceeds one,
and falls to zero with the price. Demand is hill-shaped in beliefs, zero at extremes. Our results approximate
models where information means the sample size for weak discrete informative signals.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Information acquisition is an irreversible process. One cannot recapture the pristine state of
ignorance once apprised of any given fact. Heat dissipation also obeys the arrow of time: the heat
equation in physics describing its transition is not time symmetric. This paper argues that this link is
not merely philosophical. In static models of Bayesian information acquisition, the value function
of prior beliefs and information quantity obeys an inhomogeneous heat equation. We show that a
nonlinear transformation of the value function and beliefs exactly obeys the heat equation. This
paper exploits this fact and crafts a global theory of information and demand. For a binary state
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world, we derive explicit formulas that provide the bigger picture on the famous nonconcavity
of information, and the unique demand curve that it induces: we characterize the “choke-off
demand” level, and also make many novel findings—e.g., demand elasticity is monotonically
falling to zero.

Information is an important good for decision-making, and therefore in game theory and general
equilibrium analysis. Yet information is also a poorly understood good. This first of all owes to
a lack of agreed units. Blackwell’s Theorem only considers one signal, for instance. We thus
start by measuring information in units corresponding to signal sample sizes, or equivalently, the
precision of a normally distributed signal. This is the foundation of our entire theory.

Consider a static binary action decision problem where the decision cannot be postponed, there
is no option value of waiting, one must act now and bear the consequences. For instance, a pregnant
woman decides on an amniocentesis to detect fetal genetic defects, or a company decides whether
to enter a market before its competitors. More formally, we have the standard ∨-shaped payoff
function of the belief in the high state: a decision maker takes the low action left of a cross-over
belief, and the high action right of it. We show that the ex post value of information is a multiple of
the payoff to a call option whose strike price is the cross-over belief. Our analysis not surprisingly
traces the development of the option pricing formula.

One technical contribution opens the door to this option story, showing that a belief process
behaves like the price process of the underlying option. Yet the belief process is less tractable
than the geometric Brownian motion for asset prices, and our transformation thus more complex.
We produce in Lemmas 1–4 a transformation jointly of time and beliefs yielding a detrended
log likelihood ratio process. This is the unique process sharing two critical characteristics: first,
it has unit diffusion coefficient (variance), and second it maintains a one-dimensional stochastic
analysis. This yields in Lemma 5 a simple transition law for beliefs. This density is conveniently
proportional to its time derivatives (Lemma 6).

Using the belief process, the payoff function satisfies an inhomogeneous heat equation
(Lemma 7). This equation reveals that information has positive marginal value iff payoffs are
convex in beliefs. In our critical innovation, we perform a change of variables, blending time
and log-likelihood ratios, and a nonlinear transformation of payoffs to produce the standard heat
equation. This leads us to the option pricing exercise: the heat equation approach of [1] and the
martingale measure tack of [4] in Lemma 8. We juxtapose both proofs for instructive value. Either
way, Theorem 1 explicitly expresses the value of information in terms of the normal distribution.

We then turn to our substantive findings. Theorem 2 expresses the marginal value of information
in terms of the derivatives of the transition belief density. This reduces the analysis of the value
derivative to a polynomial in the reciprocal demand. Using this, Corollary 1 finds that the marginal
value is initially zero—the nonconcavity—as found in [12], and rigorously formalized in [2]. The
sufficient conditions in [2] for this result, the sharpest known to date, do not encompass our
model. So this is a novel result: in a finite decision problem, the value of gaussian information, as
measured by its precision, is initially convex. By Theorem 3, the marginal value convexly rises,
is then concave and hill-shaped, and finally convex and falling—as in Fig. 1.

So with linear prices, information demand vanishes at high prices, before jumping to a positive
level (Theorem 4) strictly below the peak marginal value. The Law of Demand then kicks in,
and demand coincides with the marginal value schedule. One never buys just a little information.
Theorem 5 quantifies the nonconcavity: the minimal expenditure on average is about 2.5% of the
expected payoff stakes.

In Theorem 6, we find that information demand is hill-shaped in beliefs, unlike in the dynamic
model with impatience of [10]. Also, it jumps down to 0 near beliefs 0 and 1, when the choke-off
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Fig. 1. Marginal value of information.

demand binds. Here we see an interesting contrast with sequential learning models, because our
thresholds owe to global optimality. Completing this picture, Theorem 7 finds that information
demand is hill-shaped in beliefs (quasi-concave, precisely)—opposite to [10].

A novel topic we explore is the demand elasticity. Theorem 8 asserts that the information
demand is initially elastic at interior beliefs; the elasticity is globally falling in price, and is
vanishing in the price. This dovetails with what comes next. We revisit in Theorem 9 the large
demand analysis of [9] now quickly via our formulas rather than large deviation theory. [9]
also measure information by sample size, but assume cheap discrete information, and not our
continuous signals. The marginal value of information eventually vanishes exponentially fast,
producing the logarithmic demand of [9] at small prices. We sharpen the demand approximation,
and find that it is monotonically approached.

Our Gaussian information is generated by the time that one observes a Brownian motion with
state-dependent drift, but state-independent diffusion coefficient. However, consider a discrete
model where the decision-maker chooses how many conditional iid signals to draw, with a state-
independent variance. Theorem 10 shows that Bayes’ updating weakly approaches the continuous
time Brownian filter as the signal strength vanishes, and the implied likelihood ratio converges
to 1. We prove that garbled signals have precisely this property. We also show in Theorem 11 that
the demand formulas and value of information approximate the discrete formulas. In summary,
the paper produces an approximate value of information and demand curve for all models where
information is measured by the size of a sample of discrete information “bits’’, namely weak
signals, with (asymptotically) known variance.

The experimentation literature aside, we know of one related information demand paper. In [7],
a consumer faces a linear price for precision of a Gaussian signal given a (conjugate) Gaussian
prior. For a hyperbolic utility function, he can write utility as a function of signals and avoid
computing the density of posteriors. Our theory of the binary state model is not driven by such
linearity.

We next lay out the model, and develop the results on beliefs, the value and marginal value of
information, demand, and weak discrete signals.

2. The model

2.1. The decision problem

Assume a one-shot decision model, where a decision maker (DM) chooses how much infor-
mation to buy, and then acts. For simplicity, we assume two actions A, B, whose payoffs ��

A, ��
B
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depend on the payoff-relevant state of the world � = L, H . Action B is best in state H and action
A is best in state L: 0��H

A < �H
B and �L

A ��L
B �0. 1 Since the DM has the prior belief q ∈ (0, 1)

that � = H , the convex ∨-shaped expected payoff function is

u(q) = max〈q�H
A + (1 − q)�L

A, q�H
B + (1 − q)�L

B〉 ≡ max〈�L
A + mq, �L

B + Mq〉 (1)

thereby defining m = �H
A − �L

A and M = �H
B − �L

B . We assume no dominated actions, so that
payoffs have a kink at a cross-over belief q̂ = (�L

A − �L
B)/(M − m) ∈ (0, 1).

The maximum payoff stakes here are (�H
B − �H

A ) + (�L
A − �L

B) = M − m > 0. The DM never
incurs a payoff loss greater than M − m from a wrong action choice; this bound is tight when
either difference �H

B − �H
A �0 or �L

A − �L
B �0 vanishes.

2.2. The standard information acquisition model

Given is a probability space (�,F, P ), where � is a set, F a �-algebra of subsets of �, and P

a probability measure on F . This space captures all uncertainty, including the state � = L, H .
Before deciding, the DM can obtain any level t �0 of information about the state �. While

more information could plausibly connote better quality information, we mean that the DM with
information level t2 knows strictly more about the state of the world than does the DM with
information level t1 � t2. So assume a filtration {Ft : t ∈ [0, ∞)}, so that the �-algebras are nested
Ft1 ⊂ Ft2 ⊆ F when t1 < t2. The DM observes Ft , updates her beliefs to q(t) = P(H |Ft ) from
the prior q(0) = q.

The ex ante expected payoff (prior to seeing Ft ) is u(t, q) = E[u(q(t))|q(0) = q], and the
value of information is v(t, q) = u(t, q) − u(q); namely, the expected increase in utility from
observing Ft . Faced with a constant marginal cost c > 0 of information, the DM can choose the
observation ‘time’ t at cost ct . The net payoff given the level t is v(t, q) − ct . This is maximized
by choosing the information level �(c, q) > 0, which is our demand schedule. Finally, the DM
chooses the best action.

2.3. The units of continuous information

We actually have a filtration in mind. Let the DM observe the time-t realization of a Brownian
motion X(·) with drift ±� in states H, L, respectively, and constant diffusion coefficient � > 0.
Thus, the signal is twice as informative when t doubles—just as is true for the sample size
of conditionally iid signals. We show in Section 7 that this approximates discrete bit sampling
models. Throughout this paper, time is used only metaphorically, but really means the level of
information: the model is formally static!

By Theorem 9.1 in [8], when observing the realizations of the Brownian Motion X(t) in con-
tinuous time, the belief q̃(t) = P(H |Ft ) obeys the Bayes filter 2 dq̃(t) = �q̃(t)(1− q̃(t)) dW(t),
where � ≡ 2�/� is the signal/noise ratio, and W(·) is a standard Wiener process w.r.t. the un-

1 We assume without loss of generality for simplicity that �H
A

= 0, since the decision must be made. An analogous

choice of �H
B

= 1 is not allowed later on, without also scaling the cost function.
2 For an intuition, observe that by Bayes rule,

q(t + �) − q(t) = q(t)P (� signal|R)

q(t)P (� signal|R) + (1 − q(t))P (� signal|L)
− q(t) ∝ q(t)(1 − q(t)).
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conditional measure P . If we define q(t) = q̃(t/�2), then 3 (dq(t))2 = (dq̃(t))2/�2 = q(t)2

(1 − q(t))2 dt , and thus

dq(t) = q(t)(1 − q(t)) dW(t). (2)

We henceforth set � = 1 and compute the time t̂ with any �̂ > 0 from t̂ = t/�̂2.

3. Beliefs and log likelihood ratios

We begin by describing the limit behavior of beliefs q(·).

Lemma 1 (Long run beliefs). The belief process in (2) satisfies

(a) P [inf{t �0 | q(t) = 0 or 1} = ∞] = 1,

(b) P
[

lim
t→∞ q(t) = 0

]
= 1 − P

[
lim

t→∞ q(t) = 1
]

= 1 − q.

So the probability that q(t) /∈ (0, 1) in finite time is zero and q(∞) = 0 or 1.

The proof of (a) is in the appendix: q(·) avoids the boundary as the diffusion coefficient in (2)
vanishes quickly near 0, 1. The martingale property gives part (b).

We seek to derive from posterior beliefs a tractable process that contains the same information.
In particular, we aim for a simple standard Wiener process. While the logLR of stateL to stateH is a
martingale on state H , this is not useful unconditionally. We instead first subtract the deterministic
portion of the drift from the logLR, and then change measure from P to a conditional measure Q

that yields a martingale. In Lemma 2, we find the unique monotone transformation of posterior
beliefs with a unit diffusion coefficient. Next, in Lemma 4, we change probability measure so that
this transformation retains the martingale property. There is a degree of freedom here, which we
resolve in Lemma 3 on grounds of tractability.

Lemma 2 (Likelihood ratios). Let z(t) = 	(t, q(t)), where 	 ∈ C2. If the diffusion coefficient of

z(·) is one then 	(t, q(t)) = A(t) + log
(

q(t)
1−q(t)

)
, where |A(t)| < ∞.

Proof. Using Ito’s Lemma we get

dz(t) =
(
	t + 1

2	qqq(t)2(1 − q(t))2
)

dt + 	qq(t)(1 − q(t)) dW(t). (3)

Solving 	qq(t)(1 − q(t)) = 1 yields 	(t, q(t)) = A(t) + log
(

q(t)
1−q(t)

)
. �

This lemma is intuitive, since Bayes rule is multiplicative in likelihood ratios, and therefore
additive in log-likelihood ratios. Substituting from (3), we then find

dz(t) =
(

A′(t) − 1 − 2q(t)

2

)
dt + dW(t) ≡ 
(t) dt + dW(t), (4)

3 To justify the first inequality, E[W2(t/�2)] = t/�2 and thus dW2(t/�2) = dt/�2.
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where we have implicitly defined 
(t). Next, define the probability measure Q on (�,Ft ) by the
Radon–Nikodym derivative:

dQ

dP
= R(t) = exp

(
−1

2

∫ t

0

2(s) ds −

∫ t

0

(s) dW(s)

)
. (5)

Lemma 3 (Radon–Nikodym derivative). R(t) = q(t)/q iff A(t) = −t/2.

This result is important as it does not introduce a new stochastic process. Any different R–N
derivative would yield two imperfectly correlated stochastic processes q(·) and R(·), and render
derivation of our results exceedingly difficult. A unique change of measure maintains the uni-
dimensionality of the stochastic process.

To prove Lemma 3, write Y (t) = − 1
2

∫ t

0 (1 − q(s))2 ds + ∫ t

0 (1 − q(s)) dW(s). Guessing
q(t) = qeY(t) correctly yields, using Ito’s Lemma, dq(t) = q(t) dY (t) + 1

2q(t)(dY (t))2 =
q(t)(1 − q(t)) dW(t)—namely, our belief filter (2). In other words,

q(t) = q exp

(
−1

2

∫ t

0
(1 − q(s))2 ds +

∫ t

0
(1 − q(s)) dW(s)

)
.

So motivated, if we set 
(s) = q(s) − 1 in (5), then we get the result of Lemma 3.
Eq. (4) implies that A(t) = −t/2, which we henceforth assume. Thus,

z(t) = 	(t, q(t)) = log

(
q(t)

1 − q(t)

)
− 1

2
t ⇔ q(t) = �(t, z(t)) = 1

e
− 1

2 t−z(t) + 1
. (6)

We next exploit the fact that the partially de-trended log-likelihood ratio z(·) is a Q-Wiener
process—by Girsanov’s theorem (see [11, pp. 155–156]).

Lemma 4 (Log likelihood ratio). The process z(·) obeys dz(t) = dŴ(t), where the process
Ŵ (t) = ∫ t

0 (q(s) − 1) ds + W(t) is Wiener under the probability measure Q. So z(·) is a
Q-martingale, and the pdf for transitions z �→ y in time t > 0 equals:

1√
t
�

(
y − z√

t

)
= 1√

2�t
e

−(y−z)2

2t (7)

for all (t, z, y) ∈ (0, ∞) × R2, where �(y) = 1√
2�

e− y2

2 is the standard normal pdf.

We now derive the belief transition pdf

�(t, q, r) = �
�r

P (q(t)�r|q(0) = q),

using the transition pdf (7) for transformed log-likelihood ratios z(t) (Fig. 2). We then repeatedly
exploit this belief transition pdf to derive the formula for the value and marginal value of infor-
mation, as well as the properties of the demand function. We next produce an extremely useful
exact formula for it.
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r

Fig. 2. Transition probability function. We plot the symmetric pdf �(t, q, r) for transitions from q = 0.5 to any belief r

after an elapse time t = 1.

Lemma 5 (Beliefs). The transition pdf of beliefs q(t) is given by

�(t, q, r) =
q�
(
− 1

2

√
t + 1√

t
L(r, q)

)
r2(1 − r)

√
t

=
√

q(1 − q)

r3(1 − r)32�t
e− 1

8 t− 1
2t

L2(r,q) (8)

for all (t, q, r) ∈ (0, ∞) × (0, 1) × (0, 1), where L(r, q) = log
(

r(1−q)
(1−r)q

)
.

Proof. Fix a measurable real function �(·). Then
∫ 1

0 �(t, q, r)�(r) dr equals

Eq [�(q(t))] = qEq

[
q(t)

q

�(q(t))

q(t)

]
= qEQ

q

[
�(q(t))

q(t)

]
= qE

Q

	(0,q)

[
�(�(t, z(t)))

�(t, z(t))

]
,

where we write Eq [·] ≡ E[·|q(0) = q] and Ez[·] ≡ E[·|z(0) = z]. Use Lemma 4, the definitions
(6) of � and 	, and Dr	(t, r) = 1/(r(1 − r)), to express this expectation as

Eq [�(q(t))] = q√
t

∫ ∞

−∞
�

(
z(t) − 	(0, q)√

t

)(
e
− 1

2 t−z(t) + 1

)
�

(
1

e
− 1

2 t−z(t) + 1

)
dz(t)

= q√
t

∫ 1

0
�

(
	(t, r) − 	(0, q)√

t

)
�(r)

r

�	(t, r)

�r
dr

= q√
t

∫ 1

0

1

r2(1 − r)
�

(
1√
t

log

(
r(1 − q)

q(1 − r)

)
−

√
t

2

)
�(r) dr.

Using the definition of L(r, q), this yields (8), if we equate the coefficient of �(t). �

In particular, this yields a critical time derivative:

Lemma 6 (t-Derivative). The belief transition pdf q(t) satisfies for 0 < q, r < 1 and t > 0:

�t (t, q, r) = �(t, q, r)

[
−1

8
+ L2(r, q)

2t2
− 1

2t

]
.
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"strike price"

q q
u
(q

)

u(q) = M max [0,q-q ]

Fig. 3. Information valuation and option pricing.

4. The value of information

4.1. Option pricing analogy

Before deriving our value function, we motivate this with a related exercise done in finance. To
this end, simplify matters by positing that action A is a safe action yielding zero payoff, so that
�H

A = �L
A = 0. Then Eq. (1) can be written as

u(q) = M max〈0, q − q̂〉,
as in Fig. 3. Here we see that u(q)/M can be interpreted as the payoff of a European call option
with strike price q̂ and underlying asset price q.

Black and Scholes [1] derive the option pricing formula when the underlying asset follows
a geometric Brownian motion. They use an arbitrage argument to deduce a parabolic PDE that
reduces to the heat equation after a change of variable, using the time to maturity. But geometric
Brownian motion is still far more tractable than our nonlinear belief diffusion (2), and thus
only a time rescaling of the range variable is needed. By contrast, we use a more complicated
transformation.

Refs. [4] and [5] later derived the option pricing formula via martingale methods. The z-process
is a martingale under the measure Q just as the discounted asset price is a martingale under the
‘pricing measure’ in [4]. Our first approach follows this line of thought, but its execution requires
a simultaneous range and domain transformation.

4.2. Value function derivation

The expected value u(t, q) of a “quantity’’ t of information obeys u(t, q) = Eq [u(q(t))]. By
the backward equation, ut dt = E[dq]uq + 1

2E[(dq)2]uqq . Since E[dq] = 0 by (2):

Lemma 7 (Inhomogeneous heat equation). Expected payoffs u(t, q) satisfy

ut (t, q) = 1
2q2(1 − q)2uqq(t, q) (9)

for all (t, q) ∈ (0, ∞) × (0, 1) with the initial condition 4 : u(0, q) = u(q).

4 For any t > 0, the expected value u(t, q) is a convolution of the V -shaped boundary function u(0, q) and a smooth
kernel density. Hence, it is differentiable.
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u

q

Fig. 4. Analogy with Fourier’s law. Fourier’s Law of Heat Conduction is shown—i.e., how the heat flow is locally positive
exactly when the heat distribution is locally convex on the bar. Specifically, if u(t, q) is the temperature at position q on
a bar, with ends held constant at temperatures u(0) and u(1), respectively, then the temperature is increasing ut > 0 iff
uqq > 0. This is exactly analogous to the behavior of expected payoffs as we acquire more information.

Neatly, (9) asserts the equivalence of two truths: the marginal value of information is non-
negative (ut �0) and the value of information is convex in beliefs (uqq �0). Likewise for the
heat equation, the temperature gradient within a finite bar obeys a qualitatively similar law where
convexity is critical, as Fig. 4 depicts. 5 The option value is convex in the price, just as expected
payoffs are convex in beliefs.

As the inhomogeneous heat equation (9) is not directly soluble, we define z = log
(

q
1−q

)
and

transform expected payoffs as h(t, z) = u
(
t, 1

1+e−z

)
(1 + e−z).

Lemma 8 (A stochastic representation). Expected payoffs are represented as

h(t, z) = EQ
z

[(
e
− 1

2 t−z(t) + 1

)
u

(
1

e
− 1

2 t−z(t) + 1

)]
. (10)

Proof 1 (The Martingale method). We follow [4], and exploit our martingale z(·). The posterior
expected payoff u(t, q) equals

qEP
q

[
q(t)

q

u(q(t))

q(t)

]
=qEQ

q

[
u(q(t))

q(t)

]
=qE

Q

	(0,q)

[(
e
− 1

2 t−z(t)+1

)
u

(
1

e
− 1

2 t−z(t)+1

)]

using Lemma 4. Finally, u(t, q) = qh (t, 	(0, q)) gives the desired equation (10).

Proof 2 (The heat equation). We now adapt [1]. Change variables 6 in (9) from beliefs q to Z =
log[q/(1 − q)] + t/2 = 	(−t, q)—where t is the elapse time. Let H(t, Z) = h(t, Z − t/2) =
u
(
t, 1

et/2−Z+1

) (
et/2−Z + 1

)
. Then the heat equation obtains, Ht(t, Z) = 1

2HZZ(t, Z), as we

argue in the appendix.
The heat equation solution (e.g. [6, p. 254]) yields:

H(t, Z) =
∫ ∞

−∞
1√
t
�

(
y√
t

)(
e−Z−y + 1

)
u

(
1

e−Z−y + 1

)
dy.

Finally, using H(t, Z + t/2) = h(t, Z) gives the representation (10). �

5 Shannon [13] also offered a powerful analogy between information and energy.
6 We thank Robert Israel of UBC for first pointing out a related transformation.
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q

u

Fig. 5. Posterior expected payoff with different information levels. The parameters are: q̂ = 0.48, �H
A

= 1, �L
A

= 2,

�H
B

= 2.1, and �L
B

= 1. The bottom solid line graph is u(q), while the top dotted line is ū(q). Between are
u(1, q), u(5, q), u(15, q), the graphs −, – ·,—.

We now exploit this stochastic representation to derive the value of information. By Lemma 1,
the long-run limit of the expected payoff is given by

lim
t↑∞ u(t, q) = qu(1) + (1 − q)u(0) ≡ ū(q), (11)

i.e., we can write u(∞, q) = ū(q). Let us define the full information gap as follows

FIG(t, q) = u(∞, q) − u(t, q) = ū(q) − u(t, q). (12)

Thus, FIG is the difference between the expected payoffs with full information and time t infor-
mation. We now explore the behavior of the value function v(t, q).

Theorem 1 (The value of information formula). The expected payoff satisfies u(t, q) = q�H
B +

(1 − q)�L
A − FIG(t, q), where the full information gap FIG(t, q) equals

q
(
�H

B − �H
A

)
�
(
− 1

2

√
t + 1√

t
L(q̂, q)

)
− (1 − q)

(
�L

A − �L
B

)
�
(
− 1

2

√
t − 1√

t
L(q̂, q)

)
and � is the standard normal cdf. The value of information v(t, q) = u(t, q) − u(q) is

v(t, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q
(
�H

B − �H
A

)
�
(

1
2

√
t − 1√

t
L(q̂, q)

)
−(1 − q)

(
�L

A − �L
B

)
�
(
− 1

2

√
t − 1√

t
L(q̂, q)

)
∀q � q̂,

−q
(
�H

B − �H
A

)
�
(
− 1

2

√
t + 1√

t
L(q̂, q)

)
+(1 − q)

(
�L

A − �L
B

)
�
(

1
2

√
t + 1√

t
L(q̂, q)

)
∀q � q̂.

(13)

The appendix proof uses the log-normal distribution of e−t/2−z(t) in Lemma 8.
Fig. 5 illustrates the expected payoff with different information levels. The value of information

v(t, q) is high for q near the cross-over belief q̂, and zero when q = 0, 1. The value behaves like
the time value of the option, and is increasing in t just as the time value of the option is increasing
in the time to maturity.
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5. The marginal value of information

Information only has positive marginal value if we hit the cross-over belief q̂ at time t ; otherwise,
prior beliefs dictate the ex post optimal action. The value of information is then increasing in the
payoff slope difference M − m and belief variance q̂2(1 − q̂)2. Since v(t, q) = u(t, q) − u(q),
all time derivatives of the value of information v(t, q) and expected payoffs u(t, q) coincide, and
admit a similar expression. Indeed:

Theorem 2 (Time derivatives). The t-derivatives of v(t, q), for n = 1, 2, . . . , are

(
�
�t

)n

v(t, q) = 1

2
q̂2(1 − q̂)2(M − m)

(
�
�t

)n−1

�(t, q, q̂) (14)

for all (t, q) ∈ (0, ∞) × (0, 1), where m ≡ �H
A − �L

A < �H
B − �L

B ≡ M . In particular, the
marginal value of information is given by a scaled standard normal density:

vt (t, q) = (M − m)q(1 − q̂)

2
√

t
�

(
−1

2

√
t + 1√

t
L(q̂, q)

)
. (15)

Eq. (15) is proven by differentiating (13). For a less mechanical development of the marginal
value of information, write ut (t, q) ≈ Eq [ut (ε, q(t))], for small ε > 0. Since the backward
equation ut = 1

2q2(1 − q)2uqq applies at time ε > 0, we have

ut (t, q) ≈
∫ 1

0

1

2
r2(1 − r)2uqq(ε, r)�(t, q, r) dr ≈ M − m

4ε

∫ q̂+ε

q̂−ε

r2(1 − r)2�(t, q, r) dr

where we approximate uqq near the kink with uqq(ε, q) ≈ M−m
2ε

for all q ∈ (q̂ − ε, q̂ + ε),
and otherwise uqq(ε, q) = 0. Taking the limit ε → 0, we get uqq(0, q̂) = ∞ and otherwise
uqq(0, q) = 0. Thus, ut (t, q) ≈ 1

2 (M − m)q̂2(1 − q̂)2�(t, q, q̂).
Theorem 2 is key, as the demand and price elasticity, respectively, turn on ratios of the value

and marginal value to their derivatives, yielding polynomials in 1/t .
Also, while the value of information behaves continuously as beliefs q converge upon the

cross-over belief q̂, the marginal value explodes for small t . Indeed:

Corollary 1 (Derivatives). The marginal value of information obeys 7 :

(a) For all t ∈ (0, ∞), vt (t, q) ∈ (0, ∞) for all q ∈ (0, 1), while vt (∞, q) = 0 for all q,
(b) (Radner–Stiglitz [12]) vt (0+, q) = 0 for all q �= q̂, while vt (0+, q̂) = ∞,
(c) vtn(0+, q) = 0 for all q �= q̂ and n = 2, 3, . . . , while vtn(0+, q̂) = ∞.

The proof is in the appendix. Part (b) is the ‘nonconcavity in the value of information’ conclusion
of [12] and [2], since a marginal value that starts at zero cannot globally fall. (See Fig. 6.) We go
beyond this conclusion in part (c), finding that all higher order derivatives also initially vanish for
our informational framework.

The Inada condition of [12] or of [2] (their assumption A1) does not apply. Our signal X has
mean ��t and variance t . The Inada in [12] condition fails, and assumption A1 in [2] fails, since

7 As usual, vt (0+, q) = lims↓0 vt (s, q), and vtn (0+, q) = lims↓0 vtn (s, q).
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Fig. 6. Value and marginal value of information. At left (right) is the graph of the value (marginal value) of information
for the parameter values q̂ = 0.5, �A

H
= 1, �A

L
= 2, �B

H
= 2, and �B

L
= 1. The solid lines are the values for q = 0.2 or

0.8, where the nonconcavity arises, and the dotted lines correspond to the values for the cross-over belief q = 0.5.

the signal density derivative in t explodes at t = 0—as [2] acknowledge for [7]. But had we
assumed the convex continuous action model of [7], nonconcavity would be no longer clear:
indeed, ut (0+, q) = limt→0 ut (t, q) = limt→0

1
2q2(1−q)2uqq(t, q) = 1

2q2(1−q)2uqq(q) > 0
by assumption. 8 As standard as our Gaussian model is—the limit of the discrete sampling models,
as we see in Section 8—it escapes known sufficient conditions. And yet vt (0+, q) = 0.

We now globally describe the marginal value of information. Let us define an inflection point
in the value of information, where the marginal value peaks:

TFL(q) = 2

[√
1 + L2(q̂, q) − 1

]
. (16)

This inflection point demand is surprisingly independent of the payoff levels except insofar as it
affects the cross-over belief q̂. This holds in spite of the fact that the marginal value of information
(15) is indeed increasing in the payoff stakes M − m.

Theorem 3 (Value of information). Fix q ∈ (0, 1) with q �= q̂.

(a) The value of information is convex until t = TFL(q), after which it is concave.
(b) The marginal value is rising until TFL(q) then falling. It is convex in [0, T1(q)], concave in

(T1(q), T2(q)), and convex for [T2(q), ∞), where TFL(q) ∈ (T1(q), T2(q)).

Proof. Eq. (16) yields TFL(q) ∈ [0, ∞) and TFL(q) = 0 iff q = q̂. From (9) and Theorem 2,

vtt (t, q) = vt (t, q)

[
−1

8
+ L2(q̂, q)

2t2
− 1

2t

]
, (17)

where vt (t, q) > 0, by Corollary 1. Now, vtt (t, q) = 0 gives �(t, q) ≡ t2 + 4t − 4L2(q̂, q) = 0,
yielding (16). Part (a) owes to �(t, q)≶0 for all t≶TFL(q).

For (b), note that vttt (0+, q) = 0 according to Corollary 1. Second, by Theorem 2

vttt (t, q) = vt (t, q)

[(
−1

8
+ L2(q̂, q)

2t2
− 1

2t

)2

− L2(q̂, q)

t3
+ 1

2t2

]
(18)

and hence vttt (t, q) = 0 if t4 + 8t3 + (48 − 8L2)t2 − 96L2t + 16L2 = 0. Clearly, vttt > 0
near t = 0. So if there is only one positive root T1(q) then vttt (t, q) < 0 for all t > T1(q).

8 In work in progress on the non-concavity property in [12], we explore this continuum action world more fully.
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Since vttt (t, q) > 0 for large t , if there is a strictly positive root then there must be two strictly
positive roots T1(q) and T2(q). If there are no positive roots then vttt (t, q) > 0 for all t > 0. By
Corollary 1(c), this gives vtt (t, q) > 0 for all t > 0—contradicting part (a). So there are two
positive roots. We have T1(q) < TFL < T2(q) since vtt (TFL, q) = 0 and vtt (t, q) > 0 for t < TFL,
hence (b). �

By Lemma 6, the convexity before TFL(q) owes to the rising transition pdf (�t (t, q, q̂)�0) and
the concavity after TFL(q) to the decreasing pdf (�t (t, q, q̂)�0).

6. The demand for information

6.1. The demand curve

We now consider linear pricing of information c(t) = ct , where c is a strictly positive constant.
Demand �(c, q) maximizes consumer surplus

�(t, q) = u(t, q) − ct = u(q) + v(t, q) − ct. (19)

We fix q �= q̂, ignoring the cross-over belief q̂, nongeneric since it is a single point; we can thus
avoid hedging our theorems. Because of the non-concavity near quantity 0, and since the marginal
value finitely peaks, there exists a choke-off cost cCH(q) > 0, above which demand is zero, and
an implied least choke-off demand, TCH(q) > 0. At the cost cCH(q) > 0, demand is TCH(q) and
consumer surplus is zero. Thus, marginal value is falling, and so TCH(q)�TFL(q), as in Fig. 7.
Summarizing:

Cost ‘choke-off’: cCH(q) = vt (TCH(q), q) = v(TCH(q), q)

TCH(q)
. (20)

Define TFOC(c, q) > TFL(q) by the FOC vt (TFOC(c, q), q) = c. This is well-defined iff
c�vt (TFL(q), q), since vtt (TFL(q), q) < 0 on (TFL(q), ∞) (Theorem 3(b)). The FOC captures
demand precisely when the cost falls below the choke-off cost.

v
 (
t,

q
)

T FL T CHt

Fig. 7. The information non-concavity. The choke-off demand TCH(q) exceeds the peak marginal value demand TFL(q)

due to the non-concavity of information. The demand curve is not simply the falling portion of the marginal value of
information.
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c

TCH

cCH log(c)+1/2log (-log(c))

TCH

τ τ

Fig. 8. Optimal and approximate large demand. The true demand curve is depicted in the left figure. In the right figure,
true demand is the solid line and the approximation is the dotted line. Parameter values: q = 0.2 or 0.8, q̂ = 0.5, �A

H
= 1,

�A
L

= 2, �B
H

= 2, and �B
L

= 1.

Theorem 4. �(c, q) = 0 if c > cCH(q) and �(c, q) = TFOC(c, q) if c�cCH(q).

Proof. Observe that by (19), �(t, q) = ∫ t

0 [vt (s, q) − c] ds. The integrand is first negative,
since vt (0+, q) = 0, and eventually negative, since vt (∞, q) = 0. If c > cCH(q), then the
integral (consumer surplus) is always negative, and so the optimal demand is t = 0. Otherwise, if
c�cCH(q) < vt (TFL(q), q), then TFOC(c, q) exists, and by Theorem 3, the integrand is positive
for an interior interval ending at TFOC(c, q), where vt (TFOC(c, q), q) − c = 0. Thus, the integral
is maximized at t = TFOC(q). �

Corollary 2 (Law of demand). Demand is falling in the price c, for c < cCH(q).

Indeed, simply apply vtt (t, q) < 0 for all t > TFL(q) (true by Theorem 3). 9 The law of
demand applies to information too, but only after the price drops below the choke-off level cCH(q),
warranting positive demand. Fig. 8 illustrates these results: the jump in information demand as
costs drop, as well as the Law of Demand.

6.2. Quantifying the lumpiness

We now explore the size of the nonconcavity in the demand for information. The most direct
approach here is to quantify the minimum expenditure T vt (T , q) on information that the DM
must incur. Of course, this amount should increase in the maximum payoff stakes, simply because
the marginal value of information does, by Theorem 2. Additionally, if beliefs are near 0 or 1,
then information demand vanishes. Seeking an appropriate normalization, let the expected payoff
stakes denote the maximum expected payoff loss from choosing a wrong action. The worst
case scenario occurs at the cross-over belief q = q̂, with expected payoffs q̂[max loss if � =
H ] + (1 − q̂)[max loss if � = L], which equals:

q̂[�H
B − �H

A ] + (1 − q̂)[�L
A − �L

B ] = q̂(1 − q̂)(M − m).

This vanishes when q̂ = 0, 1, and increases in the maximum payoff stakes M − m.

9 This result owes to the supermodularity of v(t) − tc in (t, −c). We thank Ed Schlee for this.
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Theorem 5 (Least positive information costs). The average lower bound on information expen-
ditures normalized by the payoff stakes exceeds 0.025, or∫ 1

0

TCH(r)vt (TCH(r), r)

q̂(1 − q̂)(M − m)
dr > 0.025. (21)

Proof. Suppressing the arguments of L = L(q̂, q) and TCH(q), we have

v(TCH, q)

q̂(1 − q̂)(M − m)
=
∫ TCH

0 vt (s, q) ds

q̂(1 − q̂)(M − m)
=1

2

√
q(1 − q)

2�q̂(1−q̂)

∫ TCH

0

1√
s

exp

(
− s

8
−L2

2s

)
ds.

Using this equation, a lower bound on (21) is 0.025, as we show in the appendix. �

We take an average here because the threshold choke-off cost cCH(q) vanishes as beliefs q

approach q̂ or the extremes 0, 1. Thus, the minimum information purchase likewise vanishes
nearing those three beliefs, and only an average makes sense.

6.3. Demand as a function of beliefs

A classic question asked of Bayesian sequential learning models is the range of beliefs with
positive experimentation.

Theorem 6 (Interval demand). Demand �(c, q) > 0 iff beliefs q belong to an interior interval(
q(c), q̄(c)

)
, where the thresholds 0 < q(c) < q̂ < q̄(c) < 1 obey

v
(
�
(
c, q(c)

)
, q(c)

)
= �

(
c, q(c)

)
c and v (�(c, q̄(c))) = � (c, q̄(c)) c. (22)

Also, the choke-off demands are TCH(q̄(c)) = �(c, q̄(c)) and TCH(q(c)) = �(c, q(c)).

Proof. Demand is positive at belief q̂, since vt (0+, q̂) = ∞, by (b) in Corollary 1. Also, demand
vanishes at q = 0, 1, since vt (t, 0) = ut (t, 0) = 0 and vt (t, 1) = ut (t, 1) = 0 for all t . Thus, any
interval structure obeys 0 < q(c) < q̂ < q̄(c) < 1.

Next, when positive, demand obeys the FOC vt (�(q), q) = c. While it suffices to prove that
vt (t, q) is strictly quasi-concave in q, we instead show local quasi-concavity at the optimal demand
�(c, q)—i.e., vtq(�(c, q), q) = 0 implies vtqq(�(c, q), q) < 0.

Differentiating the FOC yields �q(c, q) = −vtq/vtt , if we suppress arguments. So,

�qq(c, q) = − 1

vtt

(
vtqq + vttq�q

)+ vtq

v2
t t

(
vttq + vttt�q

) = − 1

vtt

vtqq (23)

because our premise vtq(�(c, q), q) = 0 is equivalent to �q(c, q) = 0, by the FOC. By
Theorem 3(b), we have vtt (�(c, q), q) < 0, and so vtqq(�(c, q), q) and �qq(c, q) share the same
sign. Since utt (�(c, q), q) = 1

2q2(1 − q)2utqq(�(c, q), q) by Lemma 7,

− vtqq(�(c, q), q)

vtt (�(c, q), q)
= −utqq(�(c, q), q)

utt (�(c, q), q)
= − 2

q2(1 − q)2
< 0. (24)

Finally, demand vanishes when the DM is indifferent between buying and not buying at all—i.e.,
at the choke-off level. So (22) follows, and TCH(q) is as described. �
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These results strikingly differ from their analogs in a dynamic setting. That the information
demand is positive precisely on an interior interval is in harmony with the standard sequential
experimentation result (see [10]). But it holds for an entirely unrelated reason! In sequential exper-
imentation, the DM stops when his marginal costs and benefits of more experimentation balance.
In our static demand setting, the DM stops buying information when total costs and benefits of
any information purchase balance. So given the nonconcavity in the value of information, this
demand choke-off decision turns on considerations of global optimality.

The next theorem gives the relationship between positive demand and beliefs.

Theorem 7 (Hill-shaped demand). �(c, ·) is quasi-concave for q ∈
(
q(c), q̄(c)

)
.

Proof. By Theorem 6, �(c, q) > 0. So �q = 0 implies �qq < 0 by (23)–(24). �

A comparison with the dynamic case is instructive, and here we contrast the result, and not
just its logic. [10] assume a convex cost of information in a sequential experimentation model
and deduce instead that information demand is U-shaped and convex, and not hill-shaped and
concave. The static demand solution is the intuitive one, with demand greatest when the DM is
most uncertain.

6.4. The elasticity of demand

The elasticity of the demand is |�c(c, q)c/�(c, q)|. When the elasticity equals 1, the demand
level is TE(q), and revenue vt (t, q)t is maximized. By this fact, we characterize TE(q) below, via
the belief derivative (17):

TE(q) = − vt (TE(q), q)

vtt (TE(q), q)
= 2

[
1 +

√
1 + L2(q̂, q)

]
= TFL(q) + 4. (25)

Like the peak marginal value TFL(q), the unit elastic demand does not depend on the underlying
payoff stakes, apart from the dependence on the cross-over belief q̂. Further, the marginal value is
clearly falling at TE(q), since it exceeds TFL(q). We show that it lies above the choke-off demand
if the belief is sufficiently interior.

Theorem 8. (a) Demand is initially elastic for q ∈ (q́, q̀), where 0 < q́ < q̂ < q̀ < 1.
(b) Demand elasticity is decreasing in the cost c, for all c�cCH(q).

Observe that (q́, q̀) ⊂ (q(c), q̄(c)) as demand is positive for q ∈ (q́, q̀). Let cE(q) =
vt (TE(q), q), the cost with unit demand elasticity. Then cE(q) < cCH(q) iff q ∈ (q́, q̀). In-
formation demand is elastic for c ∈ (cE(q), cCH(q)] and inelastic if c < cE(q). The marginal
value of information drops off so fast given the exponentially thin Gaussian tail that the demand
elasticity falls monotonically.

6.5. Large demand

We now derive a simple asymptotically applicable demand formula. It is consistent with the one
[9] derived using large deviation theory for conditionally iid samples from any signal distribution.



Author's personal copy

J. Keppo et al. / Journal of Economic Theory 138 (2008) 21–50 37

Our work here follows in a Gaussian framework and so is more refined: we specify an additional
error term, 10 and show that it is positive—i.e., the limit demand curve is approached from above.

Theorem 9 (Low prices). If c is small then the optimal demand is given by

�(c, q)/8 = F(q) − log(c) − 1

2
log(− log(c)) + log(− log(c))

4 log(c)
(1 + o(1)), (26)

where o(1) vanishes in c, and where F(q) = 1
2 log[q(1 − q)q̂(1 − q̂)/64�] + log(M − m).

Observe that the approximate difference 2[log(− log(c))]/ log(c) between demand and F(q)−
log c− 1

2 log(− log(c)) is negative, and vanishing in c (see Fig. 8). Therefore, the three c-dependent
terms of the demand function (26) provide (in order, adding them from left to right) increasingly
accurate approximations. As the cost of information vanishes, demand is essentially logarithmic.

Proof of Theorem 9. If the cost c is small then TFOC(c, q) exists and u(TFOC(c, q), q)�u(0, q).
So in this case �(c, q) = TFOC(c, q). Second, from the FOC vt (�(c, q), q) = c:

c = (M − m)q(1 − q̂)

2
√

2��(c, q)
exp

{
−1

2

[
1

4
�(c, q) − L(q̂, q) + L2(q̂, q)

�(c, q)

]}
.

Taking logs, the definitions of L(q̂, q) and F(q) yield the log inverse demand curve:

log(c) = F(q)−1

2
log(�(c, q)/8)− L2(q̂, q)

16�(c, q)/8
−1

8
�(c, q) = F(q)−
(�(c, q)/8), (27)

where 
(x) = x + 1
2 log x + B/x, for B = L2(q̂, q)/16. For large x, we have 11 
′(x) = 1 +

1/(2x)−B/x2 > 0, so that 
−1 exists. So (27) yields the demand curve �(c, q) = 8
−1(F (q)−
log c). The appendix shows that 
−1(x) = x − 1

2 log x + 1
4 [(log x)/x](1 + o(1)) and 
−1(x) >

x − 1
2 log x. Then (26) follows as �(c, q)/8 equals

F(q)− log(c)−1

2
log(− log(c))−1

2
log

(
1− F(q)

log(c)

)
+1

4

log(F (q)− log(c))

F (q)− log(c)
(1+o(1)). �

Recall our normalization � = 1. More generally, the demand function in (26) must be divided
by �2. Ref. [9] analyze the large demand for information as the price c vanishes, for any arbitrary
signal, not just for weak or gaussian signals as we do here. They define a general information
index for a signal, � ∈ (0, 1), where 0 means perfectly informative, and 1 uninformative. They
show that the demand function for small c has the same log form as in (26), with same slope when
�2 = −8 log(�):

�(c, q)

8 log(�)
= F(q) −

[
log(c) + 1

2
log(− log(c))

]
+ log(− log(c))

4 log(c)
(1 + o(1)).

10 In the discrete signal world of [9], their formula was eventually accurate within one signal.
11 This holds for x > 1 +

√
1 + L2(q̂, q)/16, which is less than TE(q). In other words, certainly starting when demand

is inelastic, our inverse demand curve �(c, q) = 8
−1(F (q) − log(c)) is valid.
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At small prices, the optimal i.i.d. sample size of any signal with index � is approximately the
demand time of a Brownian motion with squared signal-to-noise ratio �2 = −8 log(�). This rises
from 0 to ∞ as informativeness rises (� falls from 1 to 0).

7. ‘Small bits’ of information

7.1. Beliefs

Seeking a theory of variable quantity information, it surely must be measured in sufficiently
small units. We now prove that our theory built on the diffusion process X(·) well-approximates
models assuming very ‘small bits’ of information. Assume the DM chooses the number n of i.i.d.
draws from any signal, and let the informational content and the cost of each draw jointly vanish.
We show that our Gaussian information approximates the value of and optimal number of cheap,
weak signals.

Let {G(·|�, �)} be a simple signal—a family of c.d.f.s, each indexed by the state � ∈ {L, H },
with measurable support Z independent of �. Assume that the signal becomes pure noise as �
vanishes, as the likelihood ratio 	(Z|�) = dG(Z|L, �)/dG(Z|H, �) > 0 tends to 1. Here, � is
the real elapse duration of a time interval in discrete time. In the (continuous) time span [0, t],
the DM observes n = �t/�� draws from G(·|�, �) at times �, 2�, . . . , n�

.= t , where �a� is the
largest integer at most a. So as � vanishes, the DM sees an exploding number of increasingly
uninformative conditionally i.i.d. signal outcomes at high frequency.

Introduce a sequence {Zn} of conditionally iid random variables drawn from G(·|�, �) in state
�. Next, define a belief process q�

n , according to Bayes rule:

q�
n = q�

n−1

q�
n−1 + [1 − q�

n−1]	(Zn|�)
. (28)

Extend this to a process on the real line: q�(t) = q�
�t/��. The appendix proves:

Theorem 10 (Small bits). The discrete Markov process (28) converges weakly to the diffusion in
(2), namely q�(�t/���) ⇒ q(t), if for each � ∈ {H, L}, we have∫ [

1 − 	(z|�)
]2

dG(z|�, �) = � + o(�). (29)

Unless the likelihood ratio 	(z|�) converges to 1, beliefs will jump and our limit belief process
(2) will not be continuous. Theorem 10 implies that 	(z|�) → 1 in the mean-square sense—as
needed for Ito integrals to converge.

We now illustrate, by way of example, which types of signals satisfy this condition and thus
can in fact be approximated by our Gaussian model.

Example 1 (Garbling fixed signals). We identify a broad class of examples obeying (29) using
any signal, whose cdfs are {F(·|�)} (possibly containing atoms). “Garble” F as follows: in state
�, the signal is drawn from F(·|�) with chance 1

2 + √
�, and from the “incorrect” distribution

with chance 1
2 − √

�. For instance,

G(z|H, �) =
(

1/2 + √
�
)

F(z|H) +
(

1/2 − √
�
)

F(z|L).
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This yields a state-independent support Z . Define the unconditional signal cdf F(z) = 1
2F(z|H)+

1
2F(z|L), and Radon–Nikodym derivatives �(z|�) = dF(z|�)/dF (z). Assume:

1 = 8
∫
Z

[f (z|H) − f (z|L)]2

f (z|H) + f (z|L)
dF(z). (30)

This fixes the signal–noise ratio at one; more generally, garbling still gives the result, but with a
different signal–noise ratio. For since 	(Z|�) = dG(Z|L, �)/dG(Z|H, �),

[
1 − 	(z|�)

]2 = 16[f (z|H) − f (z|L)]2�(
f (z|H) + f (z|L) + 2 [f (z|H) − f (z|L)]

√
�
)2

. (31)

Thus, [1 − 	(z|�)]2 = O(�), so that 	(z|�) = 1 + O(
√

�). This gives

∫
Z
[
1−	(z|�)

]2
dG(z|H, �) =

∫
Z

8 [f (z|H)−f (z|L)]2 �

f (z|H)+f (z|L)+2 [f (z|H)−f (z|L)]
√

�
dF(z).

Thus, (29) follows from (30) for the state � = H . For state L, we have∫
Z
[
1 − 	(z|�)

]2
dG(z|L, �) =

∫
Z

	(z|�)
[
1 − 	(z|�)

]2
dG(z|H, �).

This is [1 + O(
√

�)][� + o(�)] = � + o(
√

�) when � = L, since 	(z|�) = 1 + O(
√

�).

Example 2 (Low precision Gaussian signals). Weak Gaussian signals produce a Gaussian signal
in the large. Assume that G(z|H, �) and G(z|L, �) are the cdf’s of normal variables with mean ± 1

2
and variance 1/�. Then the Radon–Nikodym derivative is 	(z|�) = dG(z|L, �)/dG(z|H, �) =
exp
(

�
2

[
(z − 1/2)2 − (z + 1/2)2

])
. We can show:∫ ∞

−∞
[
1 − 	(z|�)

]2
dG(z|H, �) = e� − 1 = � + o(�),

∫ ∞

−∞
[
1 − 	(z|�)

]2
dG(z|L, �) = 1 − 2e� + e3� = � + o(�).

7.2. Value and demand approximation

The ex ante value of seeing n = �t/�� conditionally i.i.d. draws from {G (·|�, �)} is

v�(t, q) ≡ Eq [u(q�(�t/���))] − u(q),

where the expectation is taken over the distribution of the discrete time belief process q�(�t/���).
Since the latter converges weakly to q(t), and u(·) is continuous, the discrete value function
converges to the continuous one for every prior q ∈ [0, 1]:

v�(t, q) = v(t, q) + o(�). (32)

If v0(t, q) ≡ v(t, q), then v�(t, q) is continuous in � at � = 0, for every t �0.
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Consider the decision problem where the DM can (non-sequentially) purchase n condition-
ally i.i.d. signals for nc�, yielding payoff ��(n�|c, q) = v�(n�, q) − cn�. The optimization
problem is

sup
n∈N

��(n�|c, q). (33)

Since ��(0|c, q) = v(0, q) and limn→∞ ��(n�|c, q) = −∞, a finite non-negative maximum
of ��(n�|c, q) over n = 0, 1, 2, . . . exists—let us call that set N�(c, q).

The analogous continuous time problem when observing X(t) is supt �0 �(t |c, q), where
�(t |c, q) = v(t, q) − ct . This yields the real demand function �(c, q). By (32):

��(t |c, q) = �(t |c, q) + o(�).

Theorem 11 (Demand convergence). There is a selection n�(c, q) ∈ N�(c, q) such that for an
open and dense set of parameters ��

A, ��
B, q, c > 0, we have:

n�(c, q)� = �(c, q) + o(�). (34)

The proof is in the appendix. Then Eq. (34) implies that the discrete demand elasticity approx-
imates the continuous demand one.

8. Conclusion

We have measured information with the precision of Gaussian additive noise masking the
payoff-relevant state of nature. Here, we have completely and tractably characterized the value
of, and demand for, information in the two state world with two actions. We have focused on the
two action case because it most clearly reveals the link to the classic option pricing exercise. For
buying information affords one an option to discretely change one’s action, just as an option allows
one to buy a single share of a stock. This similarity is the main conceptual contribution of this
paper, using the logic of the inherently dynamic option pricing problem in our static environment.
Indeed, we represent the value of information as the expected payoff of an option on a stochastic
belief process. In our key technical contribution, we show how to transform the belief process so
that the value function can be explicitly solved. We have given two routes to this same target, each
tracing a different solution of the option pricing exercise. Our change-of-measure mathematics is
essential here for the same reason that it was for the option pricing formula. However, given the
value formula, our demand analysis proceeds just using elementary methods.

We then gave the full picture of the famous informational nonconcavity for the first time,
graphing the marginal value schedule for Gaussian precision. We prove that this well approximates
a large class of “small bit” models of conditionally iid signals. We have also characterized the
elasticity of information, the large demand formula, and the dependence of demand on beliefs.
Our theory extends, with difficulty, to a model with any finite set of actions, since that merely
adds to the number of cross-over beliefs. The restriction to two states is real.

Kihlstrom [7] simply exploited the self-conjugate Gaussian property for his particular payoff
function, bi-passing any analysis of the belief process. But a learning model is generally useful
insofar as one knows how posterior beliefs evolve stochastically. Indeed, we show that the marginal
value of information is proportional to the transition belief density. Either a finite action space or
state space invalidates his approach, and one must treat the learning problem seriously. And indeed,
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many choices in life are inherently discrete, like whether to change jobs or build a prototype. For
us, beliefs are not linear in signal realizations, so that solving for this belief density requires new
solution methods.

Finally, prompted by a referee, we observe that ours is not simply a model of precision. There are
other distributions besides the Gaussian with a state-dependent mean �� and state-independent
precision t—for instance, the Gamma distribution. Yet, a Gamma is not approximated by our
Gaussian signal.
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Appendix A. Omitted proofs

A.1. Limit beliefs: Proof of Lemma 1(a)

For all q ∈ (0, 1),
∫ q+ε

q−ε
2 dy

y2(1−y)2 < ∞ for some ε > 0. So Feller’s test for explosions
[6, Theorem 5.29] implies part (a) because∫ c

0

2 dq

q2(1 − q)2
�2
∫ c

0

1

q
dq = ∞ ∀c ∈ (0, 1).

A.2. The heat equation: completing Proof 2 of Lemma 8

Simply take the derivatives below and apply ut = 1
2q2(1 − q)2uqq :

Ht (t, Z) = et/2−Z

2
u
(
t, 1

et/2−Z+1

)
− et/2−Z

2(et/2−Z + 1)
uq

(
t, 1

et/2−Z+1

)
+
(
et/2−Z + 1

)
ut

(
t, 1

et/2−Z+1

)
,

HZZ(t, Z) = et/2−Zu
(
t, 1

et/2−Z+1

)
− et/2−Z

et/2−Z + 1
uq

(
t, 1

et/2−Z+1

)
+

(
et/2−Z

)2

(
et/2−Z + 1

)3 uqq

(
t, 1

et/2−Z+1

)
.

A.3. Value function derivation: Proof of Theorem 1

By Lemma 8, the expected payoff can be represented as an integral as follows:

u(t, q) =
∫ ∞

−∞

(
(1 − q) e

− 1
2 t−√

ty + q

)
u

⎛
⎜⎝ 1(

1
q

− 1
)

e
− 1

2 t−√
ty + 1

⎞
⎟⎠�(y) dy.

Let us exploit symmetry �(y) = �(−y). Since u(q) = max〈�L
A + mq, �L

B + Mq〉,

u(t, q) = q

∫ ∞

ŷ(t,q)

((
1
q

− 1
)

e
− 1

2 t+√
ty + 1

)⎛⎝�L
A + m(

1
q

−1
)
e
− 1

2 t+√
ty+1

⎞
⎠�(y) dy
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+q

∫ ŷ(t,q)

−∞

((
1
q

− 1
)

e
− 1

2 t+√
ty + 1

)⎛⎝�L
B + M(

1
q

−1
)
e
− 1

2 t+√
ty+1

⎞
⎠�(y) dy

= q
(
�L

A + m
) ∫ ∞

ŷ(t,q)

�(y) dy + (1 − q)�L
A

∫ ∞

ŷ(t,q)

e
− 1

2 t+√
ty�(y) dy

+q
(
�L

B + M
) ∫ ŷ(t,q)

−∞
�(y) dy + (1 − q)�L

B

∫ ŷ(t,q)

−∞
e
− 1

2 t+√
ty�(y) dy, (35)

where
√

t ŷ(t, q) = t/2 + log

((
M−m

�L
A−�L

B

− 1

)
q

1−q

)
satisfies:

�L
A + m(

1
q

− 1
)

e− 1
2 t+√

t ŷ(t,q) + 1
= �L

B + M(
1
q

− 1
)

e− 1
2 t+√

t ŷ(t,q) + 1
.

The second and the last integrands in (35) can be simplified using

e− 1
2 t+√

ty�(y) = 1√
2�

e− 1
2 t+√

ty− y2

2 = 1√
2�

e− (y−√
t)2

2 ,

i.e. the pdf of a normal variable with mean
√

t and unit variance. With (35), we get

u(t, q) = q
(
�L

A + m
) ∫ ∞

ŷ(t,q)

�(y) dy + (1 − q)�L
A

∫ ∞

ŷ(t,q)−√
t

�(y) dy

+q
(
�L

B + M
)

�
(
ŷ(t, q)

)+ (1 − q)�L
B�
(
ŷ(t, q) − √

t
)

.

Symmetry �(y) = �(−y) and all parametric definitions yield

u(t, q) = q�H
A �

(
−1

2

√
t + 1√

t
L(q̂, q)

)
+ (1 − q)�L

A�

(
1

2

√
t + 1√

t
L(q̂, q)

)

+ q�H
B �

(
1

2

√
t − 1√

t
L(q̂, q)

)
+ (1 − q)�L

B�

(
−1

2

√
t − 1√

t
L(q̂, q)

)
.

Using � (y) = 1 − � (−y), we get FIG(t, q); v(t, q) = u(t, q) − u(q) gives (13).

A.4. Marginal value: Proof of Theorem 2

Differentiating Theorem 1 in t , and denote L = L(q̂, q). Then vt (t, q) equals

q�H
A �

(
−

√
t

2
+ L√

t

)(
− 1

4
√

t
− L

2t3/2

)
+ (1 − q)�L

A�

(√
t

2
+ L√

t

)(
1

4
√

t
− L

2t3/2

)

+q�H
B �

(√
t

2
− L√

t

)(
1

4
√

t
+ L

2t3/2

)
+(1 − q)�L

B�

(
−

√
t

2
− L√

t

)(
− 1

4
√

t
+ L

2t3/2

)

=�

(
−

√
t

2
+ L√

t

)[
(�H

B −�H
A )q

(
1

4
√

t
+ L

2t3/2

)
+(�L

A−�L
B)

q(1−q̂)

q̂

(
1

4
√

t
− L

2t3/2

)]

= (M − m)q(1 − q̂)

2
√

t
�

(
−

√
t

2
+ L√

t

)
,
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where the second equality owes to � (−x) = � (x) and �
(√

t
2 + L√

t

)
= �

(
−

√
t

2 + L√
t

)
e−L,

and the last to M − m = (�H
B − �H

A ) + (�L
A − �L

B) and q̂ = (�L
A − �L

B)/(M − m).
Finally (15) yields (14) by taking time derivatives and by using Lemma 5.

A.5. Slopes at zero: Proof of Corollary 1

Claim 1. For any n > 1 we have:

�n
v(t, q)

�tn
= vt (t, q)

[
A2(n−1)(q)

t2(n−1)
+ · · · + A1(q)

t
+ A0(q)

]
,

where A2(n−1)(q), . . . , A0(q) are bounded functions of q.

Proof. From (9), since vtt (t, q) = vt (t, q)
[

A2(q)

t2 + A1(q)
t

+ A0(q)
]
, each differentiation pro-

duces a polynomial in 1/t whose highest power is greater by two. �

The first equality of Corollary 1 owes to (15) because �
(
− 1

2

√
t + 1√

t
L(q̂, q)

)
> 0 for all

(t, q) ∈ (0, ∞) × (0, 1). The second, third, and fourth equalities owe to (8), (9), and (15), by

taking the limit t → ∞ or t ↓ 0. [Indeed, limt↓0 �(t, q, q̂) = lims↓0
1√
s
e− 1

s e−s = 0 if q �= q̂.]

From Lemmas 1, 6, and Theorem 2, we get

�n
v(t, q)

�tn
=
√

q(1 − q)

q̂3(1 − q̂)32�

1

e
1
8 t+ 1

2t
L2(q̂,q)

1√
t

[
A2(n−1)(q)

t2(n−1)
+ · · · +A1(q)

t
+A0(q)

]
= 0.

This gives the fifth and sixth equality of Corollary 1. �

A.6. Information lumpiness: Proof of Theorem 5

Because TCH(q)�TFL(q), the last integral in the proof is greater than

∫ TFL

0

e− TFL
8 −L2/2s

2
√

s
ds=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e
−TFL

8

[
√

TFLe
− L2

2TFL −√
2�L

(
1−�

(
L√
TFL

))]
∀q̂ �q,

e
−TFL

8

[
√

TFLe
− L2

2TFL +√
2�L�

(
L√
TFL

)]
∀q � q̂.

(36)

Eq. (36) gives that v(TCH(q), q)/[q̂(1 − q̂)(M − m)] exceeds

j (q, q̂) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
q(1−q)

2�q̂(1−q̂)
e− 1

8 TFL

[√
TFLe

− L2
2TFL −√

2�L

(
1−�

(
L√
TFL

))]
∀q̂ �q,

√
q(1−q)

2�q̂(1−q̂)
e− 1

8 TFL

[√
TFLe

− L2
2TFL +√

2�L�

(
L√
TFL

)]
∀q � q̂.
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One can verify that J (q̂) = ∫ 1
0 j (q, q̂) dq is convex on (0, 1), and is minimized at q̂ = 0.5. Now,

j (·, 0.5) is a double-hump shape: it is concave on (0, 0.5) and (0.5, 1), and limq↓0 j (q, 0.5) =
limq→0.5 j (q, 0.5) = limq↑1 j (q, 0.5) = 0 because L(0.5, q) = 0 and TFL = 0 if q̂ = q = 0.5,
while the limits at q = 0 and 1 require l’Hopital’s rule. Further, j (·, 0.5) satisfies j (r, 0.5) =
j (1 − r, 0.5) where 0 < r < 0.5. So we can inscribe between the horizontal j = 0 axis and
the j (q, 0.5) curve two equally tall triangles, whose area is a lower bound on J (0.5), namely,
J (0.5) > (0.5) maxq∈(0,0.5) j (q, 0.5). Finally, maxq∈(0,0.5) j (q, 0.5) = j (0.25, 0.5) > 0.05.

A.7. Elasticity of demand: Proof of Theorem 8

Proof of Part (a). Now we show that there exist two points where TE(q) = TCH(q)—one when
q < q̂ and one when q > q̂. Define the gross surplus function � as follows:

�(q) ≡ v(TE(q), q) − vt (TE(q), q)TE(q). (37)

It suffices to show that �(q) > 0 iff q ∈ (q́, q̀), where q̂ ∈ (q́, q̀). We prove that �(q) > 0 for
q ∈ (q́, q̂); the case q ∈ (q̂, q̀) is similar. Differentiating (8) yields:

Claim 2 (q-Derivatives). The transition pdf q(t) obeys, for 0 < q, r < 1 and t > 0:

�q(t, q, r) = �(t, q, r)

[
1 − 2q

2q(1 − q)
+ L(r, q)

tq(1 − q)

]
,

�qq(t, q, r) = �(t, q, r)
1

q2(1 − q)2

[
−1

4
+ L2(r, q)

t2
− 1

t

]
. (38)

Claim 3. We have �(0+) = 0, �q(0+) = −∞, and �(q̂) > 0.

Proof. First we calculate �(0+). Since limq↓0 L(q̂, q) = limq↓0 log
(

q̂(1−q)

q(1−q̂)

)
= ∞, we get

limq↓0 TE(q) = limq↓0 L2(q̂, q) = ∞ and using (8) and (15), we get

lim
q↓0

vt (TE(q), q) TE(q) = lim
q↓0

√
qTE(q)

e
TE(q)

8 + 1
2TE(q)

L2(q̂,q)
= 0.

From (13), the first term of v(TE(q), q) satisfies

lim
q↓0

q(�H
B − �H

A )�

(√
TE(q)

2
− L(q̂, q)√

TE(q)

)
= 0,

because � (r) �1 for all r . For the second term of v(TE(q), q), we have

lim
q↓0

(1 − q)(�L
A − �L

A)�

(
−

√
TE(q)

2
− L(q̂, q)√

TE(q)

)
= 0

since limq↓0 L(q̂, q)/
√

TE(q) = limq↓0
√

TE(q) = ∞. Thus, limq↓0 �(q) = 0.
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Next we solve limr↓0 �q(r), where

�q(q) = vq(TE(q), q) − vtt (TE(q), q)TE(q)
�
�q

TE(q) − vtq(TE(q), q)TE(q). (39)

We analyze the different terms separately. By Theorem 3, we have vtt (TE(q), q) < 0. Differen-
tiating (25) gives

�
�q

TE(q) = − 2

q(1 − q)

L(q̂, q)√
1 + L2(q̂, q)

,

and so limr↓0
�
�q

TE(r) = −∞. Because limq↓0 TE(q) = ∞, the second term in (39) satisfies

limq↓0 vtt (TE(q), q)TE(q) �
�q

TE(q) = ∞. For the third term of (39):

lim
r↓0

vtq(TE(r), r) = lim
q↓0

�(TE(q), q, q̂)

[
1 − 2q

2q(1 − q)
+ L(q̂, q)

TE(q)q(1 − q)

]
= ∞,

because limq↓0
q

TE(q)
= 0. Since vq(TE, q) is bounded, we get �q(0+) = −∞.

Finally, compute the value of �(q̂) by using (37). We again divide the expression into different
parts. Since L(q̂, q̂) = 0, we have TE(q̂) = 4, and so from (15), we get

vt (TE(q̂), q̂)TE(q̂) = q̂(1 − q̂)(M − m)

√
1

2�
e−1/2. (40)

Since TE(q̂) = 4, Eq. (13) gives that v(TE(q̂), q̂) equals

q̂(1 − q̂)(M − m) (�(1) − �(−1)) = q̂(1 − q̂)(M − m)

√
1

2�

∫ 1

−1
e
− x2

2 dx. (41)

By subtracting (40) from (41), we get �(q̂) > 0, since
∫ 1
−1 e− x2

2 dx > e−1/2. �

Claim 4. �(·) : (0, q̂) → R is convex.

Proof. Twice differentiating (37), the second derivative −�qq(q) equals

vttt (TE(q), q)TE(q)

(
�
�q

TE(q)

)2

+ 2vttq(TE(q), q)TE(q)
�
�q

TE(q)

+vtt (TE(q), q)

(
�
�q

TE(q)

)2

+ vtt (TE(q), q)TE(q)
�2

�q2
TE(q)

+vtqq(TE(q), q)TE(q) − vqq(TE, q).

Substitute from (17), (18), and the formulas below from Claim 2 and Theorem 2:

vttq(t, q) = vt (t, q)

[(
−1

8
+ L2

2t2
− 1

2t

)(
1 − 2q

2q(1 − q)
+ L

tq(1 − q)

)
− L

t2q(1 − q)

]
,

vtq(t, q) = vt (t, q)

[
1 − 2q

2q(1 − q)
+ L

tq(1 − q)

]
,



Author's personal copy

46 J. Keppo et al. / Journal of Economic Theory 138 (2008) 21–50

vtqq(t, q)/vtt (t, q) = vqq(t, q)/vt (t, q) = 2

q2(1 − q)2

�⇒ �qq(q) = vt (TE(q), q)

(
3 + L2

)+ (L4 + 4L2(2 + S) + 8(1 + S)
)

(1 − q)2q2
(
1 + L2

) 3
2 S3

> 0,

where S = 1 + √
1 + L2. �

From Claim 3 we get �(q̂) > 0 and �(ε) < 0 for ε > 0. Since �(·) is continuous, there
exists q́ ∈ (0, q̂) with �(q́) = 0. Claim 4 gives uniqueness. So �(q) > 0 for q ∈ (q́, q̂). The
existence/uniqueness proof for q̀ ∈ (q̂, 1) is symmetric. �

Proof of Part (b). Note that when c�cCH(q) then �(c, q) > 0. Let us denote elasticity E(c) =
−c�c(c, q)/�(c, q). Clearly, E′(c) > 0 iff

c�2
c(c, q) − [�c(c, q) + �cc(c, q)c] �(c, q) > 0. (42)

Differentiating vt (�(c, q), q) = c yields �c(c, q) = 1/vtt and �cc(c, q) = −vttt (�, q)/v3
t t (�, q).

Hence, if we substitute from (17) and (18) for vtt /vt and vttt /vtt , we get

c�2
c − �(�c + �ccc) = vt

v2
t t

− �

(
1

vtt

− vttt vt

v3
t t

)

= − �

vtt

(
1 − v2

t

v2
t t

((
vtt

vt

)2

− L2

�3
+ 1

2�2

)
− vt

�vtt

)

= − 1

vtt (vtt /vt )2�2

(
L2 − 1

2
� − vtt

vt

�2
)

= − 1

vtt (vtt /vt )2�2

(
L2

2
+ �2

8

)

which is positive because vtt (�, q) < 0 when �(c, q) > TCH(q). Hence, E(c) is rising in the cost
c, and thus falling in the quantity �. �

A.8. Large demand: inverse demand curve of Theorem 9

Claim 5. Assume that ε(x) > 0 is an increasing C1 function of x, with ε(x)/x → 0, and
ε′(x) = �/x + O(1/x2). Then the map 
(x) = x + ε(x) has inverse �(x) = x − �(x) where
�(x) = ε(x)(1 − �/x + O(1/x2)). Furthermore, �(x) < ε(x) for all x.

Notice that ε(x) = 1
2 log x + B/x obeys the required conditions with � = 1

2 .

Proof of Claim. Let �(x) = x − �(x), for �(x) > 0—whose sign is clear, because � and 
 are
reflections of each other about the diagonal. Also, since 
(x) → ∞, so must �(x) → ∞, by
reflection. By the inverse property, 
(x − �(x)) ≡ x − �(x) + ε(x − �(x)) ≡ x. Since x �→ ε(x)

is increasing, �(x) = ε(x − �(x)) < ε(x).
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Taking a first order Taylor series of ε about x yields �(x) = ε(x) − �(x)ε′(x̂) < ε(x) for some
intermediate x̂ ∈ [x − �(x), x]. Hence, x̂/x�1 − �(x)/x�1 − ε(x)/x → 1.

�(x) = ε(x)

1 + ε′(x̂)
= ε(x)(1 − �/x̂ + O(1/x̂2)) = ε(x)(1 − �/x̂ + O(1/x2)).

A.9. Convergent belief processes: Proof of Theorem 10

A.9.1. Preliminary lemmas
Recall that 	(Z|�) = dG(Z|L, �)/dG(Z|H, �). Of course, since we are proving Theorem 10,

we maintain (29).

Lemma 9. Mean and variance obey: Var
[
	(Z|�)|H ] = E

[
	(Z|�)|L]− 1.

Proof. Since E
[
	(Z|�)|H ] = 1, the variance in H equals∫

[1 − 	(z|�)]2 dG(z|H, �) =
∫ [

1 + 	2(z|�) − 2	(z|�)
]

dG(z|H, �)

=
∫ (

dG(z|L, �)

dG(z|H, �)

)2

dG(z|H, �) − 1. �

Lemma 10. E[	(Z|�)|L] = 1 + � + o(�) and Var[	(Z|�)|L] = 1 + o(�).

Proof. The first equality follows from Lemma 9 and (29), because

E[	(Z|�)|L] = 1 + Var[	(Z|�)|H ] = 1 + � + o(�)

⇒ Var
[
	(Z|�)|L]= ∫ [	(z|�) − 1 − � − o(�)

]2
dG(|�, L)

=
∫ [

1 − 	(z|�)
]2

dG(z|L, �) + o(�)

which equals � + o(�) by (29). �

Lemma 11 (A derived process). Let W� be a Wiener process in state �. The process St ≡∑�t/��
i=1

(1 − 	(Zi |�)) converges weakly to WH (t) in state H as � ↓ 0, and to −t + WL(t) in state L.
Therefore, dWH = −dt + dWL.

Proof. By [3] (Theorem 8.7.1), three conditions give weak convergence: the limiting discrete
belief process almost surely has continuous sample paths, and the first two moments of St −St−�
converge to their continuous time analogs.

Step 1: Limit continuity. For each ε > 0 and � ∈ {H, L}, we have

P �
� (|1 − 	(Z|�)|�ε) �ε−1

∫
|1 − 	(z|�)| dG(z|�, �)

where P �
� is the probability measure for G(·|�, �). By (29), this vanishes in �.
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Steps 2 and 3: Convergent first and second moments. We have

lim
�↓0

1
�E
[
St − St−�|H ] = 0 = E[dWH |H ]/dt,

lim
�↓0

1
�E
[
(St − St−�)2|H

]
= 1 = E[(dWH )2|H ]/dt

by the martingale property and (29). Likewise, from Lemma 10 and (29) we get

lim
�↓0

1
�E
[
St − St−�|L] = −1 = E[−dt + dWL|L]/dt,

lim
�↓0

1
�E
[
(St − St−� + � + o(�))2|L

]
= 1 = E[(dWL)2|L]/dt. �

A.9.2. Proof of Theorem 10
We first derive the process of reciprocal beliefs 1/q(t), and from it deduce the belief process.

Bayes rule (28) yields a nice expression:

1

q�(n�)
− 1

q�((n − 1)�)
=
(

1 − 1

q�((n − 1)�)

)
(1 − 	(Zn|�)) . (43)

Step 1: �(q) = 1/q obeys d�(q(t)) = [1 − �(q(t))] dWH (t) in State H . By (43):

�
(
q�(t)

)
− �

(
q�(0)

)
=

�t/��∑
i=1

[
1 − �

(
q�((i − 1)�)

)] [
1 − 	(Zi |�)

]
. (44)

We wish to treat these as partial sums for an Ito integral. To do so, we must ensure that the limits
are well-defined. Hence, we define stopping times:

tn = sup

⎧⎨
⎩t : E

⎡
⎣lim

�↓0

�t/��∑
i=1

[
1 − �

(
q�((i − 1)�)

)]2
�

∣∣∣∣∣∣H
⎤
⎦ �n

⎫⎬
⎭ .

By the construction of the Ito integral, we take limits in (44) using Lemma 11:

lim
�↓0

{
�
(
q�(t ∧ tn)

)
− �

(
q�(0)

)}
=
∫ t∧tn

0
[1 − �(q(s))] dWH (s), (45)

where the Ito integrals are well defined by the definition of tn.
If tn → ∞, then we have the stronger assertion than (45), that for t < ∞:

lim
�↓0

{
�(q�(t)) − �(q�(0))

}
=
∫ t

0
[1 − �(q(s))] dWH (s). (46)

Let t � tn, where (46) holds. Then Y (t) = 1 − �(q(t)) obeys dY (t) = −d�(q(t)) = −Y (t)

dWH (t), i.e. Y (tn) = Y (0) exp(−tn/2 − WH (tn)). Thus

E

[∫ tn

0
Y 2(s) ds

∣∣∣H] = Y 2(0)

∫ tn

0
es ds = Y 2(0)

(
etn − 1

)
< ∞

if tn is boundedly finite. This precludes n → ∞, contradiction. So tn → ∞.
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Step 2: The process for q(t) = 1/�(q(t)). By Ito’s Lemma, Step 1, and Lemma 11, we respec-
tively have for all t �0,

dq(t) = − 1

�2(q)
d�(q) + 1

�3(q)
(d�(q))2

= q(t)(1 − q(t)) [dWH (t) + (1 − q(t)) dt]

= q(t)(1 − q(t)) [dWL(t) − q(t) dt] .

Define the unconditional Wiener process as dW = q dWH + (1 − q) dWL. Then

dq = q(1 − q) (q[dWH + (1 − q) dt] + (1 − q)[dWL − q dt]) = q(1 − q) dW

yields the unconditional belief process, as desired.

A.10. Approximate value functions: Proof of Theorem 11

For every y�0, let

��(y�|c) ≡ �� (�y + 1��|c) [1 − (y − �y�)] 1
� + �� (�y��|c) (y − �y�) 1

� .

This is an average of the maximand ��(y�|c) of (33) at the integers adjacent to y. Also, ��(y�|c)
is continuous in y�0, c�0, and � > 0. The latter holds because c�y�� is continuous in �, and
v�(�y��) is continuous in � for given �y�. Thus, ��(�y��|c) = v� (�y��)−c�y�� is continuous
in �, and so therefore is ��(y�|c).

Next, ��(y�|c) coincides with the discrete maximand at �, 2�, . . . . Also, ��(y�|c) is an
average of �� (�y��|c) and �� (�y + 1��|c), and so of �� (�y��|c) and �� (�y + 1��|c). Then

��(y�|c)� max
〈
�� (�y��|c) , �� (�y + 1��|c)

〉
with strict inequality iff y is not an integer and

�� (�y + 1��|c) �= �� (�y��|c). As we can improve weakly over any y by choosing either �y�
or �y + 1�, the correspondence M�(c) ≡ arg maxy �0 ��(y�|c) contains a non-negative integer.
Altogether

max
y �0

��(y�|c) = max
n=0,1,2,...

��(n�|c). (47)

Finally, 0�y − �y��1, and so (y − �y�) 1
� is a positive function of � that vanishes with � but

remains continuous in y for every � > 0. So for every given t > 0,

lim
�↓0

��(t |c) = lim
�↓0

v�(t) − ct = v0(t) − ct = �(t |c).

We are now ready to use the auxiliary problem of maximizing ��(y�|c) over y�0. Again,
�� (0|c) = 0 and limy→∞ v�(�y��)� max�,a ��

a < ∞. We can thus restrict the choice of y to a
compact interval [0, ȳ(�)], where ȳ(�) is the continuous function defined by the largest solution
m to v� (m�) = cm�. We can then rewrite

M�(c) = arg max
y∈[0,ȳ(�)]

��(y�|c).

Demand maximizes a function ��(y�|c) continuous in y, c, � over a compact-valued and
continuous correspondence [0, ȳ(�)]. A non-integer y belongs to M�(c) iff �y� and �y + 1� do.
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This is a non-generic event in c; generically, M�(c) contains either one integer, or non-consecutive
integers. Thus, M�(c) contains only integers a.e. in c, �. The maximized �� coincides with the
discrete maximand ��(n�|c):

max
y∈[0,ȳ(�)]

��(y�|c) = max
y∈[0,ȳ(�)]

�� (�y��|c) = max
n=0,1,2,...

��(n�|c)

we have M�(c) = N�(c) a.e. in parameter space. Write the first maximization as

max
t∈[0,ȳ(�)�]

��(t |c)

the maximization over a compact-valued, continuous correspondence [0, ȳ(�)�] of a function
��(t |c) continuous in t, c, �. By the Theorem of the Maximum, the correspondence T �(c) =
M�(c)/� is u.h.c. in � and c. As � is single-valued at all but one c, as � ↓ 0, all selections
��(c, q) ∈ T �(c) converge to the unique maximizer �(c, q) of the continuous time problem

�(t |c) = lim�↓0 ��(t |c): namely, lim�↓0

∣∣∣��(c, q) − �(c, q)

∣∣∣ = 0 a.e. in parameter space.

Let y�(c) ≡ ��(c, q)/� ∈ M�(c). This selection must be integer-valued and a maximizer of
��(n�|c) a.e. in parameter space. So y�(c) = n�(c) for some optimal discrete sample size
n�(c) = ��(c, q)/� ∈ N�(c, q). Then a.e. in parameter space,

0 = lim
�↓0

∣∣∣��(c) − �(c, q)

∣∣∣ = lim
�↓0

∣∣∣y�(c)� − �(c, q)

∣∣∣ = lim
�↓0

∣∣∣n�(c)� − �(c, q)

∣∣∣ .
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